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Abstract—We investigate the differences in brain signals of
craving smokers, non-craving smokers, and non-smokers. To
this end, we use data from resting-state EEG measurements to
train predictive models to distinguish these three groups. We
improve the neural network models applied earlier in two ways:
firstly by adding channel-wise convolutional layers, secondly by
adding residual connections to the network. We further extend
the validation to make it similar to a real world scenario, in which
a prediction is based on all data available for this measurement.
Finally, we analyze the prediction quality for each measurement
individually. Our results demonstrate significant improvements.

Index Terms—Addiction, Smoker, Craving, Residual Neural
Network, EEG, Classification

I. INTRODUCTION AND RELATED WORK

The use of drugs, whether legal or illegal, has a profound
impact on the brain. Not only do drugs act on neuronal
receptors, causing changes in the signaling patterns of these
cells, they also induce a sensation of craving when they are
gone, due to the effects of withdrawal. Studying these effects
is challenging, as it is ethically questionable to administer
drugs to humans, and animal models may not reflect the same
changes that occur in the human brain [14], [16]. However, the
legality of some drugs, such as nicotine, makes it possible to
study addiction in humans, and non-invasive measures such as
electroencephalography (EEG), provide a time-point-by-time-
point measure of the neural signal. Understanding how these
EEG signals may differ between non-smokers, sated smokers
(non-craving), and craving smokers could help shed new light
on the changes of brain function in addiction.

One promising way to examine such differences is to
apply recent advancements in machine learning algorithms to
accurately classify these data into the categories of craving
smokers, non-craving smokers, and non-smokers. That is, as
nicotine influences neural functioning, this should manifest in
some alteration of signaling that can be measured with EEG.
Moreover, the brain-state of craving would be expected to have
different (and possibly more salient) patterns than non-craving,
due to the stress/arousal present with the desire to smoke.
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We are specifically interested in the differences in the resting
state, without the presence of a specific task. Resting-state
data are typically acquired continuously over a period of time
during which the participant has no specific task to do. The
idea is to monitor natural fluctuations in activity that are not
due to the onset of an image or sound. Any neural activity
that is a result of the use of nicotine, and therefore common
across the smokers, should be present in the resting state, and
not masked by any task. This pattern of activity may be subtle,
however, and difficult to extract without knowing what the
specific patterns are. As such, neural network models may
be able to find patterns and classify data in a way that more
traditional cognitive neuroscience-based analyses cannot.

Research into such topics using EEG has typically looked
at patterns in various frequency bands to determine if there are
differences between groups. Although the findings in this area
are rather inconclusive, they do point to the potential for char-
acterizable differences. For example, Brown [1] found reduced
alpha and increased rhythmic high frequency when looking
at the EEG signals of smokers vs. non-smokers. Rass [17]
detected reduced alpha as well, but also observed reduced
delta when comparing smokers to non-smokers. Additionally,
Knott [10] reports reduced delta and increased beta within
smokers as a function of image-induced craving. Together,
these studies suggest that there may be differences present,
but the definition of the precise patterns that lead to such
differences needs further exploration. Neural networks, with
their ability to automatically identify and learn important
features and with their recent advances like convolutions with
skip connections, could be well-suited for this task.

In our previous work [4], we created several models to
distinguish two classes and all three classes of the resting-
state EEG data. While simple Bayesian models failed, neural
networks succeeded in predicting significantly better than
guessing. We used two kinds of neural networks: The first
processed the data channel-wise, mostly using dense layers.
When distinguishing craving from non-smokers, the dense
network was successful, with a median prediction accuracy of
63.7%. However, it failed at the three class problem, unable to



perform predictions better than random guessing. The second
network used mainly convolutions. For the two-class problem
it achieved only 62.8%. However, with all three classes, the
convolutional neural network models achieved a median class-
balanced accuracy of 37.6%, which is the current baseline.
In contrast to the earlier works on frequency bands, these
results exhibit predictions significantly better than random
guessing. The goal of the present work is therefore to improve
the former models that distinguish between EEG data from
craving smokers, non-craving smokers, and non-smokers.

