
Mining Fault-tolerant Item Sets
using Subset Size Occurrence Distributions

Christian Borgelt1 and Tobias Kötter2

1 European Centre for Soft Computing
c/ Gonzalo Gutiérrez Quirós s/n, E-33600 Mieres (Asturias), Spain

christian.borgelt@softcomputing.es
2 Dept. of Computer Science, University of Konstanz

Box 712, D-78457 Konstanz, Germany
tobias.koetter@uni-konstanz.de

Abstract. Mining fault-tolerant (or approximate or fuzzy) item sets
means to allow for errors in the underlying transaction data in the sense
that actually present items may not be recorded due to noise or mea-
surement errors. In order to cope with such missing items, transactions
that do not contain all items of a given set are still allowed to support it.
However, either the number of missing items must be limited, or the
transaction’s contribution to the item set’s support is reduced in propor-
tion to the number of missing items, or both. In this paper we present
an algorithm that efficiently computes the subset size occurrence distri-
bution of item sets, evaluates this distribution to find fault-tolerant item
sets, and exploits intermediate data to remove pseudo (or spurious) item
sets. We demonstrate the usefulness of our algorithm by applying it to a
concept detection task on the 2008/2009 Wikipedia Selection for schools.

1 Introduction and Motivation

In many applications of frequent item set mining one faces the problem that the
transaction data to analyze is imperfect: items that are actually contained in
a transaction are not recorded as such. The reasons can be manifold, ranging
from noise through measurement errors to an underlying feature of the observed
process. For instance, in gene expression analysis, where one may try to find co-
expressed genes with frequent item set mining [9], binary transaction data is often
obtained by thresholding originally continuous data, which are easily affected
by noise in the experimental setup or limitations of the measurement devices.
Analyzing alarm sequences in telecommunication data for frequent episodes can
be affected by alarms being delayed or dropped due to the fault causing the alarm
also affecting the transmission system [18]. In neurobiology, where one searches
for assemblies of neurons in parallel spike trains with the help of frequent item
set mining [11, 4], ensemble neurons are expected to participate in synchronous
activity only with a certain probability. In this paper we present a new algorithm
to cope with this problem, which efficiently computes the subset size occurrence
distribution of item sets, evaluates this distribution to find fault-tolerant item
sets, and uses intermediate data to remove pseudo (or spurious) item sets.



tr
an

sa
ct

io
ns

transactions

items

perfect/standard

tr
an

sa
ct

io
ns

transactions

items

fault-tolerant

tr
an

sa
ct

io
ns

transactions

items

pseudo/spurious

Fig. 1. Different types of item sets illustrated as binary matrices.

The rest of this paper is organized as follows: in Section 2 we review the task
of fault-tolerant item set mining and some approaches to this task. In Section 3
we describe how our algorithm traverses the search space and how it efficiently
computes the subset size occurrence distribution for each item set it visits. In
Section 4 we discuss how the intermediate/auxiliary data that is available in our
algorithm can be used to easily cull pseudo (or spurious) item sets. In Section 5
we compare our algorithm to two other algorithms that fall into the same cate-
gory, and for certain specific cases can be made to find the exact same item sets.
In addition, we apply it to a concept detection task on the 2008/2009 Wikipedia
Selection for Schools to demonstrate its practical usefulness. Finally, in Section 6
we draw conclusions and point out possible future work.

2 Fault-Tolerant or Approximate Item Set Mining

In standard frequent item set mining only transactions that contain all of the
items in a given set are counted as supporting this set. In contrast to this, in
fault-tolerant item set mining transactions that contain only a subset of the items
can still support an item set, though possibly to a lesser degree than transactions
containing all items. Based on the illustration of these situations shown on the
left and in the middle of Figure 1, fault-tolerant item set mining has also been
described as finding almost pure (geometric or combinatorial) tiles in a binary
matrix that indicates which items are contained in which transactions [10].

In order to cope with missing items in the transaction data to analyze, several
fault-tolerant (or approximate or fuzzy) frequent item set mining approaches
have been proposed. They can be categorized roughly into three classes: (1) error-
based approaches, (2) density-based approaches, and (3) cost-based approaches.

