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Overview

• Graphical Models: Core Ideas and Notions

• A Simple Example: How does it work in principle?

• Conditional Independence Graphs

◦ conditional independence and the graphoid axioms
◦ separation in (directed and undirected) graphs
◦ decomposition/factorization of distributions

• Evidence Propagation in Graphical Models

• Building Graphical Models

• Learning Graphical Models from Data

◦ quantitative (parameter) and qualitative (structure) learning
◦ evaluation measures and search methods
◦ learning by measuring the strength of marginal dependences
◦ learning by conditional independence tests

• Summary
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Graphical Models: Core Ideas and Notions

• Decomposition: Under certain conditions a distribution δ (e.g. a probability
distribution) on a multi-dimensional domain, which encodes prior or generic
knowledge about this domain, can be decomposed into a set {δ1, . . . , δs} of
(usually overlapping) distributions on lower-dimensional subspaces.

• Simplified Reasoning: If such a decomposition is possible, it is sufficient
to know the distributions on the subspaces to draw all inferences in the domain
under consideration that can be drawn using the original distribution δ.

• Such a decomposition can nicely be represented as a graph (in the sense of
graph theory), and therefore it is called a Graphical Model.

• The graphical representation

◦ encodes conditional independences that hold in the distribution,

◦ describes a factorization of the probability distribution,

◦ indicates how evidence propagation has to be carried out.
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A Simple Example:

The Relational Case
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A Simple Example

Example Domain Relation

color shape size

small
medium
small
medium
medium
large
medium
medium
medium
large• 10 simple geometrical objects, 3 attributes.

• One object is chosen at random and examined.

• Inferences are drawn about the unobserved attributes.
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The Reasoning Space

large
medium

small
medium

• The reasoning space consists of a finite set Ω of states.

• The states are described by a set of n attributes Ai, i = 1, . . . , n,

whose domains {a(i)
1 , . . . , a

(i)
ni } can be seen as sets of propositions or events.

• The events in a domain are mutually exclusive and exhaustive.

• The reasoning space is assumed to contain the true, but unknown state ω0.
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The Relation in the Reasoning Space

Relation

color shape size

small
medium
small
medium
medium
large
medium
medium
medium
large

Relation in the Reasoning Space

large
medium

small

Each cube represents one tuple.

• The spatial representation helps to understand the decomposition mechanism.
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Reasoning

• Let it be known (e.g. from an observation) that the given object is green.
This information considerably reduces the space of possible value combinations.

• From the prior knowledge it follows that the given object must be

◦ either a triangle or a square and

◦ either medium or large.

large
medium

small

large
medium

small
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Prior Knowledge and Its Projections

large
medium

small

large
medium

small

large
medium

small

large
medium

small
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Cylindrical Extensions and Their Intersection

large
medium

small

large
medium

small

large
medium

small

Intersecting the cylindrical ex-
tensions of the projection to
the subspace spanned by color
and shape and of the projec-
tion to the subspace spanned by
shape and size yields the origi-
nal three-dimensional relation.
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Reasoning with Projections

The same result can be obtained using only the projections to the subspaces
without reconstructing the original three-dimensional relation:

color

shape

size

s m l

s m l

extend

project extend

project

This justifies a graph representation:
�
�

�
�color

�
�

�
�shape

�
�

�
�size
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Using other Projections 1

large
medium

small

large
medium

small

large
medium

small

large
medium

small
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Using other Projections 2

large
medium

small

large
medium

small

large
medium

small

large
medium

small
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Is Decomposition Always Possible?

large
medium

small
1

2

large
medium

small

large
medium

small

large
medium

small
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Relational Graphical Models:

Formalization
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Possibility-Based Formalization

Definition: Let Ω be a (finite) sample space.
A discrete possibility measureR on Ω is a functionR : 2Ω → {0, 1} satisfying

1. R(∅) = 0 and

2. ∀E1, E2 ⊆ Ω : R(E1 ∪ E2) = max{R(E1), R(E2)}.

• Similar to Kolmogorov’s axioms of probability theory.

• If an event E can occur (if it is possible), then R(E) = 1,
otherwise (if E cannot occur/is impossible) then R(E) = 0.

• R(Ω) = 1 is not required, because this would exclude the empty relation.

• From the axioms it follows R(E1 ∩ E2) ≤ min{R(E1), R(E2)}.

• Attributes are introduced as random variables (as in probability theory).

• R(A = a) and P (a) are abbreviations of R({ω | A(ω) = a}).
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Possibility-Based Formalization (continued)

Definition: Let U = {A1, . . . , An} be a set of attributes defined on a (finite)
sample space Ω with respective domains dom(Ai), i = 1, . . . , n. A relation rU
over U is the restriction of a discrete possibility measure R on Ω to the set of
all events that can be defined by stating values for all attributes in U . That is,
rU = R|EU , where

EU =
{
E ∈ 2Ω

∣∣∣ ∃a1 ∈ dom(A1) : . . . ∃an ∈ dom(An) :

E =̂
∧

Aj∈U
Aj = aj

}
=

{
E ∈ 2Ω

∣∣∣ ∃a1 ∈ dom(A1) : . . . ∃an ∈ dom(An) :

E =
{
ω ∈ Ω

∣∣∣ ∧
Aj∈U

Aj(ω) = aj
}}
.

• Corresponds to the notion of a probability distribution.

• Advantage of this formalization: No index transformation functions are needed
for projections, there are just fewer terms in the conjunctions.
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Possibility-Based Formalization (continued)

Definition: Let U = {A1, . . . , An} be a set of attributes and rU a relation
over U . Furthermore, let M = {M1, . . . ,Mm} ⊆ 2U be a set of nonempty (but
not necessarily disjoint) subsets of U satisfying ⋃

M∈M
M = U.

rU is called decomposable w.r.t.M iff

∀a1 ∈ dom(A1) : . . . ∀an ∈ dom(An) :

rU
( ∧
Ai∈U

Ai = ai
)

= min
M∈M

{
rM

( ∧
Ai∈M

Ai = ai
)}
.

If rU is decomposable w.r.t.M, the set of relations

RM = {rM1
, . . . , rMm

} = {rM |M ∈M}

is called the decomposition of rU .

• Equivalent to join decomposability in database theory (natural join).
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Relational Decomposition: Simple Example

large
medium

small

large
medium

small

large
medium

small

Taking the minimum of the
projection to the subspace
spanned by color and shape
and of the projection to the
subspace spanned by shape
and size yields the original
three-dimensional relation.
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Conditional Possibility and Independence

Definition: Let Ω be a (finite) sample space, R a discrete possibility measure on
Ω, and E1, E2 ⊆ Ω events. Then

R(E1 | E2) = R(E1 ∩ E2)

is called the conditional possibility of E1 given E2.

Definition: Let Ω be a (finite) sample space, R a discrete possibility measure
on Ω, and A, B, and C attributes with respective domains dom(A), dom(B),
and dom(C). A and B are called conditionally relationally independent
given C, written A⊥⊥RB | C, iff

∀a ∈ dom(A) : ∀b ∈ dom(B) : ∀c ∈ dom(C) :

R(A = a, C = c | B = b) = min{R(A = a | B = b), R(C = c | B = b)},
⇔ R(A = a, C = c, B = b) = min{R(A = a, B = b), R(C = c, B = b)}.

• Similar to the corresponding notions of probability theory.
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Conditional Independence: Simple Example

large
medium

small

Example relation describing ten
simple geometric objects by three
attributes: color, shape, and size.

• In this example relation, the color of an object is conditionally relationally
independent of its size given its shape.

