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Abstract While the lower-level mechanisms of neural information processing
(in biological neural networks) are fairly well understood, the principles of
higher-level processing remain a topic of intense debate in the neuroscience
community. With many theories competing to explain how stimuli are en-
coded in nerve signal (spike) patterns, data analysis tools are desired by which
proper tests can be carried out on recorded parallel spike trains. This paper
surveys how pattern mining methods, especially soft methods that tackle the
core problems of temporal imprecision and selective participation, can help to
test the temporal coincidence coding hypothesis. Future challenges consist in
extending these methods, in particular to the case of spatio-temporal coding.

1 Introduction

Basically all information transmission and processing in humans and animals
is carried out by the nervous system, which is a network of special cells
called neurons or nerve cells. These cells communicate with each other by
electrical and chemical signals. While the lower-level mechanisms are fairly
well understood (see Section 2) and it is widely accepted in the neuroscience
community that stimuli are encoded and processed by cell assemblies rather
than single cells [17, 23], it is still a topic of intense ongoing debate how
exactly information is encoded and processed on such a higher level: there
are many competing theories, each of which has its domain of validity. Due
to modern multi-electrode arrays, which allow to record the electrical signals
emitted by hundreds of neurons in parallel [9], more and more data becomes
available in the form of (massively) parallel spike trains that can help to tackle
the challenge of understanding higher-level neural information processing.
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Fig. 1 Diagram of a
typical myelinated verte-

brate motoneuron (source:
Wikipedia, [27]), showing

the main parts involved in

its signaling activity like
the dendrites, the axon,

and the synapses.

After reviewing some of the main competing models of neural information
coding (Section 2), this paper focuses on the temporal coincidence coding
hypothesis. It explores how pattern mining methods can help in the search for
synchronous spike patterns in parallel spike trains (Section 3) and considers,
in particular, soft methods that can handle the core problems of temporal
imprecision and selective participation (Section 4). The paper closes with
an outlook on future work, especially tackling the challenge of identifying
spatio-temporal patterns under such conditions (Section 5).

2 Neural Information Processing

Essentially, neurons are electrically excitable cells that send signals to each
other. The mechanisms are well understood on a physiological and chemical
level, but how several neurons coordinate their activity is not quite clear yet.

Physiology and Signaling Activity. Neurons are special types of cells
that can be found in most animals. They connect to each other, thus forming
complex networks. Attached to the cell body (or soma) are several arbores-
cent branches that are called dendrites and one longer cellular extension
called the axon. The axon terminals form junctions, so-called synapses, with
the dendrites or the cell bodies of other neurons (see Figure 1) [14].

The most typical form of communication between neurons (this is a very
simplified description!) is that the axon terminals of a neuron release chemical
substances, called neurotransmitters, which act on the membrane of the con-
nected neuron and change its polarization (its electrical potential). Synapses
that reduce the potential difference between the inside and the outside of the
membrane are called excitatory, those that increase it, inhibitory. Although
the change caused by a single synapse is comparatively small, the effects of
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multiple synapses accumulate. If the total excitatory input is large enough,
the start of the axon becomes, for a short period of time (around 1ms), de-
polarized (i.e. the potential difference is inverted). This sudden change of the
electrical potential, called action potential, travels along the axon, with the
speed depending on the amount of myelin present. When this nerve impulse
reaches the end of the axon, it triggers the release of neurotransmitters. Thus
the signal is passed on to the next neuron [14]. The electrical signals can be
recorded with electrodes, yielding so-called spike trains.

Neural Information Coding. It is widely accepted in the neuroscience
community that stimuli and other pieces of information are not represented
by individual neurons and their action potentials, but that multiple neurons
work together, forming so-called cell assemblies. However, there are several
competing theories about how exactly the information is encoded. The main
models that are considered include, but are not limited to the following [23]:

• Frequency Coding [29, 12]
Neurons generate spikes trains with varying frequency as a response to
different stimulus intensities: the stronger the stimulus, the higher the
spike frequency. Frequency coding is used in the motor system, which
directly or indirectly controls muscles, because the rate at which a muscle
contracts is correlated with the number of spikes it receives. Frequency
coding has also been shown to be present in the sensory system.