Error-based Approaches. Examples of error-based approaches are [15] and
[3]. In the former the standard support measure is replaced by a fault-tolerant
support, which allows for a maximum number of missing items in the supporting
transactions, thus ensuring that the measure is still anti-monotone. The search
algorithm itself is derived from the famous Apriori algorithm [2]. In [3] con-
straints are placed on the number of missing items as well as on the number
of (supporting) transactions that do not contain an item in the set. Hence it
is related to the tile-finding approach in [10]. However, it uses an enumeration
search scheme that traverses sub-lattices of items and transactions, thus ensuring
a complete search, while [10] relies on a heuristic scheme.



Density-based Approaches. Rather than fixing a maximum number of miss-
ing items, density-based approaches allow a certain fraction of the items in a
set to be missing from the transactions, thus requiring the corresponding binary
matrix tile to have a minimum density. This means that for larger item sets more
items are allowed to be missing than for smaller item sets. As a consequence, the
measure is no longer anti-monotone if the density requirement is to be fulfilled by
each individual transaction. To overcome this [19] require only that the average
density over all supporting transaction must exceed a user-specified threshold,
while [17] define a recursive measure for the density of an item set.

Cost-based Approaches. In error- or density-based approaches all transac-
tions that satisfy the constraints contribute equally to the support of an item
set, regardless of how many items of the set they contain. In contrast to this,
cost-based approaches define the contribution of transactions in proportion to
the number of missing items. In [18, 5] this is achieved by means of user-provided
item-specific costs or penalties, with which missing items can be inserted. These
costs are combined with each other and with the initial transaction weight of 1
with the help of a t-norm. In addition, a minimum weight for a transaction can
be specified, by which the number of insertions can be limited.

Note that the cost-based approaches can be made to contain the error-based
approaches as a limiting or extreme case, since one may set the cost/penalty
of inserting an item in such a way that the transaction weight is not reduced.
In this case limiting the number of insertions obviously has the same effect as
allowing for a maximum number of missing items.

The approach presented in this paper falls into the category of cost-based
approaches, since it reduces the support contribution of transactions that do not
contain all items of a considered item set. How much the contribution is reduced
and how many missing items are allowed can be controlled directly by a user.
However, it treats all items the same, while the cost-based approaches reviewed
above allow for item-specific penalties. Its advantages are that, depending on
the data set, it can be faster, admits more sophisticated support/evaluation
functions, and allows for a simple filtering of pseudo (or spurious) item sets.

In pseudo (or spurious) item sets a subset of the items co-occur in many
transactions, while the remaining items do not occur in any (or only very few)
of the (fault-tolerantly) supporting transactions (illustrated in Figure 1 on the
right; note the regular pattern of missing items compared to the middle diagram).
Despite the ensuing reduction of the weight of the transactions (due to the
missing items), the item set support still exceeds the user-specified threshold.
Obviously, such item sets are not useful and should be discarded by requiring,
for instance, a minimum fraction of supporting transactions per item. This is
easy in our algorithm, but difficult in the cost-based approaches reviewed above.

Finally note that a closely related setting is the case of uncertain transac-
tional data, where each item is endowed with a transaction-specific weight or
probability, which indicates the degree or chance with which it is a member
of the transaction. Approaches to this related, but nevertheless fundamentally
different problem, which we do not consider here, can be found in [8, 13, 7].



global variables: (may also be passed down in recursion)

lists : array of array of integer; (∗ transaction identifier lists ∗)
cnts : array of integer; (∗ item counters, one per transaction ∗)
dist : array of integer; (∗ subset size occurrence distribution ∗)
iset : set of integer; (∗ current item set ∗)
emin : real; (∗ minimum evaluation of an item set ∗)

procedure sodim (n: integer); (∗ n: number of selectable items ∗)
var i : integer; (∗ loop variable ∗)

t : array of integer; (∗ to access the transaction id lists ∗)
e : real; (∗ item set evaluation result ∗)

begin
while n > 0 do begin (∗ while there are items left ∗)

