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Possibility Theory: Axiomatic Approach

Definition: Let Ω be a (finite) sample space.
A possibility measure Π on Ω is a function Π : 2Ω ! [0; 1] satisfying

1. Π(;) = 0 and

2. 8E1; E2 � Ω : Π(E1 [E2) = maxfΠ(E1);Π(E2)g.

� Similar to Kolmogorov’s axioms of probability theory.

� From the axioms follows Π(E1 \E2) � minfΠ(E1);Π(E2)g:

� Attributes are introduced as random variables (as in probability theory).

� Π(A = a) is an abbreviation of Π(f! 2 Ω j A(!) = ag)

� If an event E is possible without restriction, then Π(E) = 1:
If an event E is impossible, then Π(E) = 0:
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Possibility Theory and the Context Model

Interpretation of Degrees of Possibility [Gebhardt and Kruse 1993]

� Let Ω be the (nonempty) set of all possible states of the world,
!0 the actual (but unknown) state.

� Let C = fc1; : : : ; cng be a set of contexts (observers, frame conditions etc.)
and (C; 2C ; P ) a finite probability space (context weights).

� Let Γ : C ! 2Ω be a set-valued mapping, which assigns to each context
the most specific correct set-valued specification of !0.
The sets Γ(c) are called the focal sets of Γ.

� Γ is a random set (i.e., a set-valued random variable) [Nguyen 1978].
The basic possibility assignment induced by Γ is the mapping

� : Ω ! [0; 1]

�(!) 7! P (fc 2 C j ! 2 Γ(c)g):
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Example: Dice and Shakers

shaker 1 shaker 2 shaker 3 shaker 4 shaker 5

�
tetrahedron

�
hexahedron

�
octahedron

�
icosahedron

�
dodecahedron

1 – 4 1 – 6 1 – 8 1 – 10 1 – 12

numbers degree of possibility

1 – 4 1
5 + 1

5 + 1
5 + 1

5 + 1
5 = 1

5 – 6 1
5 + 1

5 + 1
5 + 1

5 = 4
5

7 – 8 1
5 + 1

5 + 1
5 = 3

5

9 – 10 1
5 + 1

5 = 2
5

11 – 12 1
5 = 1

5
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From the Context Model to Possibility Measures

Definition: Let Γ : C ! 2Ω be a random set.
The possibility measure induced by Γ is the mapping

Π : 2Ω ! [0; 1];

E 7! P (fc 2 C j E \ Γ(c) 6= ;g):

Problem: From the given interpretation it follows only:

8E � Ω : max
!2E

�(!) � Π(E) � min
{
1;

∑
!2E

�(!)
}
:

1 2 3 4 5

c1 : 1
2 �

c2 : 1
4 � � �

c3 : 1
4 � � � � �

� 0 1
2 1 1

2
1
4

1 2 3 4 5

c1 : 1
2 �

c2 : 1
4 � �

c3 : 1
4 � �

� 1
4

1
4

1
2

1
4

1
4
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From the Context Model to Possibility Measures (cont.)

Attempts to solve the indicated problem:

� Require the focal sets to be consonant:
Definition: Let Γ : C ! 2Ω be a random set with C = fc1; : : : ; cng. The
focal sets Γ(ci), 1 � i � n, are called consonant, iff there exists a sequence
ci1; ci2; : : : ; cin, 1 � i1; : : : ; in � n, 81 � j < k � n : ij 6= ik, so that

Γ(ci1) � Γ(ci2) � : : : � Γ(cin):
! mass assignment theory [Baldwin et al. 1995]

Problem: The “voting model” is not sufficient to justify consonance.

� Use the lower bound as the “most pessimistic” choice. [Gebhardt 1997]

Problem: Basic possibility assignments represent negative information,
the lower bound is actually the most optimistic choice.

� Justify the lower bound from decision making purposes.
[Borgelt 1995, Borgelt 2000]
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From the Context Model to Possibility Measures (cont.)

� Assume that in the end we have to decide on a single event.

� Each event is described by the values of a set of attributes.

� Then it can be useful to assign to a set of events the degree of possibility
of the “most possible” event in the set.

Example:

∑

max

0

18

18

0

18

0

0

0

18

0

0

0

0

0

0

28

36

18

18

18

18

18

28

28

36

18

18

18

18

18

28

28

max

0

40

0

0

20

0

0 40 0

40

20

40

40

20

40
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Possibility Distributions

Definition: Let X = fA1; : : : ; Ang be a set of attributes defined on a (finite)
sample space Ω with respective domains dom(Ai), i = 1; : : : ; n. A possibility
distribution �X over X is the restriction of a possibility measure Π on Ω to the
set of all events that can be defined by stating values for all attributes in X . That
is, �X = ΠjEX

, where

EX =
{
E 2 2Ω

∣∣∣ 9a1 2 dom(A1) : : : : 9an 2 dom(An) :

E =̂
∧

Aj2X

Aj = aj
}

=
{
E 2 2Ω

∣∣∣ 9a1 2 dom(A1) : : : : 9an 2 dom(An) :

E =
{
! 2 Ω

∣∣∣ ∧
Aj2X

Aj(!) = aj
}}
:

� Corresponds to the notion of a probability distribution.