• Intuitively: if we fix the shape, the colors and sizes that are possible together
with this shape can be combined freely.

• Alternative view: once we know the shape, the color does not provide additional
information about the size (and vice versa).
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Relational Evidence Propagation

Due to the fact that color and size are conditionally independent given the shape,
the reasoning result can be obtained using only the projections to the subspaces:

color

shape

size

s m l

s m l

extend

project extend

project

This reasoning scheme can be formally justified with discrete possibility measures.
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Relational Evidence Propagation, Step 1

R(B = b | A = aobs)

= R
( ∨
a∈dom(A)

A = a,B = b,
∨

c∈dom(C)

C = c
∣∣∣A = aobs

)
(1)
= max

a∈dom(A)
{ max
c∈dom(C)

{R(A = a,B = b, C = c | A = aobs)}}

(2)
= max

a∈dom(A)
{ max
c∈dom(C)

{min{R(A = a,B = b, C = c), R(A = a | A = aobs)}}}

(3)
= max

a∈dom(A)
{ max
c∈dom(C)

{min{R(A = a,B = b), R(B = b, C = c),

R(A = a | A = aobs)}}}

= max
a∈dom(A)

{min{R(A = a,B = b), R(A = a | A = aobs),

max
c∈dom(C)

{R(B = b, C = c)}︸ ︷︷ ︸
=R(B=b)≥R(A=a,B=b)

}}

= max
a∈dom(A)

{min{R(A = a,B = b), R(A = a | A = aobs)}}.
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Relational Evidence Propagation, Step 1 (continued)

(1) holds because of the second axiom a discrete possibility measure has to satisfy.

(3) holds because of the fact that the relation RABC can be decomposed w.r.t. the
setM = {{A,B}, {B,C}}.

(2) holds, since in the first place

R(A = a,B = b, C = c |A = aobs) = R(A = a,B = b, C = c, A = aobs)

=

{
R(A = a,B = b, C = c), if a = aobs,
0, otherwise,

and secondly

R(A = a | A = aobs) = R(A = a,A = aobs)

=

{
R(A = a), if a = aobs,
0, otherwise,

and therefore, since trivially R(A = a) ≥ R(A = a,B = b, C = c),

R(A = a,B = b, C = c | A = aobs)

= min{R(A = a,B = b, C = c), R(A = a | A = aobs)}.
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Relational Evidence Propagation, Step 2

R(C = c | A = aobs)

= R
( ∨
a∈dom(A)

A = a,
∨

b∈dom(B)

B = b, C = c
∣∣∣A = aobs

)
(1)
= max

a∈dom(A)
{ max
b∈dom(B)

{R(A = a,B = b, C = c | A = aobs)}}

(2)
= max

a∈dom(A)
{ max
b∈dom(B)

{min{R(A = a,B = b, C = c), R(A = a | A = aobs)}}}

(3)
= max

a∈dom(A)
{ max
b∈dom(B)

{min{R(A = a,B = b), R(B = b, C = c),

R(A = a | A = aobs)}}}

= max
b∈dom(B)

{min{R(B = b, C = c),

max
a∈dom(A)

{min{R(A = a,B = b), R(A = a | A = aobs)}}︸ ︷︷ ︸
=R(B=b|A=aobs)

}

= max
b∈dom(B)

{min{R(B = b, C = c), R(B = b | A = aobs)}}.
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A Simple Example:

The Probabilistic Case
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A Probability Distribution

all numbers in
parts per 1000

small

medium

large s m l

small
medium

large

20 90 10 80
2 1 20 17
28 24 5 3

18 81 9 72
8 4 80 68
56 48 10 6

2 9 1 8
2 1 20 17
84 72 15 9

40 180 20 160
12 6 120 102
168 144 30 18

50 115 35 100
82 133 99 146
88 82 36 34

20 180 200
40 160 40
180 120 60

220 330 170 280

400
240
360

240

460

300

The numbers state the probability of the corresponding value combination.
Compared to the example relation, the possible combinations are now frequent.
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Reasoning: Computing Conditional Probabilities

all numbers in
parts per 1000

small

medium

large s m l

small
medium

large

0 0 0 286
0 0 0 61
0 0 0 11

0 0 0 257
0 0 0 242
0 0 0 21

0 0 0 29
0 0 0 61
0 0 0 32

0 0 0 572
0 0 0 364
0 0 0 64

0 0 0 358
0 0 0 531
0 0 0 111

29 257 286
61 242 61
32 21 11

0 0 0 1000

572
364
64

122

520

358

Using the information that the given object is green:
The observed color has a posterior probability of 1.
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Probabilistic Decomposition: Simple Example

• As for relational graphical models, the three-dimensional probability distribu-
tion can be decomposed into projections to subspaces, namely the marginal
distribution on the subspace spanned by color and shape and the marginal
distribution on the subspace spanned by shape and size.

• The original probability distribution can be reconstructed from the marginal
distributions using the following formulae ∀i, j, k :

P
(
a

(color)
i , a

(shape)
j , a

(size)
k

)
= P

(
a

(color)
i , a

(shape)
j ) · P

(
a

(size)
k

∣∣∣ a(shape)
j

)

=
P
(
a

(color)
i , a

(shape)
j

)
· P
(
a

(shape)
j , a

(size)
k

)
P
(
a

(shape)
j

)
• These equations express the conditional independence of attributes color and

size given the attribute shape, since they only hold if ∀i, j, k :

P
(
a

(size)
k

∣∣∣ a(shape)
j

)
= P

(
a

(size)
k

∣∣∣ a(color)
i , a

(shape)
j

)
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Reasoning with Projections

Again the same result can be obtained using only projections to subspaces
(marginal probability distributions):

s

s

m

m

l

l

color
new

old

shape

new old

size
old

new

old
new

old
new

·new
old

∑
line ·new

old

∑
column

0 0 0 1000

220 330 170 280

40
0

180
0

20
0

160
572

12
0

6
0

120
0

102
364

168
0

144
0

30
0

18
64

572 400

364 240

64 360

20
29

180
257

200
286

40
61

160
242

40
61

180
32

120
21

60
11

240 460 300

122 520 358

This justifies a graph representation:
�
�

�
�color

�
�

�
�shape

�
�

�
�size
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Probabilistic Graphical Models:

Formalization
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Probabilistic Decomposition

Definition: Let U = {A1, . . . , An} be a set of attributes and pU a probability
distribution over U . Furthermore, let M = {M1, . . . ,Mm} ⊆ 2U be a set of
nonempty (but not necessarily disjoint) subsets of U satisfying⋃

M∈M
M = U.

pU is called decomposable or factorizable w.r.t. M iff it can be written as a
product of m nonnegative functions φM : EM → IR+

0 , M ∈M, i.e., iff

∀a1 ∈ dom(A1) : . . . ∀an ∈ dom(An) :

pU
( ∧
Ai∈U

Ai = ai
)

=
∏

M∈M
φM

( ∧
Ai∈M

Ai = ai
)
.

If pU is decomposable w.r.t.M the set of functions

ΦM = {φM1
, . . . , φMm

} = {φM |M ∈M}

is called the decomposition or the factorization of pU . The functions in ΦM
are called the factor potentials of pU .
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Conditional Independence

Definition: Let Ω be a (finite) sample space, P a probability measure on Ω, and
A, B, and C attributes with respective domains dom(A), dom(B), and dom(C).
A and B are called conditionally probabilistically independent given C,
written A⊥⊥P B | C, iff

∀a ∈ dom(A) : ∀b ∈ dom(B) : ∀c ∈ dom(C) :

P (A = a,B = b | C = c) = P (A = a | C = c) · P (B = b | C = c)

Equivalent formula:

∀a ∈ dom(A) : ∀b ∈ dom(B) : ∀c ∈ dom(C) :

P (A = a | B = b, C = c) = P (A = a | C = c)

• Conditional independences make it possible to consider parts of a probability
distribution independent of others.

