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Abstract: More sophisticated fuzzy clustering algorithms2 ~ Mixture Models and EM Algorithm

like the Gustafson—Kessel algorithm [11] and the fuzzy max-

imum likelihood estimation (FMLE) algorithm [10] offer theln @ mixture model [9] it is assumed that a given data set
possibility of inducing clusters of ellipsoidal shape and dif¢ = {Xj | j = 1,...,n} has been sampled from a population

ferent sizes. The same holds for the expectation maximigé-C clusters. Each cluster is characterized by a probabil-
tion (EM) algorithm for a mixture of Gaussians. Howeveity distribution, specified as a prior probability and a condi-

these additional degrees of freedom can reduce the robusttiesgl probability density function (cpdf). The data genera-
of the algorithm, thus sometimes rendering their applicatitian process may then be imagined as follows: first a cluster

problematic. In this paper we suggest methods to introduce{1,....c}, is chosen for a datum, indicating the cpdf to be

shape and size contraints that handle this problem effectiveliged, and then the datum is sampled from this cpdf. Conse-

. ) ~__ quently the probability of a data poiktcan be computed as
Keywords: Fuzzy Clustering, Expectation Maximization,

Cluster Size, Cluster Shape, Regularization c , ,
px (X 0) = 'Z‘pc(“@i)' fgc(Xli: ©1),
i=

1 Introduction whereC is a random variable describing the clustehosen in

. . the first stepX is a random vector describing the attribute val-
Prototype-based clustering methods, like fuzzy cIusten[]gS of the data point, ar@l= {0, ..., O} with each®; con-
[1, 2, 12], expectation maximization (EM) [6] of a mixtur&,ining the parameters for one cluster (that is, its prior proba-
of Gaussians [9], or learning vector quantization [15, 16], OSTIity 8i = pe(i; ©;) and the parameters of the cpdf).
ten employ a distance function to measure the similarity OftWOAssuming that the data points are drawn independently
data points. If this distance function is theclidean distance ¢, the same distribution (i.e., that the probability distribu-

all clusters are (hyper-)spherical. However, more sophisfiss of their underlying random vectoX§ are identical), we
cated approaches rely on a cluster-spedifahalanobis dis- can compute the probability of a data seas

tance making it possible to find clusters of (hyper-)ellipsoidal

shape. In addition, they relax the restriction (as it is present, n ¢ _ )

e.g., in the fuzzyc-means algorithm) that all clusters have P(X;0) = I_! pe; (1; ) - f>*<,-\c,— (%i]i;64),

the same size [13]. Unfortunately, these additional degrees ==

of freedom often reduce the robustness of the clustering alggﬁe’ however, that we do not know which value the random

rithm, thus sometimes rendering their application problematigyiablec;, which indicates the cluster, has for each exam-
In this paper we consider how shape and size parame{@EScasex;. Fortunately, though, given the data point, we can

of a cluster can be constrained, that is, modified in Sucrb&npute the posterior probability that a data paihes been

way that extreme cases are ruled out and/or a bias agaighpled from the cpdf of thieth cluster using Bayes' rule:
extreme cases is introduced, which effectively improves ro-

bustness. The basic idea of constraining shape is the same as _ pc(i; ©) - fX‘C(X’|i;@i)
that of Tikhonov regularization for linear optimization prob-  Pcix(i[X,©) = - (%.0)
lems [18, 8], while size and weight constraints can be based N .
on a bias towards equality as it is well-known from Laplace _ Pe(ii61)- fi\cm';ei)
correction or Bayesian approaches to probability estimation. Y1 Pc(k; ©) - f;qc(ﬂk; k)’

This paper is organized as follows: in Sections 2 and 3 we
briefly review some basics of mixture models and the expdd?is posterior probability may be used to complete the data set
tation maximization algorithm as well as fuzzy clustering. I.I-t. the cluster, namely by splitting each datgpinto c data
Section 4 we discuss our methods to constrain shape, spnts, one for each cluster, which are weighted with the pos-
and weight parameters in clustering. In Section 5 we prest@itor probabilitype, . (i[j;©). This idea is used in the well-
experimental results on well-known data sets and finally, known expectation maximization (EM) algorithm [6], which
Section 6, we draw conclusions from our discussion. consists in alternately computing these posterior probabilities




and estimating the cluster parameters from the completed diatét for w — 1. However, a hard assignment may also be de-

set by maximum likelihood estimation. termined from a fuzzy result by assigning each data point to
For clustering numeric data it is usually assumed that ttee cluster to which it has the highest degree of membership.