� Advantage of this formalization: No index transformation functions are needed
for projections, there are just fewer terms in the conjunctions.
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Conditional Possibility and Independence

Definition: Let Ω be a (finite) sample space, Π a possibility measure on Ω, and
E1; E2 � Ω events. Then

Π(E1 j E2) = Π(E1 \E2)

is called the conditional possibility of E1 given E2.

Definition: Let Ω be a (finite) sample space, Π a possibility measure on Ω, and
A; B; and C attributes with respective domains dom(A); dom(B); and dom(C).
A and B are called conditionally possibilistically independent given C,
written A??ΠB j C, iff

8a 2 dom(A) : 8b 2 dom(B) : 8c 2 dom(C) :

Π(A = a;C = c j B = b) = minfΠ(A = a j B = b);Π(C = c j B = b)g:

� Similar to the corresponding notions of probability theory.
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Graphical Models / Inference Networks

� Decomposition: Under certain conditions a distribution � (e.g. a probability
distribution) on a multi-dimensional domain, which encodes prior or generic
knowledge about this domain, can be decomposed into a set f�1; : : : ; �sg of
(overlapping) distributions on lower-dimensional subspaces.

� Simplified Reasoning: If such a decomposition is possible, it is sufficient
to know the distributions on the subspaces to draw all inferences in the domain
under consideration that can be drawn using the original distribution �.

� Since such a decomposition is usually represented as a network and since it is
used to draw inferences, it can be called an inference network. The edges
of the network indicate the paths along which evidence has to be propagated.

� Another popular name is graphical model, where “graphical” indicates that
it is based on a graph in the sense of graph theory.
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A Simple Example

Example World

�
� �

�
�

� �

� �
�

Relation

color shape size� � small� � medium
 � small
 � medium
 � medium
 � large�  medium	  medium	 � medium	 � large� 10 simple geometric objects, 3 attributes

� One object is chosen at random and examined.

� Inferences are drawn about the unobserved attributes.
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The Reasoning Space

Relation

color shape size� � small� � medium
 � small
 � medium
 � medium
 � large�  medium	  medium	 � medium	 � large

Geometric Interpretation

� 
 � 	 �

�

large
medium

small

$

$
"

 
#

#
!

# #
#

#
!
!#

Each cube represents one tuple.
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Reasoning

� Let it be known (e.g. from an observation) that the given object is green.
This information considerably reduces the space of possible value combinations.

� From the prior knowledge it follows that the given object must be

� either a triangle or a square and

� either medium or large.

� 
 � 	 �

�

large
medium

small

$

$$

 
!
!# #

� 
 � 	 �

�

large
medium

small

$

$$

@
@

"A A
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Prior Knowledge and Its Projections

� 
 � 	 �

�

large
medium

small

$

$
"

 
#

#
!

# #
#

#
!
!#

� 
 � 	 �

�

large
medium

small

$

$$ $ $
$
$
%

@ @
@ @

@ @

� 
 � 	 �

�

large
medium

small

$

$$ $ $
$
$
%A AA A A AA A

� 
 � 	 �

�

large
medium

small

$

$$ $ $
$
$
%B B
B
B B
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Cylindrical Extensions and Their Intersection

"
$

#
#
#

%
%% % %

� 
 � 	 �

�

large
medium

small

$

$

   

" " "
 
 

#

!
!!

# #
� 
 � 	 �


�

large
medium

small

$

$

� 
 � 	 �

�

large
medium

small

$

$
"

 
#

#
!

# #
#

#
!
!#

�

�

Intersecting the cylindrical ex-
tensions of the projection to
the subspace formed by color
and shape and of the projec-
tion to the subspace formed by
shape and size yields the origi-
nal three-dimensional relation.
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Reasoning with Projections

The same result can be obtained using only the projections to the subspaces
without reconstructing the original three-dimensional space:

� 
 � 	
color

� extend

�

�

� 
 � 	
�project

shape

�extend

s m l

�

�

�
project

s m l

sizeC

@ @
@ @

@ @ C
C
C

C
C C C C@ @

C C C@
@ @

C C

This justifies a network representation:
�
�

�
�color

�
�

�
�shape

�
�

�
�size
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Is Decomposition Always Possible?