• Therefore it is plausible that a set of conditional independences may enable a
decomposition of a joint probability distribution.
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Conditional Independence: An Example

Dependence (fictitious) between
smoking and life expectancy.

Each dot represents one person.

x-axis: age at death
y-axis: average number of

cigarettes per day

Weak, but clear dependence:

The more cigarettes are smoked,
the lower the life expectancy.

(Note that this data is artificial
and thus should not be seen as
revealing an actual dependence.)
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Conditional Independence: An Example

Group 1

Conjectured explanation:

There is a common cause,
namely whether the person
is exposed to stress at work.

If this were correct,
splitting the data should
remove the dependence.

Group 1:
exposed to stress at work

(Note that this data is artificial
and therefore should not be seen
as an argument against health
hazards caused by smoking.)
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Conditional Independence: An Example

Group 2

Conjectured explanation:

There is a common cause,
namely whether the person
is exposed to stress at work.

If this were correct,
splitting the data should
remove the dependence.

Group 2:
not exposed to stress at work

(Note that this data is artificial
and therefore should not be seen
as an argument against health
hazards caused by smoking.)
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Probabilistic Decomposition (continued)

Chain Rule of Probability:

∀a1 ∈ dom(A1) : . . . ∀an ∈ dom(An) :

P
(∧n

i=1
Ai = ai

)
=

n∏
i=1

P
(
Ai = ai

∣∣∣∧i−1

j=1
Aj = aj

)

• The chain rule of probability is valid in general
(or at least for strictly positive distributions).

Chain Rule Factorization:

∀a1 ∈ dom(A1) : . . . ∀an ∈ dom(An) :

P
(∧n

i=1
Ai = ai

)
=

n∏
i=1

P
(
Ai = ai

∣∣∣∧
Aj∈parents(Ai)

Aj = aj
)

• Conditional independence statements are used to “cancel” conditions.

Christian Borgelt A Tutorial on Graphical Models and How to Learn Them from Data 37



Reasoning with Projections

Due to the fact that color and size are conditionally independent given the shape,
the reasoning result can be obtained using only the projections to the subspaces:

s

s

m

m

l

l

color
new

old

shape

new old

size
old

new

old
new

old
new

·new
old

∑
line ·new

old

∑
column

0 0 0 1000

220 330 170 280

40
0

180
0

20
0

160
572

12
0

6
0

120
0

102
364

168
0

144
0

30
0

18
64

572 400

364 240

64 360

20
29

180
257

200
286

40
61

160
242

40
61

180
32

120
21

60
11

240 460 300

122 520 358

This reasoning scheme can be formally justified with probability measures.
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Probabilistic Evidence Propagation, Step 1

P (B = b | A = aobs)

= P
( ∨
a∈dom(A)

A = a,B = b,
∨

c∈dom(C)

C = c
∣∣∣A = aobs

)
(1)
=

∑
a∈dom(A)

∑
c∈dom(C)

P (A = a,B = b, C = c | A = aobs)

(2)
=

∑
a∈dom(A)

∑
c∈dom(C)

P (A = a,B = b, C = c) · P (A = a | A = aobs)

P (A = a)

(3)
=

∑
a∈dom(A)

∑
c∈dom(C)

P (A = a,B = b)P (B = b, C = c)

P (B = b)
· P (A = a | A = aobs)

P (A = a)

=
∑

a∈dom(A)

P (A = a,B = b) · P (A = a | A = aobs)

P (A = a)

∑
c∈dom(C)

P (C = c | B = b)

︸ ︷︷ ︸
=1

=
∑

a∈dom(A)

P (A = a,B = b) · P (A = a | A = aobs)

P (A = a)
.
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Probabilistic Evidence Propagation, Step 1 (continued)

(1) holds because of Kolmogorov’s axioms.

(3) holds because of the fact that the distribution pABC can be decomposed w.r.t.
the setM = {{A,B}, {B,C}}.

(2) holds, since in the first place

P (A = a,B = b, C = c |A = aobs) =
P (A = a,B = b, C = c, A = aobs)

P (A = aobs)

=


P (A = a,B = b, C = c)

P (A = aobs)
, if a = aobs,

0, otherwise,
and secondly

P (A = a,A = aobs) =

{
P (A = a), if a = aobs,
0, otherwise,

and therefore
P (A = a,B = b, C = c | A = aobs)

= P (A = a,B = b, C = c) · P (A = a | A = aobs)

P (A = a)
.
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Probabilistic Evidence Propagation, Step 2

P (C = c | A = aobs)

= P
( ∨
a∈dom(A)

A = a,
∨

b∈dom(B)

B = b, C = c
∣∣∣A = aobs

)
(1)
=

∑
a∈dom(A)

∑
b∈dom(B)

P (A = a,B = b, C = c | A = aobs)

(2)
=

∑
a∈dom(A)

∑
b∈dom(B)

P (A = a,B = b, C = c) · P (A = a | A = aobs)

P (A = a)

(3)
=

∑
a∈dom(A)

∑
b∈dom(B)

P (A = a,B = b)P (B = b, C = c)

P (B = b)
· P (A = a | A = aobs)

P (A = a)

=
∑

b∈dom(B)

P (B = b, C = c)

P (B = b)

∑
a∈dom(A)

P (A = a,B = b) · R(A = a | A = aobs)

P (A = a)︸ ︷︷ ︸
=P (B=b|A=aobs)

=
∑

b∈dom(B)

P (B = b, C = c) · P (B = b | A = aobs)

P (B = b)
.
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Graphical Models:

The General Theory
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(Semi-)Graphoid Axioms

Definition: Let V be a set of (mathematical) objects and (· ⊥⊥ · | ·) a three-place
relation of subsets of V . Furthermore, let W, X, Y, and Z be four disjoint subsets
of V . The four statements

symmetry: (X ⊥⊥ Y | Z) ⇒ (Y ⊥⊥X | Z)

decomposition: (W ∪X ⊥⊥ Y | Z) ⇒ (W ⊥⊥ Y | Z) ∧ (X ⊥⊥ Y | Z)

weak union: (W ∪X ⊥⊥ Y | Z) ⇒ (X ⊥⊥ Y | Z ∪W )

contraction: (X ⊥⊥ Y | Z ∪W ) ∧ (W ⊥⊥ Y | Z) ⇒ (W ∪X ⊥⊥ Y | Z)

are called the semi-graphoid axioms. A three-place relation (· ⊥⊥ · | ·) that sat-
isfies the semi-graphoid axioms for all W, X, Y, and Z is called a semi-graphoid.
The above four statements together with

intersection: (W ⊥⊥ Y | Z ∪X) ∧ (X ⊥⊥ Y | Z ∪W ) ⇒ (W ∪X ⊥⊥ Y | Z)

are called the graphoid axioms. A three-place relation (· ⊥⊥ · | ·) that satisfies
the graphoid axioms for all W, X, Y, and Z is called a graphoid.
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Illustration of the (Semi-)Graphoid Axioms

decomposition: W
X

Z Y ⇒ W
Z Y ∧

X
Z Y

weak union:
W
X

Z Y ⇒ W
X

Z Y

contraction:
W
X

Z Y ∧ W
Z Y ⇒ W

X
Z Y

intersection:
W
X

Z Y ∧ W
X

Z Y ⇒ W
X

Z Y

• Similar to the properties of separation in graphs.