n := n− 1; t := lists[n]; (∗ get the next item and its trans. ids ∗)
for i := 0 upto length(t)-1 do begin (∗ traverse the transaction ids ∗)

inc(cnts[t[i]]); (∗ increment the item counter and ∗)
inc(dist[cnts[t[i]]]); (∗ the subset size occurrences, ∗)

end; (∗ i.e., update the distribution ∗)
e := eval(dist, length(iset)+1); (∗ evaluate subset size occurrence distrib. ∗)
if e ≥ emin then begin (∗ if the current item set qualifies ∗)

add(iset, n); (∗ add current item to the set ∗)
〈 report the current item set iset 〉;
sodim(n); (∗ recursively check supersets ∗)
remove(iset, n); (∗ remove current item from the set, ∗)

end; (∗ i.e., restore the original item set ∗)
for i := 0 upto length(t)-1 do begin (∗ traverse the transaction ids ∗)

dec(dist[cnts[t[i]]]); (∗ decrement the subset size occurrences ∗)
dec(cnts[t[i]]); (∗ and then the item counter, ∗)

end; (∗ i.e., restore the original distribution ∗)
end;

end; (∗ end of sodim() ∗)

Fig. 2. Simplified pseudo-code of the recursive search procedure.

3 Subset Size Occurrence Distribution

The basic idea of our algorithm is to compute, for each visited item set, how
many transactions contain subsets with 1, 2, . . . , k items, where k is the size of
the considered item set. We call this the subset size occurrence distribution of the
item set, as it states how often subsets of different sizes occur. This distribution
is evaluated by a function that combines, in a weighted manner, the entries
which refer to subsets of a user-specified minimum size (and thus correspond
to a maximum number of missing items). Item sets that reach a user-specified
minimum value for the evaluation measure are reported.

Computing the subset size occurrence distribution is surprisingly easy with
the help of an intermediate array that records for each transaction how many of
the items in the currently considered set are contained in it. In the search, which
is a standard depth-first search in the subset lattice that can also be seen as a



1 2 4 7 8 11

0 3 42 3 0 4 5 1 0 2 33 4 4 3 0 1

0 12 45 7 7 8 9 12

0 1 2 3 4 5 6 7 8 9 10 11

5 4 3 2 1 0

transaction
identifiers

item counters
(one per transaction)

subset size
occurrences

increment

increment

lists[n]

cnts

dist

Fig. 3. Updating the sub-
set size occurrence distribu-
tion with the help of an
item counter array, which
records the number of con-
tained items per transaction.

divide-and-conquer approach (see, for example, [5] for a formal description), this
intermediate array is updated every time an item is added to or removed from the
current item set. The counter update is carried out with the help of transaction
identifier lists, that is, our algorithm uses a vertical database representation and
thus is closely related to the well-known Eclat algorithm [20]. The updated fields
of the item counter array then give rise to updates of the subset size occurrence
distribution, which records, for each subset size, how many transactions contain
at least as many items of the current item set.

Pseudo-code of the (simplified) recursive search procedure is shown in Fig-
ure 2. Together with the recursion the main while-loop implements the depth-
first/divide-and-conquer search by first including an item in the current set (first
subproblem — handled by the recursive call) and then excluding it (second sub-
problem — handled by skipping the item in the while-loop).

The for-loop at the beginning of the outer while-loop increments first the
item counters for each transaction containing the current item n, which thus is
added to the current item set. Then the subset size occurrence distribution is
updated by drawing on the new value of the updated item counters. Note that
one could also remove a transaction from the counter for the original subset size
(after adding the current item), so that the distribution array elements represent
the number of transactions that contain exactly the number of items given by
their indices. This could be achieved with an additional dec(dist[cnts[t[i]]]) as
the first statement of the for-loop. However, this operation is more costly than
forming differences between neighboring elements in the evaluation function,
which yields the same values (see Figure 4 — to be discussed later).