� 
 � 	 �

�

large
medium

small

$

$
"

 
#

#
!

# #
#

#
!
!#

!
!

1

2

� 
 � 	 �

�

large
medium

small

$

$$ $ $
$
$
%

@ @
@ @

@ @

� 
 � 	 �

�

large
medium

small

$

$$ $ $
$
$
%A AA A A AA A

� 
 � 	 �

�

large
medium

small

$

$$ $ $
$
$
%B B
B
B B
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A Probability Distribution

all numbers in
parts per 1000

$
$

"

$
$

"
&

&

� 
 � 	

� 
 � 	

��

��

small

medium

large

��

��
s m l

� 
 � 	
small

medium
large

20 90 10 80
2 1 20 17
28 24 5 3

18 81 9 72
8 4 80 68
84 72 15 9

2 9 1 8
2 1 20 17
56 48 10 6

40 180 20 160
12 6 120 102
168 144 30 18

50 115 35 100
110 157 104 149
60 58 31 31

20 180 200
40 160 40
120 180 60

220 330 170 280

400
240
360

180

520

300

� The numbers state the probability of the corresponding value combination.

Christian Borgelt Possibilistic Graphical Models and How to Learn Them from Data 19



Reasoning

all numbers in
parts per 1000

$
$

"

$
$

"
&

&

� 
 � 	

� 
 � 	

��

��

small

medium

large

��

��
s m l

� 
 � 	
small

medium
large

0 0 0 286
0 0 0 61
0 0 0 11

0 0 0 257
0 0 0 242
0 0 0 32

0 0 0 29
0 0 0 61
0 0 0 21

0 0 0 572
0 0 0 364
0 0 0 64

0 0 0 358
0 0 0 531
0 0 0 111

29 257 286
61 242 61
21 32 11

0 0 0 1000

572
364
64

111

531

358

� Using the information that the given object is green.
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Probabilistic Decomposition

� As for relational networks, the three-dimensional probability distribution can
be decomposed into projections to subspaces, namely:
– the marginal distribution on the subspace color � shape and
– the marginal distribution on the subspace shape � size.

� It can be reconstructed using the following formula:

8i; j; k : P (!
(color)
i ; !

(shape)
j ; !

(size)
k ) = P (!

(color)
i ; !

(shape)
j )�P (!

(size)
k j !

(shape)
j )

= P (!
(color)
i ; !

(shape)
j )�

P (!
(color)
j ; !

(size)
k )

P (!
(shape)
j )

� This formula expresses the conditional independence of the attributes
color and size given the attribute shape, since they only hold if

8i; j; k : P (!
(size)
k j !

(shape)
j ) = P (!

(size)
k j !

(color)
i ; !

(shape)
j )
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Reasoning with Projections

Again the same result can be obtained using only projections to subspaces
(marginal distributions):

� 
 � 	
new

old
color

�
�

� � 
 � 	

�
new old

shape

�
s m l

�

�

�
s m l

old

new
size

(old
new

(old
new

0 0 0 1000

220 330 170 280

�new
old

(40
0

(180
0

(20
0

(160
572(12

0
(6
0

(120
0

(102
364(168

0
(144
0

(30
0

(18
64

∑
line

572 400

364 240

64 360

�new
old

(20
29

(180
257

(200
286(40

61
(160

242
(40
61(120

21
(180
32

(60
11

∑
column

180 520 300

111 531 358

This justifies a network representation:
�
�

�
�color

�
�

�
�shape

�
�

�
�size
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Probabilistic Evidence Propagation, Step 1

P (B = b j A = aobs)

= P
( ∨
a2dom(A)

A = a;B = b;
∨

c2dom(C)

C = c
∣∣∣A = aobs

)
(1)
=

∑
a2dom(A)

∑
c2dom(C)

P (A = a;B = b; C = c j A = aobs)

(2)
=

∑
a2dom(A)

∑
c2dom(C)

P (A = a;B = b; C = c) �
P (A = a j A = aobs)

P (A = a)

(3)
=

∑
a2dom(A)

∑
c2dom(C)

P (A = a;B = b) � P (B = b; C = c)

P (B = b)
�
P (A = a j A = aobs)

P (A = a)

=
∑

a2dom(A)

P (A = a;B = b)�
P (A = a j A = aobs)

P (A = a)

∑
c2dom(C)

P (C = c j B = b)

︸ ︷︷ ︸
=1

=
∑

a2dom(A)

P (A = a;B = b)�
P (A = a j A = aobs)

P (A = a)
:
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A Possibility Distribution

all numbers in
parts per 1000

$
$

"