II. DIFFICULTIES WHEN CLASSIFYING EEG DATA

Neural networks are used in many applications, where
features in biological data are to be learned, like medical
imaging or brain computer interfaces [15]. Here, we emphasize
the difficulties to classify EEG data by comparing it to two
other prominent tasks, where neural network models were
applied with great success: object recognition in pictures [11]
and playing the Asian board game Go [19].

Number of data samples. For both of the prominent tasks,
plenty of data is available. The Imagenet challenge uses a
database of millions of images, in which objects are to be
found. Mastering the game of Go can rely on the current model
playing against itself in order to generate more training data.
Therefore, more training data can be constructed whenever
needed and the number of games is, in principle, unlimited.

In stark contrast to the favorable situation in these two
tasks, we use only 48 measurements in total. This number
of measurements is so small for a data analysis task, that
we recommend the verification of our results with a bigger
data set. We combine several techniques to augment our data
in order to achieve results, which are as reliable as possible,
given the limited number of samples.

Noise in the data. An EEG electrode not only measures
signals stemming from the brain, but also activity from all
electrical sources, whether they be externally generated elec-
trical oscillations or subject-generated muscle activity such as
breathing, heart beats, or eye movement. As the signal from
the brain, that is measured on the scalp, has to travel through
the skull and other tissues, by the time it reaches a given
electrode, this signal is in the order of V' and has to be
amplified before it can be recorded. Other sources of noise,
however, may be closer to a given electrode and also larger
in size than the brain signal, essentially dominating the data.
Moreover, this noise often differs between electrodes, which
is a result of their relative positions to the source of the noise.

For the game of Go, there is no noise in the data. The
possible positions of the stones on the board are fixed. Even
if an error occurs when a move is recorded, this can be fixed in
many cases by the information contained in the other moves.
Noise in pictures is different and can depend on the camera
used, the lighting at the moment when the picture was taken,
or the aptitude of the photographer. Still, these problems can
(usually) be solved easily by removing bad or noisy images,
since humans have the ability to compare pictures to reality.

Knowledge of the task and of important features. Many
people have the ability to recognize objects in pictures. Fur-
thermore, we can explain why we think the picture contains
an object. For an animal we can describe where we see legs,
arms, the head — or other features, which might help with the
classification. Therefore we can compare our interpretation of
the image to the one performed by the network and can even
analyze how the network may be tricked into making a wrong
prediction, for example by an adversarial example [7].

For the game of Go, a vast body of expert knowledge exists,
so we can validate whether a model plays moves similar to
those a human expert would play. And if they are different,
but the model still wins, we gain insights into the game and
how to play it well, as actually happened for Go.

When looking for differences between craving, non-craving
and non-smokers, the primary goal is to gain insights into the
functioning of the human brain. There is no expert knowledge,
neither about the full task nor about features that may be
helpful. Practitioners in the field even argued that this task
was impossible to learn. However, we successfully showed
in our earlier work that it is possible to predict significantly
better than random guessing. Therefore there are differences
between the classes and we want to find them.

In the current work, we make four main improvements:

1) We improve our former results [4] by adding 1D-
Convolutions to automatically scale inputs channel-wise.

2) We use the idea of residual networks to add identity
mappings [9]. This was originally invented for pictures
and we adapt the idea for time series.

3) We extend our testing, making better use of the available
data to obtain results similar to a real world application.

4) We extend our analysis by performing a validation on
subjects, in order to gain better insights into the data.

III. RESIDUAL NEURAL NETWORKS

Neural Networks are predictive models, which use learning
samples to iteratively adapt their parameters. A layered neural
network usually consists of an input layer, one or more hidden
layers and an output layer. Each layer can be interpreted
as a transformation into a new feature space. The number
of dimensions and the kind of mapping is determined by
the network’s designer, while the concrete transformation is
automatically learned during the backpropagation process that
minimizes the prediction error, see e.g. [12].

Dense layers. In a dense layer each neuron has weighted
connections to each neuron in the preceding layer. Dense lay-
ers have many parameters and therefore a high computational
power, but they are also prone to overfitting the data.