• Idea: Represent conditional independence by separation in graphs.
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Separation in Graphs

Definition: Let G = (V,E) be an undirected graph and X, Y, and Z three
disjoint subsets of nodes. Z u-separates X and Y in G, written 〈X | Z | Y 〉G,
iff all paths from a node in X to a node in Y contain a node in Z. A path that
contains a node in Z is called blocked (by Z), otherwise it is called active.

Definition: Let ~G = (V, ~E) be a directed acyclic graph and X, Y, and Z three
disjoint subsets of nodes. Z d-separates X and Y in ~G, written 〈X | Z | Y 〉~G,
iff there is no path from a node in X to a node in Y along which the following two
conditions hold:

1. every node with converging edges either is in Z or has a descendant in Z,

2. every other node is not in Z.

A path satisfying the two conditions above is said to be active,
otherwise it is said to be blocked (by Z).
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Separation in Directed Acyclic Graphs

Example Graph:

A1

A2

A3

A4 A5

A6

A7

A8

A9

Valid Separations:

〈{A1} | {A3} | {A4}〉 〈{A8} | {A7} | {A9}〉
〈{A3} | {A4, A6} | {A7}〉 〈{A1} | ∅ | {A2}〉

Invalid Separations:

〈{A1} | {A4} | {A2}〉 〈{A1} | {A6} | {A7}〉
〈{A4} | {A3, A7} | {A6}〉 〈{A1} | {A4, A9} | {A5}〉
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Conditional (In)Dependence Graphs

Definition: Let (· ⊥⊥δ · | ·) be a three-place relation representing the set of
conditional independence statements that hold in a given distribution δ over a set U
of attributes. An undirected graph G = (U,E) over U is called a conditional
dependence graph or a dependence map w.r.t. δ, iff for all disjoint subsets
X, Y, Z ⊆ U of attributes

X ⊥⊥δ Y | Z ⇒ 〈X | Z | Y 〉G,

i.e., if G captures by u-separation all (conditional) independences that hold in δ
and thus represents only valid (conditional) dependences. Similarly, G is called a
conditional independence graph or an independence map w.r.t. δ, iff for
all disjoint subsets X, Y, Z ⊆ U of attributes

〈X | Z | Y 〉G ⇒ X ⊥⊥δ Y | Z,

i.e., if G captures by u-separation only (conditional) independences that are valid
in δ. G is said to be a perfect map of the conditional (in)dependences in δ, if it
is both a dependence map and an independence map.
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Limitations of Graph Representations

Perfect directed map, no perfect undirected map:

A

C

B A = a1 A = a2pABC
B = b1 B = b2 B = b1 B = b2

C = c1
4/24

3/24
3/24

2/24

C = c2
2/24

3/24
3/24

4/24

Perfect undirected map, no perfect directed map:

A

B C

D

A = a1 A = a2pABCD
B = b1 B = b2 B = b1 B = b2

D = d1
1/47

1/47
1/47

2/47
C = c1 D = d2

1/47
1/47

2/47
4/47

D = d1
1/47

2/47
1/47

4/47
C = c2 D = d2

2/47
4/47

4/47
16/47
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Markov Properties of Undirected Graphs

Definition: An undirected graph G = (U,E) over a set U of attributes is said to
have (w.r.t. a distribution δ) the
pairwise Markov property,
iff in δ any pair of attributes which are nonadjacent in the graph are conditionally
independent given all remaining attributes, i.e., iff

∀A,B ∈ U,A 6= B : (A,B) /∈ E ⇒ A⊥⊥δB | U − {A,B},
local Markov property,
iff in δ any attribute is conditionally independent of all remaining attributes given
its neighbors, i.e., iff

∀A ∈ U : A⊥⊥δ U − closure(A) | boundary(A),

global Markov property,
iff in δ any two sets of attributes which are u-separated by a third are conditionally
independent given the attributes in the third set, i.e., iff

∀X, Y, Z ⊆ U : 〈X | Z | Y 〉G ⇒ X ⊥⊥δ Y | Z.
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Markov Properties of Directed Acyclic Graphs

Definition: A directed acyclic graph ~G = (U, ~E) over a set U of attributes is said
to have (w.r.t. a distribution δ) the
pairwise Markov property,
iff in δ any attribute is conditionally independent of any non-descendant not among
its parents given all remaining non-descendants, i.e., iff

∀A,B ∈ U : B ∈ nondescs(A)− parents(A) ⇒ A⊥⊥δB | nondescs(A)− {B},
local Markov property,
iff in δ any attribute is conditionally independent of all remaining non-descendants
given its parents, i.e., iff

∀A ∈ U : A⊥⊥δ nondescs(A)− parents(A) | parents(A),

global Markov property,
iff in δ any two sets of attributes which are d-separated by a third are conditionally
independent given the attributes in the third set, i.e., iff

∀X, Y, Z ⊆ U : 〈X | Z | Y 〉~G ⇒ X ⊥⊥δ Y | Z.
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Equivalence of Markov Properties

Theorem: If a three-place relation (· ⊥⊥δ · | ·) representing the set of conditional
independence statements that hold in a given joint distribution δ over a set U of
attributes satisfies the graphoid axioms, then the pairwise, the local, and the global
Markov property of an undirected graph G = (U,E) over U are equivalent.

Theorem: If a three-place relation (· ⊥⊥δ · | ·) representing the set of conditional
independence statements that hold in a given joint distribution δ over a set U of
attributes satisfies the semi-graphoid axioms, then the local and the global Markov
property of a directed acyclic graph ~G = (U, ~E) over U are equivalent.

If (· ⊥⊥δ · | ·) satisfies the graphoid axioms, then the pairwise, the local, and the
global Markov property are equivalent.
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Undirected Graphs and Decompositions

Definition: A probability distribution pV over a set V of variables is called
decomposable or factorizable w.r.t. an undirected graph G = (V,E)
over V iff it can be written as a product of nonnegative functions on the maximal
cliques of G. That is, let M be a family of subsets of variables, such that the
subgraphs of G induced by the sets M ∈ M are the maximal cliques of G. Then
there exist functions φM : EM → IR+

0 , M ∈ M, ∀a1 ∈ dom(A1) : . . . ∀an ∈
dom(An) :

pV
( ∧
Ai∈V

Ai = ai
)

=
∏

M∈M
φM

( ∧
Ai∈M

Ai = ai
)
.

A1 A2

A3 A4

A5 A6

pV (A1 = a1, . . . , A6 = a6)

= φA1A2A3
(A1 = a1, A2 = a2, A3 = a3)

· φA3A5A6
(A3 = a3, A5 = a5, A6 = a6)

· φA2A4
(A2 = a2, A4 = a4)

· φA4A6
(A4 = a4, A6 = a6).
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Directed Acyclic Graphs and Decompositions

Definition: A probability distribution pU over a set U of attributes is called de-
composable or factorizable w.r.t. a directed acyclic graph ~G = (U, ~E)
over U, iff it can be written as a product of the conditional probabilities of the
attributes given their parents in ~G, i.e., iff

∀a1 ∈ dom(A1) : . . . ∀an ∈ dom(An) :

pU
( ∧
Ai∈U

Ai = ai
)

=
∏
Ai∈U

P
(
Ai = ai

∣∣∣ ∧
Aj∈parents~G(Ai)

Aj = aj
)
.