$
$

"
&

&

� 
 � 	

� 
 � 	

��

��

small

medium

large

��

��
s m l

� 
 � 	
small

medium
large

40 70 10 70
20 10 20 20
30 30 20 10

40 80 10 70
30 10 70 60
60 60 20 10

20 20 10 20
30 10 40 40
80 90 20 10

40 80 10 70
30 10 70 60
80 90 20 10

40 70 20 70
60 80 70 70
80 90 40 40

20 80 70
40 70 20
90 60 30

80 90 70 70

80
70
90

90

80

70

� The numbers state the degrees of possibility of the corresp. value combination.
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Reasoning

all numbers in
parts per 1000

$
$

"

$
$

"
&

&

� 
 � 	

� 
 � 	

��

��

small

medium

large

��

��
s m l

� 
 � 	
small

medium
large

0 0 0 70
0 0 0 20
0 0 0 10

0 0 0 70
0 0 0 60
0 0 0 10

0 0 0 20
0 0 0 40
0 0 0 10

0 0 0 70
0 0 0 60
0 0 0 10

0 0 0 70
0 0 0 70
0 0 0 40

20 70 70
40 60 20
10 10 10

0 0 0 70

70
60
10

40

70

70

� Using the information that the given object is green.
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Possibilistic Decomposition

� As for relational and probabilistic networks, the three-dimensional possibility
distribution can be decomposed into projections to subspaces, namely:
– the maximum projection to the subspace color � shape and
– the maximum projection to the subspace shape � size.

� It can be reconstructed using the following formula:

8i; j; k : �(!
(color)
i ; !

(shape)
j ; !

(size)
k )

= min
{
�(!

(color)
i ; !

(shape)
j ); �(!

(shape)
j ; !

(size)
k )

}

= min
{

max
k

�(!
(color)
i ; !

(shape)
j ; !

(size)
k );

max
i

�(!
(color)
i ; !

(shape)
j ; !

(size)
k )

}
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Reasoning with Projections

Again the same result can be obtained using only projections to subspaces
(maximal degrees of possibility):

� 
 � 	
new

old
color

�
�

� � 
 � 	

�
new old

shape

�
s m l

�

�

�
s m l

old

new
size

(old
new

(old
new

0 0 0 70

80 90 70 70

min
new

(40
0

(80
0

(10
0

(70
70(30

0
(10
0

(70
0

(60
60(80

0
(90
0

(20
0

(10
10

max
line

70 80

60 70

10 90

min
new

(20
20

(80
70

(70
70(40

40
(70
60

(20
20(90

10
(60
10

(30
10

max
column

90 80 70

40 70 70

This justifies a network representation:
�
�

�
�color

�
�

�
�shape

�
�

�
�size
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Possibilistic Evidence Propagation, Step 1

�(B = b j A = aobs)

= �
( ∨
a2dom(A)

A = a;B = b;
∨

c2dom(C)

C = c
∣∣∣A = aobs

)
(1)
= max

a2dom(A)
f max
c2dom(C)

f�(A = a;B = b; C = c j A = aobs)gg

(2)
= max

a2dom(A)
f max
c2dom(C)

fminf�(A = a;B = b; C = c); �(A = a j A = aobs)ggg

(3)
= max

a2dom(A)
f max
c2dom(C)

fminf�(A = a;B = b); �(B = b; C = c);

�(A = a j A = aobs)ggg

= max
a2dom(A)

fminf�(A = a;B = b); �(A = a j A = aobs);

max
c2dom(C)

f�(B = b; C = c)g︸ ︷︷ ︸
=�(B=b)��(A=a;B=b)

gg

= max
a2dom(A)

fminf�(A = a;B = b); �(A = a j A = aobs)gg
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Graphs and Decompositions

Undirected Graphs

A1
aB A2

a
A3
aPQ A4

aQ
A5
aBP A6

aPQ
�U(A1 = a1; : : : ; A6 = a6)

= minf �A1A2A3
(A1 = a1; A2 = a2; A3 = a3);

�A3A5A6
(A3 = a3; A5 = a5; A6 = a6);

�A2A4
(A2 = a2; A4 = a4);

�A4A6
(A4 = a4; A6 = a6) g

Directed Graphs

A1
a�. A2

a-. A3
a-

A4
a� A5

a0�
A6
a A7

a
�U(A1 = a1; : : : ; A7 = a7)

= minf �(A1 = a1); �(A2 = a2 j A1 = a1); �(A3 = a3);
�(A4 = a4 j A1 = a1; A2 = a2);
�(A5 = a5 j A2 = a2; A3 = a3);
�(A6 = a6 j A4 = a4; A5 = a5);
�(A7 = a7 j A5 = a5) g
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Example: Danish Jersey Cattle Blood Type Determination