As an illustrative example, Figure 3 shows an example of the update. The top
row shows the list of transaction identifiers for the current item n (held in the
pseudo-code in the local variable t), which is traversed to select the item counters
that have to be incremented. The second row shows these item counters, with
old and unchanged counter values shown in black and updated values in blue.
Using the new (blue) values as indices into the subset size distribution array, this
distribution is updated. Again old and unchanged values are shown in black, new
values in blue. Note that dist[0] always holds the total number of transactions.

An important property of this update operation is that it is reversible. By
traversing the transaction identifiers again, the increments can be retracted,
thus restoring the original subset size occurrence distribution (before the current
item n was added). This is exploited in the for-loop at the end of the outer while-



global variables: (may also be passed down in recursion)

wgts : array of real; (∗ weights per number of missing items ∗)

function eval (d: array of integer, (∗ d: subset size occurrence distribution ∗)
k: integer) : real; (∗ k: number of items in the current set ∗)

var i: integer; (∗ loop variable ∗)
e: real; (∗ evaluation result ∗)

begin
e := d[k] · wgts[0]; (∗ initialize the evaluation result ∗)
for i := 1 upto min(k, length(wgts)) do (∗ traverse the distribution ∗)

e := e +(d[k − i]− d[k − i + 1]) · wgts[i];
return e; (∗ weighted sum of transaction counters ∗)

end; (∗ end of eval() ∗)

Fig. 4. Pseudo-code of a simple evaluation function.

loop in Figure 2, which restores the distribution, by first decrementing the subset
size occurrence counter and then the item counter for the transaction (that is,
the steps are reversed w.r.t. the update in the first for-loop).

Between the for-loops the subset size occurrence distribution is evaluated and
if the evaluation result reaches a user-specified threshold, the extended item set
is actually constructed and reported. Afterwards supersets of this item set are
processed recursively and finally the current item is removed again. This is in
perfect analogy to standard frequent item set algorithms like Eclat or FP-growth.

The advantage of this scheme is that the evaluation function has access to
fairly rich information about the occurrences of subsets of the current item set.
While standard frequent item set mining algorithms only compute (and evaluate)
dist[k] (which always contains the standard support) and the JIM algorithm [16]
computes and evaluates only dist[k], dist[1] (number of transactions that con-
tain at least one item in the set), and dist[0] (total number of transactions), our
algorithm knows (or can easily compute as a simple difference) how many trans-
actions miss 1, 2, 3 etc. items. Of course, this additional information comes at a
price, namely a higher processing time, but in return one obtains the possibility
to compute much more sophisticated item set evaluations.

A very simple example of such an evaluation function is shown in Figure 4:
it weights the numbers of transactions in proportion to the number of missing
items. The weights can be specified by a user and are stored in a global weights
array. We assume that wgts[0] = 1 and wgts[i] ≥ wgts[i+ 1]. With this function
fault-tolerant item sets can be found in a cost-based manner, where the costs are
represented by the weights array. An obvious alternative—inspired by [16]—is
to divide the final value of e by dist[1] in order to obtain an extended Jaccard
measure. In principle, all measures listed in [16] can be generalized in this way, by
simply replacing the standard support (all items are contained) by the extended
support computed in the function shown in Figure 4.

Note that the extended support computed by this function as well as the ex-
tended Jaccard measure that can be derived from it are obviously anti-monotone,



since each element of the subset size occurrence distribution is anti-monotone (if
elements are paired from the number of items in the respective sets downwards),
while dist[1] is monotone. This ensures the correctness of the algorithm.

4 Removing Pseudo/Spurious Item Sets

Pseudo (or spurious) item sets can result if there exists a set of items that is
strongly correlated (no or almost no missing items) and supported by many
transactions. Adding an item to this set may not reduce the support enough to
let it fall below the user-specified threshold, even if this item is not contained
in any of the transactions containing the correlated items. As an illustration
consider the right diagram in Figure 1: the third item is contained in only one of
the eight transactions. However, the total number of missing items in this binary
matrix (and thus the extended support) is the same as in the middle diagram,
which we consider as a representation of an acceptable fault-tolerant item set.