A1 A2 A3

A4 A5

A6 A7

P (A1 = a1, . . . , A7 = a7)
= P (A1 = a1) · P (A2 = a2 | A1 = a1) · P (A3 = a3)
· P (A4 = a4 | A1 = a1, A2 = a2)
· P (A5 = a5 | A2 = a2, A3 = a3)
· P (A6 = a6 | A4 = a4, A5 = a5)
· P (A7 = a7 | A5 = a5).

Christian Borgelt A Tutorial on Graphical Models and How to Learn Them from Data 53



Conditional Independence Graphs and Decompositions

Core Theorem of Graphical Models:
Let pV be a strictly positive probability distribution on a set V of (discrete) vari-
ables. A directed or undirected graph G = (V,E) is a conditional independence
graph w.r.t. pV if and only if pV is factorizable w.r.t. G.

Definition: A Markov network is an undirected conditional independence
graph of a probability distribution pV together with the family of positive func-
tions φM of the factorization induced by the graph.

Definition: A Bayesian network is a directed conditional independence graph
of a probability distribution pU together with the family of conditional probabilities
of the factorization induced by the graph.

• Sometimes the conditional independence graph is required to be minimal.

• For correct evidence propagation it is not required that the graph is minimal.
Evidence propagation may just be less efficient than possible.
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Probabilistic Graphical Models:

Evidence Propagation in Polytrees
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Evidence Propagation in Polytrees

A��
��

B��
��@

@
@
@

�

� �λB→AπA→B

Idea: Node processors communicating
by message passing: π-messages are sent
from parent to child and λ-messages are
sent from child to parent.

Derivation of the Propagation Formulae

Computation of Marginal Distribution:

P (Ag = ag) =
∑

∀Ai∈U−{Ag}:
ai∈dom(Ai)

P
( ∧
Aj∈U

Aj = aj
)

Chain Rule Factorization w.r.t. the Polytree:

P (Ag = ag) =
∑

∀Ai∈U−{Ag}:
ai∈dom(Ai)

∏
Ak∈U

P
(
Ak = ak

∣∣∣ ∧
Aj∈parents(Ak)

Aj = aj
)
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Evidence Propagation in Polytrees (continued)

Decomposition w.r.t. Subgraphs:

P (Ag = ag) =
∑

∀Ai∈U−{Ag}:
ai∈dom(Ai)

(
P
(
Ag = ag

∣∣∣ ∧
Aj∈parents(Ag)

Aj = aj
)

·
∏

Ak∈U+(Ag)

P
(
Ak = ak

∣∣∣ ∧
Aj∈parents(Ak)

Aj = aj
)

·
∏

Ak∈U−(Ag)

P
(
Ak = ak

∣∣∣ ∧
Aj∈parents(Ak)

Aj = aj
))
.

Attribute sets underlying subgraphs:

UAB (C) = {C} ∪ {D ∈ U | D ∼~G′ C, ~G
′ = (U,E − {(A,B)})},

U+(A) =
⋃

C∈parents(A)

UCA (C), U+(A,B) =
⋃

C∈parents(A)−{B}
UCA (C),

U−(A) =
⋃

C∈children(A)

UAC (C), U−(A,B) =
⋃

C∈children(A)−{B}
UCA (C).
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Evidence Propagation in Polytrees (continued)

Terms that are independent of a summation variable can be moved out of the
corresponding sum. This yields a decomposition into two main factors:

P (Ag = ag) =
( ∑
∀Ai∈parents(Ag):
ai∈dom(Ai)

P
(
Ag = ag

∣∣∣ ∧
Aj∈parents(Ag)

Aj = aj
)

·
[ ∑
∀Ai∈U∗+(Ag):
ai∈dom(Ai)

∏
Ak∈U+(Ag)

P
(
Ak = ak

∣∣∣ ∧
Aj∈parents(Ak)

Aj = aj
)])

·
[ ∑
∀Ai∈U−(Ag):
ai∈dom(Ai)

∏
Ak∈U−(Ag)

P
(
Ak = ak

∣∣∣ ∧
Aj∈parents(Ak)

Aj = aj
)]

= π(Ag = ag) · λ(Ag = ag),

where U∗+(Ag) = U+(Ag)− parents(Ag).
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Evidence Propagation in Polytrees (continued)

∑
∀Ai∈U∗+(Ag):
ai∈dom(Ai)

∏
Ak∈U+(Ag)

P
(
Ak = ak

∣∣∣ ∧
Aj∈parents(Ak)

Aj = aj
)

=
∏

Ap∈parents(Ag)

( ∑
∀Ai∈parents(Ap):
ai∈dom(Ai)

P
(
Ap = ap

∣∣∣ ∧
Aj∈parents(Ap)

Aj = aj
)

·
[ ∑
∀Ai∈U∗+(Ap):
ai∈dom(Ai)

∏
Ak∈U+(Ap)

P
(
Ak = ak

∣∣∣ ∧
Aj∈parents(Ak)

Aj = aj
)])

·
[ ∑
∀Ai∈U−(Ap,Ag):
ai∈dom(Ai)

∏
Ak∈U−(Ap,Ag)

P
(
Ak = ak

∣∣∣ ∧
Aj∈parents(Ak)

Aj = aj
)]

=
∏

Ap∈parents(Ag)

π(Ap = ap)

·
[ ∑
∀Ai∈U−(Ap,Ag):
ai∈dom(Ai)

∏
Ak∈U−(Ap,Ag)

P
(
Ak = ak

∣∣∣ ∧
Aj∈parents(Ak)

Aj = aj
)]
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Evidence Propagation in Polytrees (continued)

∑
∀Ai∈U∗+(Ag):
ai∈dom(Ai)

∏
Ak∈U+(Ag)

P
(
Ak = ak

∣∣∣ ∧
Aj∈parents(Ak)

Aj = aj
)

=
∏

Ap∈parents(Ag)

π(Ap = ap)

·
[ ∑
∀Ai∈U−(Ap,Ag):
ai∈dom(Ai)

∏
Ak∈U−(Ap,Ag)

P
(
Ak = ak

∣∣∣ ∧
Aj∈parents(Ak)

Aj = aj
)]

=
∏

Ap∈parents(Ag)

πAp→Ag(Ap = ap)

π(Ag = ag) =
∑

∀Ai∈parents(Ag):
ai∈dom(Ai)

P (Ag = ag |
∧

Aj∈parents(Ag)

Aj = aj)

·
∏

Ap∈parents(Ag)

πAp→Ag(Ap = ap)
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Evidence Propagation in Polytrees (continued)

λ(Ag = ag) =
∑

∀Ai∈U−(Ag):
ai∈dom(Ai)

∏
Ak∈U−(Ag)

P (Ak = ak |
∧

Aj∈parents(Ak)

Aj = aj)

=
∏

Ac∈children(Ag)

∑
ac∈dom(Ac)( ∑

∀Ai∈parents(Ac)−{Ag}:
ai∈dom(Ai)

P (Ac = ac |
∧

Aj∈parents(Ac)

Aj = aj)

·
[ ∑
∀Ai∈U∗+(Ac,Ag):
ai∈dom(Ai)

∏
Ak∈U+(Ac,Ag)

P (Ak = ak |
∧

Aj∈parents(Ak)

Aj = aj)
])

·
[ ∑
∀Ai∈U−(Ac):
ai∈dom(Ai)

∏
Ak∈U−(Ac)

P (Ak = ak |
∧

Aj∈parents(Ak)

Aj = aj)
]

︸ ︷︷ ︸
= λ(Ac = ac)

=
∏

Ac∈children(Ag)

λAc→Ag(Ag = ag)
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Propagation Formulae without Evidence

πAp→Ac(Ap = ap)

= π(Ap = ap)·
[ ∑
∀Ai∈U−(Ap,Ac):
ai∈dom(Ai)

∏
Ak∈U−(Ap,Ac)

P
(
Ak = ak

∣∣∣ ∧
Aj∈parents(Ak)

Aj = aj
)]

=
P (Ap = ap)

λAc→Ap(Ap = ap)

λAc→Ap(Ap = ap)

=
∑

ac∈dom(Ac)

λ(Ac = ac)
∑

∀Ai∈parents(Ac)−{Ap}:
ai∈dom(Ak)

P
(
Ac = ac

∣∣∣ ∧
Aj∈parents(Ac)

Aj = aj
)

·
∏

Ak∈parents(Ac)−{Ap}
πAk→Ap(Ak = ak)
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Evidence Propagation in Polytrees (continued)

Evidence: The attributes in a set Xobs are observed.