@�	 @�	A A A A@� @� @� @�	 	� �@ @� �@���	@� @� @� @�A A A A

1 2

3 4 5 6

7 8 9 10

11 12

13

14 15 16 17

18 29 20 21

21 attributes: 11 – offspring ph.gr. 1
1 – dam correct? 12 – offspring ph.gr. 2
2 – sire correct? 13 – offspring genotype
3 – stated dam ph.gr. 1 14 – factor 40
4 – stated dam ph.gr. 2 15 – factor 41
5 – stated sire ph.gr. 1 16 – factor 42
6 – stated sire ph.gr. 2 17 – factor 43
7 – true dam ph.gr. 1 18 – lysis 40
8 – true dam ph.gr. 2 19 – lysis 41
9 – true sire ph.gr. 1 20 – lysis 42

10 – true sire ph.gr. 2 21 – lysis 43

The grey nodes correspond to observable attributes.
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Example: Danish Jersey Cattle Blood Type Determination

@$%() @$%()A A A A@� @� @� @�*% *%$ $@ @#+ "@ !$%@� @� @� @�A A A A

1 2

3 4 5 6

7 8 9 10

11 12

13

14 15 16 17

18 19 20 21

Moral Graph

C C C CC./ C./C- C-C012345B B B BB, B, B, B,

3 1
7

1 4
8

5 2
9

2 6
10

1
7 8

2
9 10

7 8
11

9 10
12

11 12
13

13 13 13 13
14 15 16 17

14
18

15
19

16
20

17
21

Join Tree
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Learning Possibilistic Graphical Models from Data

Quantitative or Parameter Learning

� Determine the parameters of the (marginal or conditional) distributions
indicated by a given graph from a database of sample cases.

� Trivial in the relational and the probabilistic case.

� In the possibilistic case, however, this poses a problem.

Qualitative or Structural Learning

� Find a graph that describes (a good approximation of) a decomposition
of the distribution underlying a database of sample cases.

� Has been a popular area of research in recent years.

� Several good algorithms exit for the probabilistic case.

� Most ideas can easily be transferred to the possibilistic case.
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Why is Computing Maximum Projections a Problem?

Database: (fa1; a2; a3g; fb3g) : 1=3
(fa1; a2g; fb2; b3g) : 1=3
(fa3; a4g; fb1g) : 1=3

There are 3 tuples (contexts),
hence the weight of each is 1=3.
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1

b1 b2 b3
0

1
3

2
3

1

� Taking the maximum over all tuples containing a1 to compute �(A = a1) yields
a possibility degree of 1=3, but actually it is 2=3.

� Taking the sum over all tuples containing a3 to compute �(A = a3) yields a
possibility degree of 2=3, but actually it is 1=3.
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Computation via Support and Closure

Database Support Closure

(fa1; a2; a3g; fb3g) : 1=3 (a1; b2) : 1=3 (a3; b1) : 1=3 (fa1; a2; a3g; fb3g) : 1=3
(fa1; a2g; fb2; b3g) : 1=3 (a1; b3) : 2=3 (a3; b3) : 1=3 (fa1; a2g; fb2; b3g) : 1=3
(fa3; a4g; fb1g) : 1=3 (a2; b2) : 1=3 (a4; b1) : 1=3 (fa3; a4g; fb1g) : 1=3

(a2; b3) : 2=3 (fa1; a2g; fb3g) : 2=3

3 tuples 7 tuples 4 tuples
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1 Taking the maximum over compati-
ble tuples in the support yields the
same result as taking the maximum
over compatible tuples in the closure
[Borgelt and Kruse 1998].
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Experimental Results

dataset number tuples in tuples in tuples in
of cases R support(R) closure(R)

Danish Jersey Cattle 500 283 712818 291
Soybean Diseases 683 631 n.a. 631
Congress Voting Data 435 342 98753 400

� The relation R results from the dataset by removing duplicate tuples.

� The frequency information is kept in a counter associated with each tuple.

� None of these databases is a true “imprecise” database,
the only imprecision results from unknown values.

� An unknown value for an attribute A is interpreted as the set dom(A).

� “n.a.” (not available) means that the relation is too large to be computed.
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Naive Bayes Classifiers

� Try to compute P (C = ci j e) = P (C = ci j A1 = a1; : : : ; An = an):

� Predict the class with the highest conditional probability.

Bayes’ Rule:

P (C = ci j e) =
P (A1 = a1; : : : ; An = an j C = ci) � P (C = ci)

P (A1 = a1; : : : ; An = an)  p0

Chain Rule of Probability:

P (C = ci j e) =
P (C = ci)

p0
�
n∏
j=1

P (Aj = aj j A1 = a1; : : : ; Aj�1 = aj�1; C = ci)

Conditional Independence Assumptions:

P (C = ci j e) =
P (C = ci)

p0
�
n∏
j=1

P (Aj = aj j C = ci)
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Star-like Probabilistic Networks

� A naive Bayes classifier is a probabilistic network with a star-like structure.