In order to cull such pseudo (or spurious) item sets from the output, we added
to our algorithm a check whether all items of the set occur in a sufficiently large
fraction of the supporting transactions. This check can be carried out in two
forms: either the user specifies a minimum fraction of the support of an item
set that must be produced from transactions containing the item (in this case
the reduced weights of transactions with missing items are considered) or he/she
specifies a minimum fraction of the number of supporting transactions that must
contain the item (in this case all transactions have the same unit weight).

Both checks can fairly easily be carried out with the help of the vertical trans-
action representation (transaction identifier lists), the intermediate/auxiliary
item counter array (with one counter per transaction) and the subset size occur-
rence distribution: One simply traverses the transaction identifier list for each
item in the set to check and computes the number of supporting transactions
that contain the tested item (or the support contribution derived from these
transactions). The result is then compared with the total number of supporting
transactions (which is available in dist[m], where m is the number of weights
(see Figure 4) or the extended support (the result of the evaluation function
shown in Figure 4). If the result exceeds a user specified threshold (given as a
fraction or percentage) for all items in the set, the item set is accepted, otherwise
it is discarded (from the output, but still processed recursively, because these
conditions are not anti-monotone and thus cannot be used for pruning).

In addition, it is often beneficial to filter the output for closed item sets (no
superset has the same support/evaluation) or maximal item sets (no superset
has a support/evaluation exceeding the user-specified threshold). In principle,
this can be achieved with the same methods that are used in standard frequent
item set mining. In our algorithm we consider closedness or maximality only
w.r.t. the standard support (all items contained), but in principle, it could also
be implemented w.r.t. the more sophisticated measures. Note, however, that this
notion of closedness differs from the notion introduced and used in [6, 14], which
is based on δ-free item sets and is a mathematically ore sophisticated approach.



100 200 300 400 500

0

1

absolute support

lo
g(

tim
e/

s)

SaM
RElim
SODIM

SaM
RElim
SODIM

one insertion

100 200 300 400 500

1

2

3

absolute support

lo
g(

tim
e/

s)

SaM
RElim
SODIM

SaM
RElim
SODIM

two insertions

Fig. 5. Execution times on the BMS-Webview-1 data set. Light colors refer to an
insertion penalty factor of 0.25, dark colors to an insertion penalty factor of 0.5.

5 Experiments

We implemented the described item set mining approach as a C program, called
SODIM (Subset size Occurrence Distribution based Item set Mining), that was
essentially derived from an Eclat implementation (which provided the initial
setup of the transaction identifier lists). We implemented all measures listed in
[16], even though for these measures (in their original form) the JIM algorithm
is better suited, because they do not require subset occurrence values beyond
dist[k], dist[1], and dist[0]. However, we also implemented the extended support
and the extended Jaccard measure (as well as generalizations of all other mea-
sures described in [16]), which JIM cannot compute. We also added optional
culling of pseudo (or spurious) item sets, thus providing possibilities far sur-
passing the JIM implementation. This SODIM implementation has been made
publicly available under the GNU Lesser (Library) Public License.3

In a first set of experiments we tested our implementation on artificially
generated data. We created a transaction database with 100 items and 10000
transactions, in which each item occurs in a transaction with 5% probability
(independent items, so co-occurrences are entirely random). Into this database
we injected six groups of co-occurring items, which ranged in size from 6 to
10 items and which partially overlapped (some items were contained in two
groups). For each group we injected between 20 and 30 co-occurrences (that is,
in 20 to 30 transactions the items of the group actually co-occur). In order to
compensate for the additional item occurrences due to this, we reduced (for the
items in the groups) the occurrence probabilities in the remaining transactions
(that is, the transactions in which they did not co-occur) accordingly, so that all
items shared the same individual expected frequency. In a next step we removed
from each co-occurrence of a group of items one group item, thus creating the
noisy instances of item sets we try to find with the SODIM algorithm. Note that
due to this deletion scheme no transaction contained all items in a given group
and thus no standard frequent item set mining algorithm is able to detect the
groups, regardless of the used minimum support threshold.