Convolutional layers. Convolutional layers use shared
weights and apply them at several local parts of the input [6],
thus detecting specific patterns at arbitrary positions in the
input. The resulting output shows the pattern’s strength of ac-
tivation for each local part. Scherer [18] applies a Max-pooling
operation after the convolutions. This operation aggregates
local patterns by taking the maximal salience, discarding the
others. The combination of convolution and Max-pooling was
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Fig. 1. Residual Block, skipping two weight layers

very successfully applied [11] e.g., if one is only interested in
which object is in a picture, but not where this object is.

An alternative to Max-pooling is a strided convolution [20].
The stride specifies for each dimension of the convolution how
far the filter is moved before it is applied again. A stride of
2 makes sure that the convolution is only applied at every
second possible position in the given dimension.

Residual connections. The approach of residual connections
was very successful for images and won Ist places in the
ILSVRC and COCO 2015 competitions. The motivating prin-
ciple is: Consider a layered network NV, to which we add an-
other hidden layer, which can learn weights to produce either
the identity or some other function, thus creating the network
N'. Note that generating the identity requires the same number
of neurons in two consecutive layers. Because each solution
represented by N can also be represented by N’, we expect
N’ to perform at least as well as N. While this is correct
in theory, experiments show [9] that the network struggles
to learn the identity in the added layer, which causes worse
results. To tackle this problem, we add a skip connection which
is untrainable and passes on the data unchanged (identity
mapping), bypassing one or more trainable layers. The two
paths are recombined by adding up their values.

A schematic view of a residual block is depicted in Fig. 1.
The processing block computes a mapping F(Z), the skip
connection (on the right) passes Z unchanged to the output
of the block, where the mapping and the unchanged input
are summed so that the entire block computes F(Z) + Z.
The skip connection does not change the set of possible
outcomes of the residual block, but merely changes the default
output. Forwarding the identity function works fine when
the number of input and output neurons is equal. When the
output is smaller — let’s say it is half the size of the input
— we can again apply Max-Pooling or strided convolutions.
Max-Pooling always keeps the strongest signal, but it varies
depending on the signal; strides ignore a part of the signal but
always pass the same part of the input to the next layer.

Adaptations: from pictures to EEG signals. For digital
images, the data consist of two congenerous spatial dimensions
(height and width), which is why 2D-convolutions are applied.
A 2D-convolution with a filter size of 1x1, applied on a
gray-scale image, performs a linear transformation, which is
applied to all pixels. This adjusts the brightness of the image.
Although this only adds very few weights to the model, these
convolutions improve the performance.

We adapt this idea for EEG data: EEG data could also be
represented in two dimensions, time and channel. While the
order is clear for time, channels are measured on the scalp,
which is why there is no natural linear ordering for them.
Therefore, we apply a 1D-Convolution with one filter along
the time axis for each channel. This layer adjusts the amplitude
of each channel individually to cope with the problem of noise,
influencing the signal amplitude of a whole channel. Because
the visual inspection after preprocessing did not show strong
noise of this kind, we do not expect a strong effect.

IV. DATA

Our data stems from a study conducted between 2014 and
2015 at the Leibniz Institute for Neurobiology in conjunction
with the Clinic for Neurology at the University of Magdeburg.
Written, informed consent was obtained from all participants.
The original study [5] used EEG data that were time-locked to
the onset of smoking-related and non-smoking-related images.
Here, the authors observed that smokers directed their attention
away from the smoking-related images (i.e., avoided them),
regardless of their state of craving. Craving did, however, have
an impact on the overall state of arousal, with subjects showing
a larger P1 (an early sensory-related component). After the
task-based data had been acquired, the resting-state signal
was measured in the same subjects for 9.5 minutes. These
are the data we use to investigate resting state differences of
craving smokers, non-craving smokers, and non-smokers. The
present study includes EEG measurements from 28 smokers
and 9 non-smokers. Each non-smoker was measured once,
while each smoker was measured twice: once craving (after an
abstinence of at least 4 hours) and once non-craving, having
smoked directly before the measurement started.