� Class attribute is the only unconditioned attribute.

� All other attributes are conditioned on the class only.

Ca�(+,/ A1
aA2

a
A3
a
A4
a
� � �

An
a

P (C = ci; e) = P (C = ci j e) � p0 = P (C = ci) �
n∏
j=1

P (Aj = aj j C = ci)
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A Naive Possibilistic Classifier

� Idea: Possibilistic network with a star-like structure.
[Borgelt and Gebhardt 1999].

� Class attribute is the only unconditioned attribute.

� All other attributes are conditioned on the class only.

Ca�(+,/ A1
aA2

a
A3
a
A4
a
� � �

An
a

�(C = ci; e) = �(C = ci j e) = min n
j=1 �(Aj = aj j C = ci)
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Naive Possibilistic Classifiers

� Try to compute �(C = ci j e) = �(C = ci j A1 = a1; : : : ; An = an):

� Predict the class with the highest conditional degree of possibility.

Analog of Bayes’ Rule:

�(C = ci j e) = �(A1 = a1; : : : ; An = an j C = ci)

Chain Rule of Possibility:

�(C = ci j e) = min n
j=1 �(Aj = aj j A1 = a1; : : : ; Aj�1 = aj�1; C = ci)

Conditional Independence Assumptions:

�(C = ci j e) = min n
j=1 �(Aj = aj j C = ci)
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Experimental Results

dataset num. of possibilistic classifier naive Bayes classifier decision tree
tuples add. att. rem. att. add. att. rem. att. unpruned pruned

audio train 113 7( 6.2%) 2( 1.8%) 12(10.6%) 16(14.2%) 13(11.5%) 16(14.2%)
test 113 33(29.2%) 36(31.9%) 35(31.0%) 31(27.4%) 25(22.1%) 25(22.1%)

69 atts. selected 15 21 9 42 14 12

bridges train 54 8(14.8%) 8(14.8%) 10(18.5%) 7(13.0%) 9(16.7%) 9(16.7%)
test 54 23(42.6%) 23(42.6%) 24(44.4%) 19(35.2%) 24(44.4%) 24(44.4%)

10 atts. selected 6 6 5 8 8 6

soybean train 342 18( 5.3%) 20( 5.9%) 17( 5.0%) 14( 4.1%) 16( 4.7%) 22( 6.4%)
test 341 59(17.3%) 57(16.7%) 48(14.1%) 45(13.2%) 47(13.8%) 39(11.4%)

36 atts. selected 15 17 14 14 19 16

vote train 300 9( 3.0%) 8( 2.7%) 9( 3.0%) 8( 2.7%) 6( 2.0%) 7( 2.3%)
test 135 11( 8.2%) 10( 7.4%) 11( 8.2%) 8( 5.9%) 11( 8.2%) 8( 5.9%)

16 atts. selected 2 3 2 4 6 4

� Possibilistic classifier performs equally well or only slightly worse.

� Datasets are not well suited to show the strengths of a possibilistic approach.
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Learning the Structure of Graphical Models

� Test whether a distribution is decomposable w.r.t. a given graph.

This is the most direct approach. It is not bound to a graphical representation,
but can also be carried out w.r.t. other representations of the set of subspaces
to be used to compute the (candidate) decomposition of the given distribution.

� Find an independence map by conditional independence tests.

This approach exploits the theorems that connect conditional independence
graphs and graphs that represent decompositions. It has the advantage that a
single conditional independence test, if it fails, can exclude several candidate
graphs.

� Find a suitable graph by measuring the strength of dependences.

This is a heuristic, but often highly successful approach, which is based on the
frequently valid assumption that in a distribution that is decomposable w.r.t.
a graph an attribute is more strongly dependent on adjacent attributes than
on attributes that are not directly connected to them.
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Learning Graphical Models from Data
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�-Cut View of Possibility Distributions

Definition: Let Π be a possibility measure on a sample space Ω.
The �-cut of Π, written [Π]�, is the function

[Π]� : 2Ω ! f0; 1g; E 7!

{
1; if Π(E) � �,
0; otherwise.
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Evaluating Approximations of Possibility Distributions

The �-cut view of possibility distributions suggests the following measure for the
“closeness” of an approximate decomposition to the original distribution:

diff(�1; �2) =
∫

1

0

( ∑
E2E

[�2]�(E)�
∑
E2E

[�1]�(E)
)

d�;

where �1 is the original distribution, �2 is the approximation, and E is their domain
of definition.

� This measure is zero if the two distributions coincide
and it is the larger, the more they differ.