P
(
Ag = ag

∣∣∣ ∧
Ak∈Xobs

Ak = a
(obs)
k

)

=
∑

∀Ai∈U−{Ag}:
ai∈dom(Ai)

P
( ∧
Aj∈U

Aj = aj
∣∣∣ ∧
Ak∈Xobs

Ak = a
(obs)
k

)

= α
∑

∀Ai∈U−{Ag}:
ai∈dom(Ai)

P
( ∧
Aj∈U

Aj = aj
) ∏
Ak∈Xobs

P
(
Ak = ak

∣∣∣Ak = a
(obs)
k

)
,

where α =
1

P
(∧

Ak∈Xobs
Ak = a

(obs)
k

)
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Propagation Formulae with Evidence

πAp→Ac(Ap = ap)

= P
(
Ap = ap

∣∣∣Ap = a
(obs)
p

)
· π(Ap = ap)

·
[ ∑
∀Ai∈U−(Ap,Ac):
ai∈dom(Ai)

∏
Ak∈U−(Ap,Ac)

P
(
Ak = ak

∣∣∣ ∧
Aj∈parents(Ak)

Aj = aj
)]

=

{
β, if ap = a

(obs)
p ,

0, otherwise,

• The value of β is not explicitly determined. Usually a value of 1 is used and
the correct value is implicitly determined later by normalizing the resulting
probability distribution for Ag.
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Propagation Formulae with Evidence

λAc→Ap(Ap = ap)

=
∑

ac∈dom(Ac)

P
(
Ac = ac

∣∣∣Ac = a
(obs)
c

)
· λ(Ac = ac)

·
∑

∀Ai∈parents(Ac)−{Ap}:
ai∈dom(Ak)

P
(
Ac = ac

∣∣∣ ∧
Aj∈parents(Ac)

Aj = aj
)

·
∏

Ak∈parents(Ac)−{Ap}
πAk→Ac(Ak = ak)
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Probabilistic Graphical Models:

Evidence Propagation in Multiply Connected Networks
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Propagation in Multiply Connected Networks

• Multiply connected networks pose a problem:

◦ There are several ways on which information can travel from one attribute
(node) to another.

◦ As a consequence, the same evidence may be used twice to update the
probability distribution of an attribute.

◦ Since probabilistic update is not idempotent, multiple inclusion of the same
evidence usually invalidates the result.

• General idea to solve this problem:

Transform network into a singly connected structure.

A

B C

D

⇒

A

BC

D

Merging attributes can make the
polytree algorithm applicable in
multiply connected networks.
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Triangulation and Join Tree Construction

original
graph

1

3

5

2

4

6

triangulated
moral graph

1

3

5

2

4

6

maximal
cliques

1

3

5

2

4

6

join tree

2
1 4

1 4
3

3
5

4
3 6

• A singly connected structure is obtained by triangulating the graph and then
forming a tree of maximal cliques, the so-called join tree.

• For evidence propagation a join tree is enhanced by so-called separators on
the edges, which are intersection of the connected nodes → junction tree.
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Graph Triangulation

Algorithm: (graph triangulation)

Input: An undirected graph G = (V,E).

Output: A triangulated undirected graph G′ = (V,E′) with E′ ⊇ E.

1. Compute an ordering of the nodes of the graph using maximum cardinality
search, i.e., number the nodes from 1 to n = |V |, in increasing order, always
assigning the next number to the node having the largest set of previously
numbered neighbors (breaking ties arbitrarily).

2. From i = n to i = 1 recursively fill in edges between any nonadjacent neighbors
of the node numbered i having lower ranks than i (including neighbors linked to
the node numbered i in previous steps). If no edges are added, then the original
graph is chordal; otherwise the new graph is chordal.
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Join Tree Construction

Algorithm: (join tree construction)

Input: A triangulated undirected graph G = (V,E).

Output: A join tree G′ = (V ′, E′) for G.

1. Determine a numbering of the nodes of G using maximum cardinality search.

2. Assign to each clique the maximum of the ranks of its nodes.

3. Sort the cliques in ascending order w.r.t. the numbers assigned to them.

4. Traverse the cliques in ascending order and for each clique Ci choose from the
cliques C1, . . . , Ci−1 preceding it the clique with which it has the largest number
of nodes in common (breaking ties arbitrarily).
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Reasoning in Join/Junction Trees

• Reasoning in join trees follows the same lines as shown in the simple example.

• Multiple pieces of evidence from different branches may be incorporated into
a distribution before continuing by summing/marginalizing.

s

s

m

m

l

l

color
new

old

shape

new old

size
old

new

old
new

old
new

·new
old

∑
line ·new

old

∑
column

0 0 0 1000

220 330 170 280

40
0

180
0

20
0

160
572

12
0

6
0

120
0

102
364

168
0

144
0

30
0

18
64

572 400

364 240

64 360

20
29

180
257

200
286

40
61

160
242

40
61

180
32

120
21

60
11

240 460 300

122 520 358
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Graphical Models:

Manual Model Building
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Building Graphical Models: Causal Modeling

Manual creation of a reasoning system based on a graphical model:

causal model of given domain

conditional independence graph

decomposition of the distribution

evidence propagation scheme

heuristics!

formally provable

formally provable

• Problem: strong assumptions about the statistical effects of causal relations.
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Probabilistic Graphical Models: An Example

Danish Jersey Cattle Blood Type Determination@�	 @�	A A A A@� @� @� @�	 	� �@ @� �@���	@� @� @� @�A A A A

1 2

3 4 5 6

7 8 9 10

11 12

13

14 15 16 17

18 29 20 21

21 attributes: 11 – offspring ph.gr. 1
1 – dam correct? 12 – offspring ph.gr. 2
2 – sire correct? 13 – offspring genotype
3 – stated dam ph.gr. 1 14 – factor 40
4 – stated dam ph.gr. 2 15 – factor 41
5 – stated sire ph.gr. 1 16 – factor 42
6 – stated sire ph.gr. 2 17 – factor 43
7 – true dam ph.gr. 1 18 – lysis 40
8 – true dam ph.gr. 2 19 – lysis 41
9 – true sire ph.gr. 1 20 – lysis 42

10 – true sire ph.gr. 2 21 – lysis 43

The grey nodes correspond to observable attributes.

Christian Borgelt A Tutorial on Graphical Models and How to Learn Them from Data 74



Danish Jersey Cattle Blood Type Determination

• Full 21-dimensional domain has 26 ·310 ·6 ·84 = 92 876 046 336 possible states.