A. EEG Measurement

EEG measures changes in potential (with respect to a refer-
ence, in our case, the right mastoid) over time. The temporal
resolution is quite high, being on the order of milliseconds,
whereas the spatial resolution is rather sparse, with electrodes
being both sparsely distributed over the scalp (see Fig. 2 for an
example of the layout used here), and with other issues such
as volume conduction, which smears out the signal in space.
Although EEG presents a great opportunity to record activity
that is closer to cellular transmission rates than functional
magnetic resonance imaging (fMRI), EEG also has drawbacks
in that the electrodes pick up any source of electrical activity,
whether neural or external noise, and therefore the signal is
not as pure as one might hope (see in depth description,
below, for sources of noise). Here, the EEG data were acquired
using 32 electrodes at a sampling frequency of 508 Hz and
it was bandpass-filtered online from DC to 50 Hz, with low
impedances (5 k{2) maintained for each channel.

B. Preprocessing

EEG electrodes measure signals arising from the brain, but
also pick up signals from other sources. As we are interested
in the brain signal only, signals from other sources are noise.



This noise has several causes: muscle-related activity such as
respiration, heartbeat, or eye movements, sweat that can im-
pede the connection between the scalp and the electrode, often
adding a slow-drift to the signal, and electrical interferences
at 50 Hz stemming from the alternating current of the power
supply. To preprocess the EEG data, we applied a low-pass
filter at 30 Hz and a high-pass filter at 0.5 Hz. This removed
high frequency noise, including power line interference, some
muscle artifacts, slow-drift related movements, respiration and
sweat artifacts. Removing physiological artifacts needs to be
done semi-automatically, which we did using Independent
Component Analysis (ICA). This algorithm creates indepen-
dent components using the signals measured at the electrodes.
We manually selected and removed components containing
eye blinks, eye movements and heart beat. The selection of
the components was conservative, as the removal of a noise-
like component also removes some brain signals, and it is not
possible to remove only the noisy parts of a component.

The ICA successfully removed most of the artifacts, but also
created high frequency noise. To mitigate this noise, we filtered
again, keeping only the signal between 0.5 Hz and 30 Hz.
Manually reviewing the resulting signals, we found remaining
eye artifacts in channels Fpl and Fp2 and muscle artifacts
in channels T7 and T8 (cf. Fig. 2: the mentioned channels
are marked in red). To prevent these artifacts from biasing
our results, we excluded these channels from all subjects in
subsequent analysis. One smoker had moved so much during
both sessions that we were unable to remove this noise and
therefore excluded these two measurements completely.

We normalized each channel to have a mean of zero,
but we kept all the variances. Different variances may be
caused by the brain and should therefore be considered in
the training process, or they may be caused by noise in the
measurement and should be filtered out. As we cannot be
sure about the source, we decided to keep them. The entire
preprocessing was performed using the MNE framework [8].
For the experimentation, we used the Keras [2] framework.

V. EXPERIMENTATION

A. Bootstrapping

Most importantly we use bootstrapping: we split our mea-
surements into snippets of length 2!9 = 1024 (approximately
two seconds) and sample from them with replacement. The
model is trained to perform predictions for these snippets.
This has two advantages: it decreases the (time) dimensionality
and increases the number of training samples. Unfortunately,
though, snippets from the same measurement are not inde-
pendent of each other [13]. In order to still be able to get
reliable results, we make sure that no snippets from the same
measurement are used in both the training set and the test set
at the same time. Note also that the i.i.d. assumption does not
hold when taking samples from the same subject’s craving
measurement for training and non-craving measurement for
testing. This led to results significantly worse than guessing
in preliminary experiments. We assume that the model had

Fig. 2. Overview of the electrode positions

learned person-specific patterns, which caused incorrect pre-
dictions on the test set. Allowing overlapping snippets, we can
generate up to ~ 289.000 samples per measurement; without
overlap, we obtain 289 samples. Since the latter seemed too
few, we decided to use overlapping samples for training and
chose to take samples randomly. Note that the parts near the
start and the end have a smaller chance of getting selected.
We repeatedly sample snippets to generate batches of
size 200. In order to minimize the variance induced by the
batch generation, we make sure that the distribution within
the batch differs as little as possible from the whole data set.