cpdf of each cluster is amvariate normal distribution (so- Constraint (1) guarantees that no cluster is empty and con-

calledGaussian mixture modgd, 3]). That is, straint (2) ensures that each datum has the same total influence
_ . by requiring that the sum of the membership degrees of a da-
frcXi;0) = N, Zi) tum must be 1. Due to the second constraint this approach

1 1 is usually calledprobabilistic fuzzy clusteringbecause with
s\Ts—1(g 1 ) :
= _ exp(—(i’— ) %~ (X— Hi))» it the membership degrees for a datum formally resemble the
(2r)M| ;| 2 Ny . . .
probabilities of its being a member of the corresponding clus-

wherefj is the mean vector angl the covariance matrix of ters. The partitioning property of a probabilistic clustering
the normal distributioni — 17' ..,C andm is the number of algorithm, which “distributes” the WEIght of a datum to the

dimensions of the data space. In this case the maximum liRéferent clusters, is due to this constraint.

lihood estimation formulae are Unfortunately, the objective functiod cannot be mini-
\ mized directly. Therefore an iterative algorithm is used, which
6 = 1 chp?- (i1%;;©) alternately opt|m|zes_me.mbersh|p degree; and cluster param-
n & ! eters [1, 2, 12]. That s, first the membership degrees are opti-
mized for fixed cluster parameters, then the cluster parameters
for the prior probabilityd;, are optimized for fixed membership degrees. The main ad-
50 L (i[%:0) %, vantage of this scheme is that in each of the two steps the opti-
T — i=1 Py, 1% J mum can be computed directly. By iterating the two steps the
Y1 Peix; (i|X;;©) joint optimum is approached (although, of course, it cannot be
guaranteed that the global optimum will be reached—one may
for the mean vectat;, and get stuck in a local minimum of the objective functidn
n o = T The update formulae are derived by simply setting the
s _ 2j-1 Pejx; (i) - (% — 1) (X — ) derivative of the objective functiod w.r.t. the parameters to
' ZTzl Pei, (i|%;;©) optimize equal to zero (necessary condition for a minimum).
: Independent of the chosen distance measure we thus obtain the
for the covariance matriX; of thei-th clusterj =1,...,c. following update formula for the membership degrees [12]:
_ 2
. d w-1
3 Fuzzy Clustering Uj = ——p, (3)
Yke1Gt

While most classical clustering algorithms assign each datum
to exactly one cluster, thus forming a crisp partition of thbat is, the membership degrees represent the relative inverse
given data, fuzzy clustering allows fategrees of member-squared distances of a data point to the different cluster cen-
ship, to which a datum belongs to different clusters [1, 2, 12grs, which is a very intuitive result.
Most fuzzy clustering algorithms are objective function based:The update formulae for the cluster parameters, however,
they determine an optimal (fuzzy) partition of a given data s#i¢pend on what parameters are used to describe a cluster
X={Xj|j=1,...,n}into cclusters by minimizing an objec-(location, shape, size) and on the chosen distance measure.
tive function Therefore a general update formula cannot be given. Here
J(X,U,C) = U‘i'jvdizj we briefly review th_e three most common cases: The best-
known fuzzy clustering algorithm is the fuzzymeans algo-
rithm, which is a straightforward generalization of the classi-
cal crispc-means algorithm. It uses only cluster centers for the
cluster prototypes and relies on tBaclidean distancé.e.,

(]

M-

=1]

subject to the constraints

uij >0, forallie{1,...,c}, and Q) ) .
1 di =X —F) &—H),

Zil.]ij =1 forall je{1,...,n}, (2) wherej is the center of thé-th cluster. Consequently it is
i= restricted to finding spherical clusters of equal size. The re-
sulting update rule is