• Bayesian network requires only 306 conditional probabilities.

• Example of a conditional probability table (attributes 2, 9, and 5):

sire true sire stated sire phenogroup 1
correct phenogroup 1 F1 V1 V2

yes F1 1 0 0
yes V1 0 1 0
yes V2 0 0 1
no F1 0.58 0.10 0.32
no V1 0.58 0.10 0.32
no V2 0.58 0.10 0.32
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Danish Jersey Cattle Blood Type Determination

@$%() @$%()A A A A@� @� @� @�*% *%$ $@ @#+ "@ !$%@� @� @� @�A A A A

1 2

3 4 5 6

7 8 9 10

11 12

13

14 15 16 17

18 19 20 21

moral graph

C C C CC./ C./C- C-C012345B B B BB, B, B, B,

3 1
7

1 4
8

5 2
9

2 6
10

1
7 8

2
9 10

7 8
11

9 10
12

11 12
13

13 13 13 13
14 15 16 17

14
18

15
19

16
20

17
21

join tree
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Graphical Models and Causality
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Graphical Models and Causality

A B C

causal chain

Example:

A – accelerator pedal
B – fuel supply
C – engine speed

A⊥6⊥C | ∅
A⊥⊥C | B

A

B

C

common cause

Example:

A – ice cream sales
B – temperature
C – bathing accidents

A⊥6⊥C | ∅
A⊥⊥C | B

A

B

C

common effect

Example:

A – influenza
B – fever
C – measles

A⊥⊥C | ∅
A⊥6⊥C | B
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Common Cause Assumption (Causal Markov Assumption)

�
� �

T

L R

?

Y-shaped tube arrangement into which a ball is
dropped (T ). Since the ball can reappear either
at the left outlet (L) or the right outlet (R) the
corresponding variables are dependent.

t r r

l

l∑

∑
0 1/2

1/2 0

1/2
1/2

1/2

1/2

Counter argument: The cause is insufficiently de-
scribed. If the exact shape, position and velocity
of the ball and the tubes are known, the outlet
can be determined and the variables become in-
dependent.

Counter counter argument: Quantum mechanics
states that location and momentum of a particle
cannot both at the same time be measured with
arbitrary precision.
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Sensitive Dependence on the Initial Conditions

• Sensitive dependence on the initial conditions means that a small change
of the initial conditions (e.g. a change of the initial position or velocity of a
particle) causes a deviation that grows exponentially with time.

• Many physical systems show, for arbitrary initial conditions, a sensitive de-
pendence on the initial conditions. Due to this quantum mechanical effects
sometimes have macroscopic consequences.

� �
�

�
� �� �
��� � 	 Example: Billiard with round

(or generally convex) obstacles.

Initial imprecision: ≈ 1
100 degree

after four collisions: ≈ 100 degrees
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Learning Graphical Models from Data
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Learning Graphical Models from Data

Given: A database of sample cases from a domain of interest.

Desired: A (good) graphical model of the domain of interest.

• Quantitative or Parameter Learning

◦ The structure of the conditional independence graph is known.

◦ Conditional or marginal distributions have to be estimated by standard
statistical methods. (parameter estimation)

• Qualitative or Structural Learning

◦ The structure of the conditional independence graph is not known.

◦ A good graph has to be selected from the set of all possible graphs.
(model selection)

◦ Tradeoff between model complexity and model accuracy.

Christian Borgelt A Tutorial on Graphical Models and How to Learn Them from Data 82



Danish Jersey Cattle Blood Type Determination

A fraction of the database of sample cases:

y y f1 v2 f1 v2 f1 v2 f1 v2 v2 v2 v2v2 n y n y 0 6 0 6

y y f1 v2 ** ** f1 v2 ** ** ** ** f1v2 y y n y 7 6 0 7

y y f1 v2 f1 f1 f1 v2 f1 f1 f1 f1 f1f1 y y n n 7 7 0 0

y y f1 v2 f1 f1 f1 v2 f1 f1 f1 f1 f1f1 y y n n 7 7 0 0

y y f1 v2 f1 v1 f1 v2 f1 v1 v2 f1 f1v2 y y n y 7 7 0 7

y y f1 f1 ** ** f1 f1 ** ** f1 f1 f1f1 y y n n 6 6 0 0

y y f1 v1 ** ** f1 v1 ** ** v1 v2 v1v2 n y y y 0 5 4 5

y y f1 v2 f1 v1 f1 v2 f1 v1 f1 v1 f1v1 y y y y 7 7 6 7
... ...

• 21 attributes

• 500 real world sample cases

• A lot of missing values (indicated by **)
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Learning Graphical Models from Data:

Learning the Parameters
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Learning the Parameters of a Graphical Model

Given: A database of sample cases from a domain of interest.
The graph underlying a graphical model for the domain.

Desired: Good values for the numeric parameters of the model.

Example: Naive Bayes Classifiers

• A naive Bayes classifier is a Bayesian network with a star-like structure.

• The class attribute is the only unconditioned attribute.

• All other attributes are conditioned on the class only.

C

A1

A2

A3

A4
· · ·

An

The structure of a naive Bayes classifier is fixed
once the attributes have been selected. The only
remaining task is to estimate the parameters of
the needed probability distributions.
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Probabilistic Classification

• A classifier is an algorithm that assigns a class from a predefined set to a case
or object, based on the values of descriptive attributes.

• An optimal classifier maximizes the probability of a correct class assignment.

◦ Let C be a class attribute with dom(C) = {c1, . . . , cnC},
which occur with probabilities pi, 1 ≤ i ≤ nC .

◦ Let qi be the probability with which a classifier assigns class ci.
(qi ∈ {0, 1} for a deterministic classifier)

◦ The probability of a correct assignment is

P (correct assignment) =
nC∑
i=1

piqi.

◦ Therefore the best choice for the qi is

qi =

{
1, if pi = max

nC
k=1 pk,

0, otherwise.
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Probabilistic Classification (continued)

• Consequence: An optimal classifier should assign the most probable class.

• This argument does not change if we take descriptive attributes into account.

◦ Let U = {A1, . . . , Am} be a set of descriptive attributes
with domains dom(Ak), 1 ≤ k ≤ m.

◦ Let A1 = a1, . . . , Am = am be an instantiation of the descriptive at-
tributes.

◦ An optimal classifier should assign the class ci for which

P (C = ci | A1 = a1, . . . , Am = am) =

max
nC
j=1 P (C = cj | A1 = a1, . . . , Am = am)

• Problem: We cannot store a class (or the class probabilities) for every
possible instantiation A1 = a1, . . . , Am = am of the descriptive attributes.
(The table size grows exponentially with the number of attributes.)
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• Therefore: Simplifying assumptions are necessary.
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Bayes’ Rule and Bayes’ Classifiers

• Bayes’ rule is a formula that can be used to “invert” conditional probabilities:
Let X and Y be events, P (X) > 0. Then

P (Y | X) =
P (X | Y ) · P (Y )

P (X)
.

• Bayes’ rule follows directly from the definition of conditional probability:

P (Y | X) =
P (X ∩ Y )

P (X)
and P (X | Y ) =

P (X ∩ Y )

P (Y )
.

• Bayes’ classifiers: Compute the class probabilities as

P (C = ci | A1 = a1, . . . , Am = am) =

P (A1 = a1, . . . , Am = am | C = ci) · P (C = ci)

P (A1 = a1, . . . , Am = am)
.

• Looks unreasonable at first sight: Even more probabilities to store.
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Naive Bayes Classifiers

Naive Assumption:
The descriptive attributes are conditionally independent given the class.