B. Validation and Training

For the validation, we use random shuffle split cross vali-
dation. This method has the advantage that in can be repeated
arbitrarily often. We repeat each of our experiments at least
100 times with different random seeds. We use seven of
nine measurements for training and the remaining two for
testing. That is, with 27 smokers and nine non-smokers overall,
a training batch uses 21 smokers and seven non-smokers.
As there are two measurements for each smoker, we get
21 samples of craving smokers, 21 samples of non-craving
smokers and seven samples of non-smokers — a total of 49.
For a batch, we sample four snippets from each measurement
plus the remaining four randomly, such that they vary the
least. As quality metric, we measure class-balanced prediction
accuracy in all of our experiments.

C. Testing

The testing scheme works similar to training. We use the
craving and non-craving measurements of six smokers and two
measurements of non-smokers as the basis for a batch.

As a first evaluation, we use one batch sampled like training
for testing. This scheme uses about eight seconds per mea-
surement in the evaluation, which is not realistic as there are
9.5 minutes available. As this evaluation was used earlier [4],
we apply it here mainly for comparison.

As a second evaluation, we use the available data more
thoroughly: We sample one batch of 200 snippets for each
measurement — which corresponds to ~6.7 minutes. In
analogy to training, there are two possibilities for the sampling:
repeatedly sample from random locations or apply a sliding
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Fig. 3. Network structure for network (7) with the extra convolution before the merge

window. A sliding window has the advantage that the snippets
cover most of the measurement, unless the windows overlap.
A disadvantage is that the procedure is not randomized, which
might influence the prediction.

In random sampling with replacement, parts of the mea-
surement may be used multiple times. There is no fixed static
choice to influence the results, but we probably cover less
of the measurement. We chose to perform both methods to
investigate the effect of the static sampling.

When sampling extensively, but still using models working
on snippets of two seconds, we get 200 predictions per
measurement, which need to be combined into one prediction.
If the predictions are particularly diverse, that is, if they make
their errors for different sample cases, it can be proven that
the combined predictor performs at least as well as the worst
single predictor. The work of Dietterich [3] explains several
techniques to generate ensembles of classifiers.

We aggregate predictions in five different ways. The first is
majority voting: The model performs a prediction for each
snippet, casting a vote for the predicted class, and finally
predicting the class with the largest number of votes. A
drawback of this approach is that it uses the winner-takes-all
principle: The most probable class gets the vote, the others get
nothing. In cases when the best two classes have probabilities
close to each other, this appears to be inappropriate. We handle
this situation by allowing to abstain from voting (vote with
abstain): We do not count a vote if the two best predictions
are close; i.e., if the values differ by less than 0.1.

Another way to avoid the winner-takes-all is to sum the
probabilities and then predict the class with the highest value.
Thus, we reduce the effect of the repeated application of the
winner-takes-all by applying it only once at the end.

Snippets with similar probabilities for the highest classes
are generally hard to predict. They could cause a tendency of
the summed probabilities predictor towards random guessing.
We reduce this effect by weighting the sum such that high
probabilities are higher weighted. Therefore, we square the
probabilities before we sum them up (squared sum).

In principle, any convex function can be applied to increase
the weight of the predictions with high probabilities. The most
extreme form takes only the one prediction with the highest
probability, which we call max aggregation.

D. Used network structures

We perform experiments with three basis networks (I),
(II) and (IIl) to investigate if residual blocks improve pre-
dictability, and further, if strided convolutions or max pooling

performs better. Basis network (I) uses no residual connections
and is used for comparison. It uses three times alternating
1D-convolution and max-pooling layers as feature detectors,
followed by one fully connected (dense) layer and a final dense
layer with softmax activation performing the predictions. The
convolutional layers use 32, 64 and 128 filters each of size 10,
the pooling factor is always two. The softmax layer uses three
neurons — one for each class. Basis network (II) is similar to
(1), but each convolutional layer is replaced a residual block
with two convolution layers per residual block. Filters and
pooling factors are the same. Basis network (II1) uses residual
blocks as well. As explained in Section III, as alternative for
max-pooling we apply convolutions with stride 2, here.