M=

J

o |

whereu;j € [0,1] is the membership degree of datuinto
clusteri anddi; is the distance between dat&nand cluster. U
Thec x nmatrix U = (u;j) is called thefuzzy partition matrix i = TR 4
andC describes the set of clusters by stating location parame- =1

ters (i.e. the cluster center) and maybe size and shape pai@gyis, the new cluster center is the weighted mean of the data
eters for each cluster. The parametew > 1, is called the points assigned to it, which is again a fairly intuitive result.

fuzzifieror weighting exponentt determines the “fuzziness”  The Gustafson—Kessel algorithm [11] uses a cluster-specific
of the classification: with higher values farthe boundaries njanalanobis distanceé.e.,

between the clusters become softer, with lower values they get
harder. Usuallyw = 2 is chosen. Hard clustering results in the dizj =(Xj— ﬁ,—)TZfl(ij —H),



wherefi is the cluster center ang is a cluster-specific co-4 ~ Constraining Cluster Parameters
variance matrix with determinant 1. It describes the shape of

the cluster, thus allowing for ellipsoidal clusters of equal sizEhe large number of parameters (mainly the elements of the
This distance measure leads to same update rule (4) for@aeariance matrices) of the more flexible fuzzy and probabilis-

clusters centers, while the covariance matrices are updatedi@glustering algorithms can render these algorithms less ro-
bust or even fairly unstable, compared to their simpler coun-

* . T . T T 3
s ; where ¥ — i—1 U (X — 1) (X — ) (5) terparts that only adapt the cluster centers. Common undesired
' ! Y1 ujf results include very long and thin ellipsoids as well as clusters

VI
dmis th ber of di . f the d . collapsing to a single data point. To counteract such unde-
andmis the number Of dimensions o t.e .ata SPaER.IS  gjreq tendencies, we introduce shape and size constraints into
called thefuzzy covariance matrjwhich is simply normal-

ed 1o d 4 1 he ab ioned the update scheme. The basic idea is to modify, in every up-
ized to determinant 1 to meet the abovementioned constrgialy, gte the parameters of a cluster in such a way that certain

Compared to standard statistical estimation procedures, th_'(?dﬁstraints are satisfied or at least that a noticable tendency

6_\Iso a fairly intuitive resulfc. It should be noted that_ the restri of varying strength, as specified by a user) towards satisfy-
tion to clusters of equal size may be relaxed by simply alloyy,

. ) . X these constraints is introduced. In particular we consider
ing general covariance matrices. However, depending on ;Q
|

characteristics of the data, this additional degree of freed ;gg)lgg;h:n(g Itllhpes (()rlgﬂt)i\fg)avﬁ)/gigﬁt\lg]?l:::slucs(:gs training the
can deteriorate the robustness of the algorithm.
Finally, the fuzzy maximum likelihood estimation (FMLE) o
algorithm [10] is based on the assumption that the data Whd ~Constraining Cluster Shapes
sampled from a mixture af multivariate normal distributions 1,

) o . X e shape of a cluster is represented by its covariance ma-
as in the statistical approach of mixture models (cf. Section t?r}x 5. Intuitively, 5; describes a general (hyper-)ellipsoidal

It uses a (squared) distance that is inversely proportional togﬁ%\pe, which can be obtained, for example, by computing

probability that a datum was generated by the normal distrifs, chojesky decomposition or the eigenvalue decomposition
tion associated with a cluster and also incorporates the PEP%, and mapping the unit (hyper-)sphere with it.

probability of the cluster. Thatis, Shape regularization means to modify the covariance ma-
o 1 -1 trix, sothat a certain relation of the lengths of the major axes of

di2j - (' exp(—(ij _Q)T2rl(zj _m>> ., the represented (hyper-)ellipsoid is obtained or that at least a
Vv (2m™M | 2 tendency towards this relation is introduced. Since the lengths

where®; is the prior probability of the clustepy is the clus- of t_he Major axes are th_e_ roots of the e|g_envalues O.f the co-
ter center,X; a cluster-specific covariance matrix, which jyarance matrix, regularizing it means shifting the eigenval-

this case is not required to be normalized to determinant™ S 0f2;. Note that such a shift leaves the eigenvectors un-

andm the number of dimensions of the data space (cf. s& langed, i.e., the orientation of the represented (hyper-)ellip-

tion 2). For the FMLE algorithm the update rules are not d@g'd IS _preservec_]. Note also that sugh a shift of the_ eigen-
lues is the basis of the well-known Tikhonov regularization

rived from the objective function due to technical obstacles, . S o

but by comparing it to the expectation maximization (EM) alr linear optimization problems [18j 8], which inspired our
gorithm for a mixture of normal distributions (cf. Section z)e’lpproach. We suggest two methods:

which, by analogy, leads to the same update rules for the clMethod 1: The covariance matrices, i = 1,...,c, of the
ter center and the cluster-specific covariance matrix as for thesters are adapted (in every update step) according to
Gustafson—Kessel algorithm [12], that is, equations (4) and