� This measure presupposes that
8� 2 [0; 1] : 8E 2 E : [�2]�(E) � [�1]�(E)

Christian Borgelt Possibilistic Graphical Models and How to Learn Them from Data 44



Specificity Divergence

Definition: Let � be a possibility distribution on a set E of events. Then

nonspec(�) =
∫

supE2E �(E)

0
log2

( ∑
E2E

[�]�(E)
)

d�

is called the nonspecificity of the possibility distribution �.

� U -uncertainty measure of nonspecificity [Higashi and Klir 1982].

� Generalization of Hartley information [Hartley 1928].

Definition: Let �1 and �2 be two possibility distributions on the same set E of
events with 8E 2 E : �2(E) � �1(E). Then

Sdiv(�1; �2) =
∫

supE2E �1(E)

0
log2

( ∑
E2E

[�2]�(E)
)
� log2

( ∑
E2E

[�1]�(E)
)

d�

is called the specificity divergence of �1 and �2.
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Direct Test for Decomposability (continued)

1. Aa
Ba Ca

0:102
72:5

2. Aa
BaP Ca

0:047
60:5

3. Aa
BaB Ca

0:055
63:2

4. Aa
Ba CaQ

0:076
66:0

5. Aa
BaBP Ca

0
54:6

6. Aa
BaP CaQ

0:028
57:3

7. Aa
BaB CaQ

0:037
60:4

8. Aa
BaBP CaQ

0
54:6

Upper numbers: Specificity divergence of the original distribution
and its approximation.

Lower numbers: Sum of possibility degrees for an example database
that induces the possibility distribution.
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Evaluation w.r.t. a Database of Sample Cases

Transformation of the difference of two possibility distributions:

diff(�1; �2) =
∫

1

0
(

∑
E2E

[�2]�(E)�
∑
E2E

[�1]�(E)) d�

=
∑
E2E

∫
1

0
[�2]�(E) d� �

∑
E2E

∫
1

0
[�1]�(E) d�

=
∑
E2E

�2(E)�
∑
E2E

�1(E):

�
∑
E2E �1(E) can be neglected, since it is the same for all decompositions.

� Restriction to the sample cases in a given database D = (R;wR).
(wR(t) is the weight, i.e., the number of occurrences, of a tuple t 2 R.)

Q(G) =
∑
t2R

wR(t) � �G(t)
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Direct Test for Decomposability (continued)

� Problem: Vast Search Space (huge number of possible graphs)

� 2(n2) possible undirected graphs for n attributes.

� Between 2(n2) and 3(n2) possible directed acyclic graphs.

Exact formula: f(n) =
n∑
i=1

(�1)i+1(n
i
)2i(n�i)f(n� i).

� Restriction of the Search Space

� Fix topological order (for directed graphs)

� Declarative bias (idea from inductive logic programming)

� Heuristic Search Methods

� Greedy Search

� Simulated Annealing

� Genetic Algorithms
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A Simulated Annealing Approach

Definition: Let G = (U;E) be a graph, M the family of node sets that induce
the maximal cliques of G and m = jMj. G is said to have hypertree structure
iff all pairs of nodes are connected in G and there is an ordering M1; : : : ;Mm of
the sets inM; such that

8i 2 f2; : : : ;mg : 9k 2 f1; : : : ; i� 1g : Mi \
( ⋃

1�j<i

Mj

)
�Mk:

Random construction/modification of a graph with hypertree structure by adding
cliques randomly according to the following rules [Borgelt 2000]:

1. Mi must contain at least one pair of nodes that are not connected in the graph
represented by fM1; : : : ;Mi�1g.

2. For each maximal subset S of nodes of Mi that are connected to each other in
the graph represented by fM1; : : : ;Mi�1g there must be a set Mk, 1 � k < i,
so that S �Mk.
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Measuring the Strengths of Marginal Dependences

� Relational networks: Find a set of subspaces, for which the intersection
of the cylindrical extensions of the projections to these subspaces contains as
few additional states as possible.

� The size of the intersection depends on the sizes of the cylindrical extensions,
which in turn depend on the sizes of the projections.

� Therefore it is plausible to use the relative number of occurring value combi-
nations to assess the quality of a subspace.

subspace color � shape shape � size size � color

possible combinations 12 9 12
occurring combinations 6 5 8
relative number 50% 56% 67%

� The relational network can be obtained by interpreting the relative numbers
as edge weights and constructing the minimal weight spanning tree.
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Measuring the Strengths of Marginal Dependences
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Hartley Information Gain

Definition: Let A and B be two attributes and R a binary possibility measure
with 9a 2 dom(A) : 9b 2 dom(B) : R(A = a;B = b) = 1. Then

I
(Hartley)
gain (A;B) = log2

( ∑
a2dom(A)

R(A = a)
)

+ log2

( ∑
b2dom(B)

R(B = b)
)

� log2

( ∑
a2dom(A)

∑
b2dom(B)

R(A = a;B = b)
)
;

is called the Hartley information gain of A and B w.r.t. R.