For each of the basis networks, we use three variations: In
the original variation of the network, the dense layer before
the softmax has 1024 neurons. It is used as comparison for
the extra conv. variation, where a channel-wise 1D convolution
with one filter and filter size of one is used. The extra conv.
variation of network (1) is depicted in Fig. 3 . The third variant
uses extra conv. and a smaller Dense layer with 128 neurons.

VI. RESULTS
A. Model comparison

The results of our experiments are shown in Table 1. We
performed the sampling ‘like training’ to compare the results
with earlier work [4] on the same data set. Starting with
model (1), we see the resulting median (0.3326) is only at the
level of guessing. Compared to earlier work’s 37.6%, it clearly
performs worse, but also uses less filters in its convolutions.
When adding the channel-wise convolutions, we reach 39.10%
— although the underlying network has fewer parameters.
Even when reducing the size of the last layer, we still achieve
37.10%. Although the visual inspection after preprocessing
did not show channel-wise noise, the channel-wise convolution
causes significantly increased predictions, for model (/) even
when the smaller dense layer is used.

Model (II) uses residual blocks, and reduces the number
of neurons by a factor of two after each of the three resid-
ual blocks, using max pooling layers. Without channel-wise
convolutions, it performs better than the bigger model (1II)
and reaches 37.50%. But it benefits less from the channel-
wise convolution, and achieves only 38.95% with it. With the
smaller dense layer for the prediction, it only yields 36.77%.

Model (III) uses residual connections with strides and
achieves 39.14%, even without the channel-wise convolutions.
With the convolutions it becomes even better: 39.88% and



TABLE I

OVERVIEW OF MODEL AGGREGATIONS

original extra conv. extra conv. + smaller Dense
Model Sampling Aggregation Median ~ Mean | Median = Mean | Median Mean
D like training None 0.3326  0.3532 | 0.3910  0.3853 0.3710 0.3790
€8} repeated random majority vote 0.3333  0.3738 | 0.4444  0.4266 | 0.3888 0.4038
(I) repeated random | vote with abstain 0.3333 0.3738 0.4444 0.4216 0.3888 0.4050
0] repeated random max 0.3888 0.3877 0.3888 0.4161 0.3888 0.3755
(I) repeated random sum 0.3333 0.3711 0.4444 0.4244 0.3888 0.4055
€8} repeated random squared sum 0.3333  0.3755 | 0.4444  0.4300 | 0.3888 0.4061
€8} shifted window majority vote 0.3333  0.3683 | 0.4444  0.4294 | 0.3888 0.4100
@ shifted window | vote with abstain | 0.3333  0.3688 | 0.4444  0.4333 | 0.3888 0.4072
@ shifted window max 0.3333  0.3716 | 0.4444 04222 | 0.3888 0.4027
) shifted window sum 0.3333  0.3722 | 0.4444  0.4322 | 0.3888 0.4077
@ shifted window squared sum 0.3333  0.3705 | 0.4444  0.4361 | 0.3888 0.4083
I like training None 0.3750  0.3869 | 0.3895  0.3876 | 0.3677 0.3714
n repeated random majority vote 0.3888  0.4105 | 0.3888  0.4161 0.3888 0.3950
I repeated random | vote with abstain | 0.3888  0.4116 | 0.3888  0.4172 | 0.3888 0.3927
1) repeated random max 0.3888 0.4066 | 0.4444 04272 | 0.3888 0.3994
an repeated random sum 0.4166 04150 | 0.3888  0.4222 | 0.3888 0.3938
n repeated random squared sum 04166  0.4177 | 0.3888  0.4188 | 0.3888 0.3927
I shifted window majority vote 0.4444  0.4138 | 0.3888  0.4227 | 0.3888 0.3977
D shifted window | vote with abstain | 0.4444  0.4200 | 0.4444  0.4205 | 0.3888 0.3927
I shifted window max 0.4444  0.4050 | 0.3888  0.4216 | 0.3888 0.4016
I shifted window sum 0.4444 04161 0.4444  0.4316 | 0.3888 0.3972
1D shifted window squared sum 0.4444 04222 | 0.4444  0.4300 | 0.3888 0.3988
(1) like training None 0.3914  0.3945 | 0.3988  0.4006 | 0.3867 0.3895
(I1I) repeated random majority vote 0.4444 04316 | 0.4444  0.4355 | 0.4166 0.4338
(I1) repeated random | vote with abstain | 0.4444  0.4305 | 0.4444 04361 0.3888 0.4355
(III) repeated random max 0.4444 04150 | 0.4444  0.4238 | 0.3888 0.3938
(IIT) repeated random sum 0.4444 0.4338 0.4444 0.4377 0.3888 0.4350
(I1) repeated random squared sum 0.4444 04327 | 0.4444 0.4338 | 0.3888 0.4311
(III) shifted window majority vote 0.4444 04366 | 0.4444  0.4438 | 0.4444 0.4366
(11D) shifted window | vote with abstain | 0.4444  0.4366 | 0.4444  0.4411 | 0.4166 0.4388
(1) shifted window max 0.4444 04122 | 04444  0.4322 | 0.3888 04111
(1II) shifted window sum 0.4444  0.4433 | 04444 04477 | 0.4444 0.4394
(1ID) shifted window squared sum 0.4444  0.4433 | 0.4444 04455 | 04166 0.4383
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Fig. 4. Models (III), predictions as trained