• Temporal Coincidence Coding [21, 30, 19, 25]
Tighter coincidence of spikes recorded from different neurons represent
higher stimulus intensity, with spike occurrences being modulated by local
field oscillation [23]. A temporal coincidence code has the advantage that it
leads to shorter “switching times,” because it avoids the need to measure a
frequency, which requires to observe multiple spikes. Therefore it appears
to be a better model for neural processing in the cerebral cortex.

• Delay Coding [18, 8]
The input stimulus is converted into a spike delay (possibly relative to some
reference signal). A neuron that is stimulated more strongly reaches the
depolarization threshold earlier and thus initiates a spike (action potential)
sooner than neurons that are stimulated less strongly.

• Spatio-Temporal Coding [1, 2]
Neurons emit a causal sequence of spikes in response to a stimulus config-
uration. A stronger stimulus induces spikes earlier and initiates spikes in
other, connected cells. The sequence of spike propagation is determined by
the spatio-temporal configuration of the stimulus as well as the connectiv-
ity of the network [23]. This coding model can be seen as integrating the
temporal coincidence and the delay coding principles.

Among other models a spatio-temporal scheme based on a frequency code
[28] is noteworthy. In this model the increased spike frequencies form specific
spatio-temporal patterns over the involved neurons. Thus it can be seen as
combining spatio-temporal coding with frequency coding.
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mathematical problem market basket analysis spike train analysis

item product neuron

item base set of all products set of all neurons

— (transaction id) customer time bin

transaction set of products set of neurons

bought by a customer firing in a time bin

frequent item set set of products set of neurons

frequently bought together frequently firing together

Table 1 Translation of basic notions of frequent item set mining to market basket analysis

(for which it was originally developed) and to spike train analysis.

3 Detecting Synchronous Activity

This paper focuses on the temporal coincidence coding hypothesis and thus
on the task to detect unusual synchronous spiking activity in recorded parallel
spike trains, where “unusual” means that it cannot be explained as a chance
event. In addition, we do not merely consider whether a parallel spike train
contains synchronous spiking activity (e.g. [31]) or whether a given neuron
participates in the synchronous spiking activity of a cell assembly (of oth-
erwise unknown composition) (e.g. [4]). Rather we concentrate on the most
complex task of identifying specific assemblies that exhibit(s) (significant)
synchronous spiking activity (e.g. [13, 3]). Tackling this task is computation-
ally expensive for (massively) parallel spike trains due to a combinatorial
explosion of possible neuron groups that have to be examined.

Other core problems are temporal imprecision and selective participation.
The former means that it cannot be expected that spikes are temporally
perfectly aligned, while the latter means that only a subset of the neurons
in an assembly may participate in any given synchronous spiking event, with
the subset varying between different such events. Note that both may be the
effect of deficiencies of the spike recording process (the spike time or even
whether a spike occurred is not correctly extracted from the measured profile
of the electrical potential) or may be due to the underlying biological process
(delays or even failures to produce a spike due to lower total synaptic input,
as neurons may receive signals coding different information in parallel).

The most common (or even: the almost exclusively applied) method of
handling temporal imprecision is time binning: given a user-specified bin
width, a spike train, which is originally a (continuous) point process of spike
times, is turned into a binary sequence: a 1 means that the corresponding
neuron produced a spike and a 0 that there is no spike in the corresponding
time bin. In this way the problem is essentially transformed into a frequent
item set mining problem [3]. The translation of the relevant notions to market
basket analysis (for which frequent item set mining was originally developed)
and to spike train analysis is shown in Table 1. Clearly, the problems are
structurally equivalent and thus can be attacked with the same means.
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The standard problem of frequent item set mining—namely that a huge
number of frequent item sets may be found, most of them false discoveries—
is best addressed by randomization methods [22, 15]. In spike train analysis,
these methods take the form of surrogate data generation schemes, since
one tries to preserve as many properties (that are deemed biologically rele-
vant, e.g. inter-spike intervals) as possible, while destroying the coincidences.
A survey of such surrogate data generation methods can be found in [20].

In essence, an assembly detection method then works as follows: a sufficient
number of surrogate data sets (say, 1000 or 10,000) are created and mined
for frequent item sets, which are identified by their size (number of neurons)
and support (number of coincidences). Then the original data set is mined
and if patterns of a size and support (but ignoring the exact composition by
neurons) can be found that do not show up in any of the surrogate data sets,
these patterns can be considered significant results.