3 http://www.borgelt.net/sodim.html



We then mined this database with SODIM, using a minimum standard sup-
port (all items contained) of 0, a minimum extended support of 10 (with a weight
of 0.5 for transactions with one missing item) and a minimum fraction of trans-
action containing each item of 75%. In addition, we restricted the output to
maximal item sets (based on standard support), in order to suppress the output
of subsets of the injected groups. This experiment was repeated several times
with different databases generated in the way described above. We observed
that the injected groups were always perfectly detected, while only rarely a false
positive result, usually with 4 items, was produced.

In a second set of experiments we compared SODIM to the two other cost-
based methods reviewed in Section 2, namely RElim [18] and SaM [5]. As a test
data set we chose the well-known BMS-Webview-1 data, which describes a web
click stream from a leg-care company that no longer exists. This data set has been
used in the KDD cup 2000 [12]. By properly parameterizing these methods, they
can be made to find exactly the same item sets. We chose two insertion penalties
(RElim and SaM) or downweighting factors for missing items (SODIM), namely
0.5 and 0.25, and tested with one and two insertions (RElim and SaM) or missing
items (SODIM). The results, obtained on an Intel Core 2 Quad Q9650 (3GHz)
Computer with 8 GB main memory running Ubuntu Lunix 10.04 (64 bit) and gcc
version 4.4.3, are shown in Figure 5. Clearly, SODIM outperforms both SaM and
RElim by a large margin, with the exception of the lowest support value for one
insertion and a penalty of 0.5, where SODIM is slightly slower than both SaM
and RElim. It should be noted, though, that this does not render SaM and RElim
useless, because they offer options that SODIM does not, namely the possibility
to define item-specific insertion penalties (SODIM treats all items the same). On
the other hand, SODIM allows for more sophisticated evaluation measures and
the removal of pseudo/spurious item sets. Hence all three algorithms are useful.

To demonstrate the usefulness of our method, we applied it also to the
2008/2009 Wikipedia Selection for schools4, which is a subset of the English
Wikipedia5 with about 5500 articles and more than 200,000 hyperlinks. We used
a subset of this data set that does not contain articles belonging to the subjects
“Geography”, “Countries” or “History”, resulting in a subset of about 3,600
articles and more than 65,000 hyperlinks. The excluded subjects do not affect
the chemical subject we focus on in our experiment, but contain articles that
reference many articles or that are referenced by many articles (such as United
States with 2,230 references). Including the mentioned subject areas would lead
to an explosion of the number of discovered item sets and thus would make it
much more difficult to demonstrate the effect we are interested in.

The 2008/2009 Wikipedia Selection for schools describes 118 chemical el-
ements6. However, there are 157 articles that reference the Chemical element
article or are referenced by it, so that simply collecting the referenced or refer-
encing articles does not yield a good extensional representation of this concept.

4 http://schools-wikipedia.org/
5 http://en.wikipedia.org
6 http://schools-wikipedia.org/wp/l/List_of_elements_by_name.htm



Table 1. Results for different numbers of missing items.

Missing items Transactions Chemical elements Other elements Not referenced

0 25 24 1 0
1 47 34 13 1
2 139 71 68 3
3 239 85 154 9

Searching for references to the Chemical element article thus results not only in
articles describing chemical elements but also in other articles including Albert
Einstein, Extraterrestrial Life, and Universe. Furthermore, there are 17 chemical
elements (e.g. palladium) that do not reference the Chemical element article.

In order to better filter articles that are about a chemical element, one may
try to extend the query with the titles of articles that are frequently co-referenced
with the Chemical element article, but are more specific than a reference to/from
this article alone. In order to find such co-references, we apply our SODIM
algorithm. In order to do so, we converted each article into a transaction, such
that each referenced article is an item in the transaction of the referring article.
This resulted in a transaction database with 3,621 transactions.

We then ran our SODIM algorithm with a minimum item set size of 5 and a
minimum support (all items contained) of 25 in order to find the co-references.
29 of the 81 found item sets contain the item Chemical element. From the 29 item
sets we chose the following item set for the subsequent experiments: {Oxygen,
Electron, Hydrogen, Melting point, Chemical Element}.