(5). The prior probabilityd; is, also in analogy to statistical sladap _ 2 S +h?1 2. & +02h?1
imati i i =0 e 0
estimation (cf. Section 2), computed as VS + h21] m/Izi +o2h2]
1 n
6 = n Zlu}'iv- (6) wheremis the dimension of the data spadeis a unit ma-
=

trix, 02 = W is the equivalent isotropic variance (equiva-

Note that the difference to the expectation maximization algent in the sense that it leads to the same (hyper-)volume, i.e.,
rithm consists in the different ways in which the membershipi| = |0?1]), S = o; 2Z; is the covariance matrix scaled to
degrees (equation (3)) and the posterior probabilities in ttheterminant 1, ant is the regularization parameter.
EM algorithm are computed and used in the estimation. This modification of the covariance matrix shifts all eigen-

Since the high number of free parameters of the FMLE aklues by the value af?h? and then renormalizes the resulting
gorithm renders it unstable on certain data sets, it is usuahwtrix so that the determinant of the old covariance matrix is
recommended [12] to initialize it with a few steps of the vemgreserved (i.e., the (hyper-)volume of the cluster is kept con-
robust fuzzyc-means algorithm. The same holds, though tosgant). It tends to equalize the lengths of the major axes of the
somewhat lesser degree, for the Gustafson—Kessel algoritliapresented (hyper-)ellipsoid and thus introduces a tendency

It is worth noting that of both the Gustafson—Kessel algtswards (hyper-)spherical clusters. (Algebraically, it makes
rithm as well as the FMLE algorithm there exist so-calleitie matrix “less singular”, and thus “more regular”, which ex-
axes-parallelversions, which restrict the covariance matrplains the nameegularizationfor this modification.) This ten-
ces; to diagonal matrices and thus allow only axes-paraliééncy of equalizing the axes lengths is the stronger, the greater
ellipsoids [14]. These constrained variants have certain advere value ot. In the limit, forh — o, the clusters are forced
tages w.r.t. robustness and execution time. to be exactly spherical; fdr= 0 the shape is left unchanged.



Method 2: The above method always changes the length the sizes, so that the size sum is increasedtbyHowever,

tios of the major axes and thus introduces a general tendetiiy missing renormalization may be mitigated to some degree
towards (hyper-)spherical clusters. In this (second) methbg,specifying a value of the scaling parametérat is smaller
however, a limitr, r > 1, for the length ratio of the longestthan 1. Formally, the equivalent isotropic radjiare adapted

to the shortest major axis of the represented (hyper-)ellips@itevery update step) according to

is used and only if this limit is exceeded, the eigenvalues are

shifted in such a way that the limit is satisfied. 01298 _ a/s. (034 D).

Formally: letAy, k=1,...m, be the eigenvalues of the covari-

ance matrx;. Set (in every update step) Method 3: The above methods always change the relation

max™ Ay 2 of the cluster sizes and thus introduce a general tendency to-

0, —n <re, wards clusters of equal size. In this (third) method, however,
5 min ; Ax e : .
h® = max™ e — r2min™ .\ alimitr, r > 1, for the size ratio of the largest to the smallest
k17K k=1"K otherwise, cluster is used and only if this limit is exceeded, the sizes are

of(r2—1) ’ changed in such a way that the limit is satisfied. To achieve

and then execute Method 1 with this valuendf this, bis set (in every update step) according to

0 i max;_,op
4.2 Constraining Cluster Sizes b={ W e . Minggof T
max;_,0f —rming_,of therwi
The size of a cluster can be described in different ways, for ex- r—1 » otherwise,

ample, by the determinant of its covariance makjxwhich _ _ _

is a measure of the clusters squared (hyper-)volume, an eqfiiid then Method 1 is executed with this valuepof
alent isotropic variance? or an equivalent isotropic radius