4 Soft Pattern Mining

Accepting time binning for now as a simple (though deficient, see below)
method for handling temporal imprecision, let us turn to the problem of
selective participation. In the framework of frequent item set mining this
is a well-known problem for which many approaches exist (see, e.g., [5]).
The core idea is this: in standard frequent item set mining a transaction
(time bin) supports an item set (neuron set) only if all items in the set
are present. By relaxing the support definition, allowing for some items of a
given set to be missing from a transaction, we arrive at fault-tolerant item set
mining. The various algorithms for this task can be roughly categorized into
(1) error-based approaches, which allow for a maximum number of missing
items, (2) density-based approaches, which allow for a maximum fraction
of missing items, and (3) cost-based approaches, which reduce the support
contribution of a transaction depending on the number of missing items (and
may, in addition, restrict the number of missing items) [5].

However, such approaches suffer from the even larger search space (as more
item sets need to be examined) and thus can increase the computational costs
considerably. An alternative approach that avoids an exhaustive enumeration
relies on distance measures for binary vectors [10] and uses multi-dimensional
scaling [11] to a single dimension to group neurons together that exhibit sim-
ilar spiking activity [6]. The actual assemblies are then discovered by travers-
ing the neurons according to their image location and testing for dependence.
The approach of computing distances of time-binned spike trains has been
extended to various well-known clustering methods in [7].

All of the mentioned methods work on time binned data. However, the time
binning approach has several severe drawbacks. In the first place, the induced
concept of synchrony is two-valued, that is, spikes are either synchronous
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Fig. 2 Eight parallel spike trains with three
coincident spiking events (shown in color), two

of which are disrupted by time bin boundaries
(time bins indicated by gray and white stripes).

(namely if they lie in the same time bin) or not. We have no means to
express that the spikes of some coincident event are better aligned than those
of another. Secondly, time binning leads to anomalies: two spikes that are
(very) close together in time, but happen to be on different sides of a time
bin boundary are seen as not synchronous, while two spikes that are almost
as far apart as the length of a time bin, but happen to fall into the same
time bin, are seen as synchronous. Generally, the location of the time bin
boundaries can have a disruptive effect. This is illustrated in Figure 2, where
two of the three coincidences of the eight neurons (shown in color) cannot be
detected, because they are split by badly placed time bin boundaries.

These problems have been addressed with the influence map approach (see
[24, 7]), which bears some resemblance to the definition of a distance measure
for continuous spike trains suggested in [26]. The core idea is to surround each
spike time with an influence region, which specifies how imprecisely another
spike may be placed, which is still to be considered as synchronous. Thus
one can define a graded notion of synchrony based on the (relative) overlap
of such influence regions. Unfortunately, a direct generalization of binary
distance measures to this case (using properly scaled durations instead of
time bin counts) seems to lose too much information due to the fact that full
synchrony can only be achieved with perfectly aligned spikes [7].

As a solution one may consider specific groups of spikes, one from each
neuron, rather than intersecting, over a set of neurons, the union of the
influence regions of the spikes of each neuron. This allows to define ε-tolerant
synchrony, which is 1 as long as the temporal imprecision is less than a user-
specified ε and becomes graded only beyond that. In addition, extensions to
the fault-tolerant case are possible by allowing some spikes to be missing.

5 Future Challenges

The methods reviewed in this paper were devised to detect synchronous ac-
tivity. However, attention in the neuroscience community shifts increasingly
towards spatio-temporal spike patterns as the more general concept, which
contains synchronous spiking as a special case. If the time binning approach
is accepted, frequent pattern mining offers readily available solutions, for ex-
ample, in the form of the Spade [33] and cSpade algorithms [32]. However,
these approaches require discretized time. Similarly, approaches developed in
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the neuroscience community (e.g. [1]) are based on time bins, and thus suf-
fer from the mentioned anomalies. In addition, these methods cannot handle
faults, in the sense of individual missing spikes: they only count full occur-
rences of the potential patterns. It is a challenging, but very fruitful problem
to extend these approaches (possibly with influence maps) to continuous time
or find alternative methods that can handle both faults and continuous time.
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