The first column of Table 1 shows the results for different settings for the
allowed number of missing items. The second column contains the number of
matching transactions. Column three and four contain the number of discovered
chemical elements and the number of other articles. The last column contains
the number of discovered chemical elements that do not reference the Chemical
Element article. By allowing some missing items per transaction the algorithm
was able to find considerably more chemical elements than the classical version.

6 Conclusions and Future Work

In this paper we presented a new cost-based algorithm for mining fault-tolerant
frequent item sets that exploits subset size occurrence distributions. The algo-
rithm efficiently computes these distributions while traversing the search space
in the usual depth-first manner. As evaluation measures we suggested a simple
extended support, by which transactions containing only some of the items of a
given set can still contribute to the support of this set, as well as an extension of
the generalized Jaccard index that is derived from the extended support. Since
the algorithm records, in an intermediate array, for each transaction how many
items of the currently considered set are contained, we could also add a simple
and efficient check in order to cull pseudo and spurious item sets from the out-
put. We demonstrated the usefulness of our algorithm by applying it, combined



with filtering for maximal item sets, to the 2008/2009 Wikipedia Selection for
schools, where it proved beneficial to detect the concept of a chemical element
despite the only limited standardization of pages on such substances.

We are currently trying to extend the method to incorporate item weights
(weighted or uncertain transactional data, see Section 2), in order to obtain
a method that can mine fault-tolerant item sets from uncertain or weighted
data. A main problem of such an extension is that the item weights have to be
combined over the items of a considered set (for instance, with the help of a
t-norm). This naturally introduces a tendency that the weight of a transaction
goes down even if the next added item is contained, simply because the added
item is contained with a weight less than one. If we now follow the scheme of
downweighting transactions that are missing an item with a user-specified factor,
we have to make sure that a transaction that contains an item (though with a
low weight) does not receive a lower weight than a transaction that does not
contain the item (because the downweighting factor is relatively high).

Acknowledgements

This work was supported by the European Commission under the 7th Framework
Program FP7-ICT-2007-C FET-Open, contract no. BISON-211898.

References

1. C.C. Aggarwal, Y. Lin, J. Wang and J. Wang. Frequent Pattern Mining with
Uncertain Data. Proc. 15th ACM SIGMOD Int. Conf. on Knowledge Discovery
and Data Mining (KDD 2009, Paris, France), 29–38. ACM Press, New York, NY,
USA 2009

2. R. Agrawal and R. Srikant. Fast Algorithms for Mining Association Rules. Proc.
20th Int. Conf. on Very Large Databases (VLDB 1994, Santiago de Chile), 487–
499. Morgan Kaufmann, San Mateo, CA, USA 1994

3. J. Besson, C. Robardet, and J.-F. Boulicaut. Mining a New Fault-Tolerant Pat-
tern Type as an Alternative to Formal Concept Discovery. Proc. Int. Confer-
ence on Computational Science (ICCS 2006, Reading, United Kingdom), 144–157.
Springer-Verlag, Berlin, Germany 2006

4. D. Berger, C. Borgelt, M. Diesmann, G. Gerstein, and S. Grün. An Accretion based
Data Mining Algorithm for Identification of Sets of Correlated Neurons. 18th Ann.
Computational Neuroscience Meeting (CNS*2009). Berlin, Germany 2009

5. C. Borgelt and X. Wang. SaM: A Split and Merge Algorithm for Fuzzy Fre-
quent Item Set Mining. Proc. 13th Int. Fuzzy Systems Association World
Congress and 6th Conf. of the European Society for Fuzzy Logic and Technology
(IFSA/EUSFLAT’09, Lisbon, Portugal), 968–973. IFSA/EUSFLAT Organization
Committee, Lisbon, Portugal 2009

6. J.F. Boulicaut, A. Bykowski, and C. Rigotti. Approximation of Frequency Queries
by Means of Free-sets. Proc. 4th Europ. Conf. Principles and Practice of Knowledge
Discovery in Databases (PKDD 2000, Lyon, France), LNCS 1910:75–85. Springer,
Heidelberg, Germany 2000