finally even 40.06% when considering the mean. As this is the
best model, we depict the distribution of the results in a violin
plot in Fig. 4. The picture shows a symmetrical distribution
between weighted accuracies of 23% and 63% without any
outliers. It is not only the model which performs best on
average, but also seems to be robust in its predictions.
Summarizing, we see that the bigger models perform bet-
ter. The channel-wise convolution adds only very few extra
parameters, but causes much better predictions. In all cases,
the mean value was higher, in most cases the median value
was increased. The filters added before the dense layer seem
to cope with the smaller dense layer, which is plausible as

Fig. 5. Models (III), predictions for shifted window

the number of weights between these layers is the product of
the two layer’s sizes. We were able to improve our former
baseline from 37.6% to nearly 40% by using residual models
with strided convolutions.

B. Comparing aggregation and sampling methods

The two sampling methods show similar results. In most
cases, they are even identical for the median, while for the
mean they differ by less than 0.3% on average. Shifted
windows seem to perform a bit better, especially for models
(II) and (III). Reasons might be lucky starting positions or
a slightly better generalization due to a higher coverage. The
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Fig. 6. Bar chart showing the average predicted probabilities for each measurement and all three classes for model (III) using the extra conv. Light blue
represents the predictions of craving, dark blue means non-craving and green stands for non-smoker. The actual class is given by the measurement’s prefix.

max aggregation seems to be least robust. Though yielding the
highest mean for model (1) without channel-wise convolutions,
it exhibited the worst performance with them. As robustness
is important we advise against max aggregation.

Sum and squared sum show no clear trend. The assumption
that squaring may be beneficial is not supported by our results.
Findings are similar for majority vote and vote with abstain:
Abstaining seems to occur infrequently, hence the results
hardly differ and surprisingly there is no clear trend visible.

Comparing the ‘real world test’ (aggregate over snippets) to
the ‘single snippet test’ shows the expected results: Using more
measurements and aggregating the results is clearly better than
just using one batch of samples. Furthermore, we find the
expected general trend: The better the model if it is tested like
it was trained, the better is the performance of the aggregated
predictions. The medians increase to a new record of 44.44%
for many models — surprisingly even for some experiments
of model (7II) where the smaller dense layer is used. A violin
plot for the best model with aggregation is shown in Figure 5.
Its predictions even have a mean (44.77%) exceeding the
median (44.44%). Compared to the base models’ predictions
(Fig. 4), the poorest performance is worse by 5% but the best
performance is better by more than 15%.