(standard deviationy; (equivalent in the sense that they lead.3 Constraining Cluster Weights

to the same (hyper-)volume, see above). The latter two mea- . . .
sures are defined as cluster weight6; appears only in the mixture model ap-

proach and the FMLE algorithm, where it describes the prior
2 _ /s, 2 /s probability of a cluster. For cluster weights we may use basi-
of=V|z and oj=,./0f= F/|Z . . X
! 1%l ! i Bl cally the same adaptation methods as for the cluster size, with
and thus the (hyper-)volume of a cluster may also be writt -I.e-xceptlon of the scaling paraémss;esmﬁe thfee i are prr]ob— )
asof" = \/[Zi]. abilities, i.e., we must ensufg_, 8; = 1. Therefore we have:
Contraining the (relative) cluster size means to ensure a @dethod 1: The cluster weight8; are adapted (in every update
tain relation between the sizes or at least to introduce a tstep) according to
dency into this direction. We suggest three different versions c c
of modifying cluster sizes, in each of which the measure that ig(adan _ CZk:lek (8 +b) = Zk:%ek (8 +b),
used to describe the cluster size is specified by an expanent Yk1(Bk+b) ch+ 316k

of the equivalent isotropic radiug. Special cases are whereb is a parameter that is to be specified by a user. Note

a=1: equivalentisotropic radius, that this method is equivalent to a Laplace corrected estima-
a=2: equivalent isotropic variance, tion of the prior probabilities or a Bayesian estimation with an
a=m: (hyper-)volume. uninformative (uniform) prior.

Method 2: The value of the adaptation parameleis com-

Method 1: The equivalent isotropic radd; are adapted (in :
puted (in every update step) as

every update step) according to

c ~a 0) i MaX, 6 <r
O__(adap - als. Zkzlgk .(o-a_’_ b) b= ’ . minﬁ:lek -
' Ska(og+b) MaX 8k — F Ming_48k otherwise
c a r-1 ’ ,
ala. Zkzlok . (0_a+ b) . . . . .
cb+3f 08 : with a user-specified maximum weight ratia > 1, and then

Method 1 is executed with this value of the paraméter
That is, each cluster size is increased by the value of the pa-
rameterb and then the sizes are renormalized so that the s .
of the cluster sizes is preserved. However, the pararaetay gﬂ Experlments
be used to scale the sum of the sizes up or down (by def:wlet

. . implemented all methods suggested above as part of an ex-
s=1). Forb —  the cluster sizes are equalized complete| bctation maximization and fuzzy clustering program written
for b = 0 only the parametes has an effect. This method i% y g prog

T ; . L . the first author of this paper and applied it to several differ-
inspired by Laplace correction or Bayesian estimation with a . : :

: ; . ent data sets from the UCI machine learning repository [4]. In
uniformative prior (see below).

all data sets each dimension was normalized to mean value 0
Method 2: This method, which is meant as a simplified anahd standard deviation 1 in order to avoid any distortions that
thus more efficient version of method 1, does not renormaliray result from different scaling of the coordinate axes.



Figure 1: Result of Gustafson-Kessel algorithm on the ifisgure 2: Result of fuzzy maximum likelihood estimation
data with fixed cluster size without (top) and with shape reFMLE) algorithm on the wine data with fixed cluster weight
ularization (bottom, method 2 with= 4). Both images show without (top) and with an adaptation of (relative) cluster sizes
the petal length (horizontal) and the petal width (verticalbottom, method 3 witl = 2). Both images show attribute 7
Clustering was done on all four attributes (sepal length afibrizontal) and attribute 10 (vertical). Clustering was done
sepal width in addition to the above). on attributes 7, 10, and 13.