7. T. Calders, C. Garboni, and B. Goethals. Efficient Pattern Mining of Uncer-
tain Data with Sampling. Proc. 14th Pacific-Asia Conf. on Knowledge Discovery
and Data Mining (PAKDD 2010, Hyderabad, India), I:480–487. Springer-Verlag,
Berlin, Germany 2010

8. C.-K. Chui, B. Kao, and E. Hung. Mining Frequent Itemsets from Uncertain Data.
Proc. 11th Pacific-Asia Conf. on Knowledge Discovery and Data Mining (PAKDD
2007, Nanjing, China), 47–58. Springer-Verlag, Berlin, Germany 2007

9. C. Creighton and S. Hanash. Mining Gene Expression Databases for Association
Rules. Bioinformatics 19:79–86. Oxford University Press, Oxford, United Kingdom
2003

10. A. Gionis, H. Mannila, and J.K. Seppänen. Geometric and Combinatorial Tiles
in 0-1 Data. Proc. 8th Europ. Conf. on Principles and Practice of Knowledge
Discovery in Databases (PKDD04, Pisa, Italy), LNAI 3202:173-184. Springer-
Verlag, Berlin, Germany 2004

11. S. Grün and S. Rotter (eds.) Analysis of Parallel Spike Trains. Springer-Verlag,
Berlin, Germany 2010

12. R. Kohavi, C.E. Bradley, B. Frasca, L. Mason, and Z. Zheng. KDD-Cup 2000
Organizers’ Report: Peeling the Onion. SIGKDD Exploration 2(2):86–93. ACM
Press, New York, NY, USA 2000

13. C.K.-S. Leung, C.L. Carmichael, and B. Hao. Efficient Mining of Frequent Patterns
from Uncertain Data. Proc. 7th IEEE Int. Conf. on Data Mining Workshops
(ICDMW 2007, Omaha, NE), 489–494. IEEE Press, Piscataway, NJ, USA 2007

14. R.G. Pensa, C. Robardet, and J.F. Boulicaut. Supporting Bi-cluster Interpretation
in 0/1 Data by Means of Local Patterns. Intelligent Data Analysis 10:457–472. IOS
Press, Amsterdam, Netherlands 2006

15. J. Pei, A.K.H. Tung, and J. Han. Fault-Tolerant Frequent Pattern Mining: Prob-
lems and Challenges. Proc. ACM SIGMOD Workshop on Research Issues in Data
Mining and Knowledge Discovery (DMK’01, Santa Babara, CA). ACM Press, New
York, NY, USA 2001

16. M. Segond and C. Borgelt. Item Set Mining Based on Cover Similarity. Proc.
15th Pacific-Asia Conf. on Knowledge Discovery and Data Mining (PAKDD 2011,
Shenzhen, China), to appear. Springer-Verlag, Berlin, Germany 2011

17. J.K. Seppänen and H. Mannila. Dense Itemsets. Proc. 10th ACM SIGMOD Int.
Conf. on Knowledge Discovery and Data Mining (KDD 2004, Seattle, WA), 683–
688. ACM Press, New York, NY, USA 2004

18. X. Wang, C. Borgelt, and R. Kruse. Mining Fuzzy Frequent Item Sets. Proc.
11th Int. Fuzzy Systems Association World Congress (IFSA’05, Beijing, China),
528–533. Tsinghua University Press and Springer-Verlag, Beijing, China, and Hei-
delberg, Germany 2005

19. C. Yang, U. Fayyad, and P.S. Bradley. Efficient Discovery of Error-tolerant Fre-
quent Itemsets in High Dimensions. Proc. 7th ACM SIGMOD Int. Conf. on Knowl-
edge Discovery and Data Mining (KDD 2001, San Francisco, CA), 194–203. ACM
Press, New York, NY, USA 2001

20. M.J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. New Algorithms for Fast
Discovery of Association Rules. Proc. 3rd Int. Conf. on Knowledge Discovery and
Data Mining (KDD’97, Newport Beach, CA), 283–296. AAAI Press, Menlo Park,
CA, USA 1997