C. Patient-wise evaluation

The model estimates the probability of belonging to each
class for a given snippet of data. In the standard evaluation,
we do not use the probabilities, but predict the class with the
highest probability. In contrast to this, we now consider the
probabilities directly. Fig. 6 shows the average probabilities
predicted for each measurement and each class. Each bar
represents one measurement. They are grouped, craving ¢ on
the left, followed by non-craving nc and non-smoker ns, as
indicated by the prefix. Within each group, subjects are ordered
by average prediction quality. The leftmost bar shows the
best-predictable measurement from the craving class. When
craving, subject zf0! is correctly predicted with about 85%,
incorrectly considered to be non-craving with about 15%, and
mistakenly considered to be non-smoker with less than 1%.
When 701 is non-craving our correct prediction rate is more
than 50%, which makes zfOI the best predictable smoker.
The worst predictable craving subject c_ge30 was mistakenly
considered to be non-craving with more than 50%, while
craving has an average probability of less than 20%. The non-
smokers 0x81, dn20 and bd53 are misclassified in most of the
cases, and only predicted to be non-smokers with less than 6%.



Subjects 5070 and wil19 look like non-smokers to the model
when craving and non-craving. ac06 looks like being non-
craving when actually craving and vice versa. One might guess
that the measurements were incorrectly labeled, but the labels
are correct. Thus we consider this person to be an outlier. eb80
seems to confuse the model. When craving it is often thought
to be non-smoker, when non-craving the model guesses non-
craving with less than 2%; it is mostly misclassified to be
craving. This is the only subject for which we can conjecture
as to why it may behave differently: it is the only left-handed
subject in the dataset.

Overall, we see that the predictions show a high variance
between subjects and measurements. We hypothesize that our
model still considers many person-specific or noise patterns
and only few which are actually related to being smoker or
being craving. However, this hypothesis can not be clarified
with the current data. To cope with this problem, we suggest
the acquisition and analysis of many more measurements. This
would also open the opportunity to investigate whether the
handedness plays a role for prediction models.

VII. CONCLUSION AND FUTURE WORK

In this work, we created an improved neural network model
to distinguish non-smokers, craving smokers and non-craving
smokers by their EEG signals. This task is especially difficult:
it is unknown which features are important, only few mea-
surements are available, and the data has high dimensionality.
Asked practitioners even claimed it was impossible to solve.

Yet, we were able to significantly improve over our earlier
models, which already performed better than random guessing,
by adding channel-wise 1D-convolutions and residual connec-
tions, which leads to class-balanced prediction accuracies of
nearly 40%. Given that we use less than 50 measurements
overall, this is an amazing result. Compared to previous work,
we improved performance by 2.3% percentage points.

Furthermore, we extended our evaluation to make it more re-
alistic and performed predictions on ensembles of 200 snippets
per measurement. Sampling them randomly performs slightly
worse than a moving window approach. The predictions
were aggregated by five different aggregation schemes which
performed similarly, only max prediction was less robust.
The aggregated predictions reached 44.4% mean and median
accuracy, a significant and highly promising result.

Finally, we analyzed our best-performing model and
checked the performance for each measurement. The variance
over measurements is fairly high, which indicates that our
model still learns patterns specific for a subject or a mea-
surement. Several subjects were especially hard to predict.
One of the worst predictable smokers, subject eb80 has an
average correct probability of less than 2% when craving. As
this subject is the only one in our data set which is left-handed,
we hypothesize that handedness has a non-negligible effect.
To obtain more reliable results and to further investigate the
relevance of handedness, we suggest to collect many more
measurements.

In future work, we will visualize the learned features to
gain insights about the distinguishing neural patterns. We hope
that this visualization enables us also to see what makes some
of the measurements so unpredictable. Additionally, we will
take into consideration data from questionnaires obtained for
each subject on the relative level of nicotine addiction, and the
amount of subjective craving prior to the measurement.
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