As one illustrative example, we present here the result ofAs another example let us consider the result of clustering
clustering the iris data (excluding, of course, the class #ie wine data with the fuzzy maximum likelihood estimation
tribute) with the Gustafson—Kessel algorithm using three cl{&MLE) algorithm using three clusters of variable size. We
ter of fixed size (measured as the isotropic radius) of 0.4 (siruged attributes 7, 10, and 13, which are the most informative
all dimensions are normalized to mean 0 and standard dewa-t. the class assignments. One result we obtained without
tion 1, 0.4 is a good size of a cluster if three clusters are@@nstraining the relative cluster size is shown in Figure 2 at the
be found). The result without shape regularization is sho@p. However, the algorithm is much too unstable to present
in Figure 1 at the top. Due to the few data points located @aunique result. Often enough clustering fails completely, be-
a thin diagonal cloud on the right border on the figure, tifause one cluster collapses to a single data point—an effect
middle cluster is drawn into a fairly long ellipsoid. Althougfihat is mainly due to the steepness of the Gaussian probabil-
this shape minimizes the objective function, it may not beity density function and the sensitivity of the algorithm to the
desirable result, because the cluster structure is not compaigiglization of the cluster parameters.
enough. Using shape regularization method 2 with4 the  This situation is considerably improved by constraining the
cluster structure shown at the bottom in Figure 1 is obtaindtklative) cluster size, a result of which (that sometimes, with a
In this result the clusters are more compact and resembleftirtunate initialization, can also be achieved without) is shown
class structure of the data set. at the bottom in Figure 2. It was obtained with method 3 with



r = 2. Although the result is still not unique and sometime¢7] R.O. Duda and P.E. Hart.Pattern Classification and
clusters still focus on very few data points, the algorithm is  Scene AnalysisJ. Wiley & Sons, New York, NY, USA
considerably more stable and reasonable results are obtained 1973

much more often than without size constraints. Hence we can
conclude that constraining (relative) cluster size considerab[§
improves the robustness of the algorithm.

] H. Engl, M. Hanke, and A. NeubaudRegularization of
Inverse ProblemsKluwer, Dordrecht, Netherlands 1996

[9] B.S. Everitt and D.J. Handrinite Mixture Distributions
6 Conclusions Chapman & Hall, London, UK 1981

) o (510] I. Gath and A.B. Geva. Unsupervised Optimal Fuzzy
In this paper we suggested a shape regularization method as Clustering. IEEE Trans. Pattern Analysis & Machine

well as methods to constrain the (relative) cluster size and Intelligence11:773-781. IEEE Press, Piscataway, NJ
weight for clustering algorithms that use a cluster-specific Ma- ;A 1989 ’ Y

halanobis distance to describe the shape and the size of a clus-

ter. The basic idea is to introduce a tendency towards eqddl] E.E. Gustafson and W.C. Kessel. Fuzzy Clustering with
length of the major axes of the represented (hyper-)ellipsoid a Fuzzy Covariance Matri¥roc. 18th IEEE Conference
and towards equal cluster sizes. As the experiments show, on Decision and Control (IEEE CDC, San Diego, CA)
these methods improve the robustness of the more sophisti- 761-766, IEEE Press, Piscataway, NJ, USA 1979
cated fuzzy clustering algorithms, which without them suffer )

from instabilities even on fairly simple data sets. Reguldt2] F-Hoppner, F. Klawonn, R. Kruse, and T. RunklBuzzy
ized and constrained clustering is so robust that it can even be Cluster Analysis J. Wiley & Sons, Chichester, England
used without an initialization by the fuzzymeans algorithm.

It should be noted that with a time-dependent shape regu?@]
ization parameter one may obtain a soft transition from the ~ ;, Objective Function Based Fuzzy Clustering. In:
fuzzy c-means algorithm (spherical clusters) to the Gustafson- - Leondes, edDatabase and Learning Systems IV

Kessel algorithm (general ellipsoidal clusters). 181-199. CRC Press. Boca Raton. FL. USA 2003
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Software [14] F. Klawonn and R. Kruse. Constructing a Fuzzy Con-

] ] ] troller from Data. Fuzzy Sets and Syste8:177-193.
A free implementation of the described methods as command North-Holland, Amsterdam, Netherlands 1997

line programs for expectation maximization and fuzzy cluster-
ing (written in C) can be found at [15] T. Kohonen. Learning Vector Quantization for Pattern
Recognition Technical Report TKK-F-A601. Helsinki

http://fuzzy.cs.uni-magdeburg.de/ University of Technology, Finland 1986
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