@ @
@ @

@ @
� 
 � 	

�

� Hartley information needed to determine

coordinates: log2 4 + log2 3 = log2 12 � 3:58
coordinate pair: log2 6 � 2:58

gain: log2 12� log2 6 = log2 2 = 1
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Specificity Gain

Definition: Let A and B be two attributes and Π a possibility measure.

Sgain(A;B) =
∫

sup Π

0
log2

( ∑
a2dom(A)

[Π]�(A = a)
)

+ log2

( ∑
b2dom(B)

[Π]�(B = b)
)

� log2

( ∑
a2dom(A)

∑
b2dom(B)

[Π]�(A = a;B = b)
)

d�

is called the specificity gain of A and B w.r.t. Π.

� Generalization of Hartley information gain
on the basis of the �-cut view of possibility distributions.

� Analogous to Shannon information gain.
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Idea of Specificity Gain
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log2 1 + log2 1� log2 1 = 0

log2 2 + log2 2� log2 3 � 0:42

log2 3 + log2 2� log2 5 � 0:26

log2 4 + log2 3� log2 8 � 0:58

log2 4 + log2 3� log2 12 = 0

� Exploiting again the �-cut view of possibility distributions:
Aggregate the Hartley information gain for the different �-cuts.

Christian Borgelt Possibilistic Graphical Models and How to Learn Them from Data 54



Specificity Gain in the Example

projection to
subspace

minimum of
marginals
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0.055 bit
40 80 10 70
30 10 70 60
80 90 20 10

80 80 70 70
70 70 70 70
80 90 70 70

0.048 bit
20 80 70
40 70 20
90 60 30

70 70 70
80 70 80
90 70 80

0.027 bit
40 70 20 70
60 80 70 70
80 90 40 40

70 70 70 70
80 80 70 70
80 90 70 70
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Evaluation Measures / Scoring Functions

Probabilistic Graphical Models

� Mutual Information / Cross Entropy / Information Gain

� (Symmetric) Information Gain Ratio

� �2-Measure

� (Symmetric/Modified) Gini Index

� Bayesian Measures (K2 metric, BDeu metric)

� Measures based on the Minimum Description Length Principle

Possibilistic Graphical Models

� Specificity Gain [Gebhardt and Kruse 1996, Borgelt et al. 1996]

� (Symmetric) Specificity Gain Ratio [Borgelt et al. 1996]

� Analog of Mutual Information [Borgelt and Kruse 1997]

� Analog of the �2-measure [Borgelt and Kruse 1997]
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Two Search Methods

� Optimum Weight Spanning Tree Construction

� Compute an evaluation measure on all possible edges
(two-dimensional subspaces).

� Use the Kruskal algorithm to determine an optimum weight spanning tree.

� Greedy Parent Selection (for directed graphs)

� Define a topological order of the attributes (to restrict the search space).

� Compute an evaluation measure on all single attribute hyperedges.

� For each preceding attribute (w.r.t. the topological order):
add it as a candidate parent to the hyperedge and
compute the evaluation measure again.

� Greedily select a parent according to the evaluation measure.

� Repeat the previous two steps until no improvement results from them.
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Experimental Results: Danish Jersey Cattle Data

method type edges params. min. avg. max.

none independent 0 80 10.064 10.160 11.390
original 22 308 9.888 9.917 11.318

o.w.s.t. Sgain 20 438 8.878 8.990 10.714

Ssgr1 20 442 8.716 8.916 10.680

d�2 20 472 8.662 8.820 10.334

dmi 20 404 8.466 8.598 10.386

greedy Sgain 31 1630 8.524 8.621 10.292

Sgr 18 196 9.390 9.553 11.100

Ssgr1 28 496 8.946 9.057 10.740

d�2 35 1486 8.154 8.329 10.200

dmi 33 774 8.206 8.344 10.416

sim. ann. w/o penalty 22.6 787.2 8.013 8.291 9.981

with penalty 20.6 419.1 8.211 8.488 10.133
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Summary

� Possibilistic networks can be seen as “fuzzyfications” of relational networks.

� Possibilistic networks are analogous to probabilistic networks:

� probabilistic networks: sum/product decomposition

� possibilistic networks: maximum/minimum decomposition

� Reasoning in possibilistic networks aims at finding a full description of the
actual state of the world.

� Possibilistic networks can be learned from a database of sample cases.

� Quantitative/parameter learning is more difficult for possibilistic networks.

� Qualitative/structure learning is similar for probabilistic/possibilistic networks:

� heuristic search methods are necessary

� learning algorithms consist of a search method and an evaluation measure
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