Bayes’ Rule:

P (C = ci | ~a) =
P (A1 = a1, . . . , Am = am | C = ci) · P (C = ci)

P (A1 = a1, . . . , Am = am) ← p0 = P (~a)

Chain Rule of Probability:

P (C = ci | ~a) =
P (C = ci)

p0
·
m∏
k=1

P (Ak = ak | A1 = a1, . . . , Ak−1 = ak−1, C =

ci)

Conditional Independence Assumption:

P (C = ci | ~a) =
P (C = ci)

p0
·
m∏
k=1

P (Ak = ak | C = ci)
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Naive Bayes Classifiers (continued)

Consequence: Manageable amount of data to store.

Store distributions P (C = ci) and ∀1 ≤ j ≤ m : P (Aj = aj | C = ci).

Classification: Compute for all classes ci

P (C = ci | A1 = a1, . . . , Am = am)·p0 = P (C = ci)·
n∏
j=1

P (Aj = aj | C = ci)

and predict the class ci for which this value is largest.

Relation to Bayesian Networks:

C

A1

A2

A3

A4
· · ·

An

Decomposition formula:

P (C = ci, A1 = a1, . . . , An = an)

= P (C = ci) ·
n∏
j=1

P (Aj = aj | C = ci)
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Naive Bayes Classifiers: Parameter Estimation

Estimation of Probabilities:

• Nominal/Categorical Attributes:

P̂ (Aj = aj | C = ci) =
#(Aj = aj, C = ci) + γ

#(C = ci) + nAjγ

#(ϕ) is the number of example cases that satisfy the condition ϕ.
nAj is the number of values of the attribute Aj.

• γ is called Laplace correction.

γ = 0: Maximum likelihood estimation.

Common choices: γ = 1 or γ = 1
2.

• Laplace correction helps to avoid problems with attribute values
that do not occur with some class in the given data.

It also introduces a bias towards a uniform distribution.
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Naive Bayes Classifiers: Parameter Estimation

Estimation of Probabilities:

• Metric/Numeric Attributes: Assume a normal distribution.

P (Aj = aj | C = ci) =
1√

2πσj(ci)
exp

−(aj − µj(ci))2

2σ2
j(ci)


• Estimate of mean value

µ̂j(ci) =
1

#(C = ci)

#(C=ci)∑
k=1

aj(k)

• Estimate of variance

σ̂2
j(ci) =

1

ξ

#(C=ci)∑
j=1

(
aj(k)− µ̂j(ci)

)2

ξ = #(C = ci) : Maximum likelihood estimation
ξ = #(C = ci)− 1: Unbiased estimation
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Naive Bayes Classifiers: Simple Example 1

No Sex Age Blood pr. Drug

1 male 20 normal A
2 female 73 normal B
3 female 37 high A
4 male 33 low B
5 female 48 high A
6 male 29 normal A
7 female 52 normal B
8 male 42 low B
9 male 61 normal B

10 female 30 normal A
11 female 26 low B
12 male 54 high A

P (Drug) A B

0.5 0.5

P (Sex | Drug) A B

male 0.5 0.5
female 0.5 0.5

P (Age | Drug) A B

µ 36.3 47.8

σ2 161.9 311.0

P (Blood Pr. | Drug) A B

low 0 0.5
normal 0.5 0.5
high 0.5 0

A simple database and estimated (conditional) probability distributions.
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Naive Bayes Classifiers: Simple Example 1

P (Drug A | male, 61, normal)

= c1 · P (Drug A) · P (male | Drug A) · P (61 | Drug A) · P (normal | Drug A)

≈ c1 · 0.5 · 0.5 · 0.004787 · 0.5 = c1 · 5.984 · 10−4 = 0.219

P (Drug A | male, 61, normal)

= c1 · P (Drug B) · P (male | Drug B) · P (61 | Drug B) · P (normal | Drug B)

≈ c1 · 0.5 · 0.5 · 0.017120 · 0.5 = c1 · 2.140 · 10−3 = 0.781

P (Drug A | female, 30, normal)

= c2 · P (Drug A) · P (female | Drug A) · P (30 | Drug A) · P (normal | Drug A)

≈ c2 · 0.5 · 0.5 · 0.027703 · 0.5 = c2 · 3.471 · 10−3 = 0.671

P (Drug A | female, 30, normal)

= c2 · P (Drug B) · P (female | Drug B) · P (30 | Drug B) · P (normal | Drug B)

≈ c2 · 0.5 · 0.5 · 0.013567 · 0.5 = c2 · 1.696 · 10−3 = 0.329
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Naive Bayes Classifiers: Simple Example 2

• 100 data points, 2 classes

• Small squares: mean values

• Inner ellipses:
one standard deviation

• Outer ellipses:
two standard deviations

• Classes overlap:
classification is not perfect

Naive Bayes Classifier
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Naive Bayes Classifiers: Simple Example 3

• 20 data points, 2 classes

• Small squares: mean values

• Inner ellipses:
one standard deviation

• Outer ellipses:
two standard deviations

• Attributes are not conditionally
independent given the class.

Naive Bayes Classifier
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Naive Bayes Classifiers: Iris Data

• 150 data points, 3 classes

Iris setosa (red)
Iris versicolor (green)
Iris virginica (blue)

• Shown: 2 out of 4 attributes

sepal length
sepal width
petal length (horizontal)
petal width (vertical)

• 6 misclassifications
on the training data
(with all 4 attributes) Naive Bayes Classifier
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Learning Graphical Models from Data:

Learning the Structure
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Learning the Structure of Graphical Models from Data

• Test whether a distribution is decomposable w.r.t. a given graph.

This is the most direct approach. It is not bound to a graphical representation,
but can also be carried out w.r.t. other representations of the set of subspaces
to be used to compute the (candidate) decomposition of the given distribution.

• Find a suitable graph by measuring the strength of dependences.

This is a heuristic, but often highly successful approach, which is based on
the frequently valid assumption that in a conditional independence graph an
attribute is more strongly dependent on adjacent attributes than on attributes
that are not directly connected to them.

• Find an independence map by conditional independence tests.

This approach exploits the theorems that connect conditional independence
graphs and graphs that represent decompositions. It has the advantage that a
single conditional independence test, if it fails, can exclude several candidate
graphs. However, wrong test results can thus have severe consequences.
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Evaluation Measures and Search Methods

• All learning algorithms for graphical models consist of

an evaluation measure or scoring function, e.g.

◦ Hartley information gain (relational networks)

◦ Shannon information gain, χ2, K2 metric (probabilistic networks)

and a (heuristic) search method, e.g.

◦ conditional independence search

◦ greedy search (spanning tree or K2 algorithm)

◦ guided random search (simulated annealing, genetic algorithms)

• An exhaustive search over all graphs is too expensive:

◦ 2(n2) possible undirected graphs for n attributes.

◦ f (n) =
n∑
i=1

(−1)i+1
(
n
i

)
2i(n−i)f (n− i) possible directed acyclic graphs.
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Learning the Structure of a Graphical Model:

Testing for Decomposability
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Comparing Relations

• In order to evaluate a graph structure, we need a measure that compares the
actual relation to the relatio represented by the graph.

• For arbitrary R, E1, and E2 it is

R(E1 ∩ E2) ≤ min{R(E1), R(E2)}.

• This relation entails that it is always

∀a1 ∈ dom(A1) : . . . ∀an ∈ dom(An) :

rU
( ∧
Ai∈U

Ai = ai
)
≤ min
M∈M

{
rM

( ∧
Ai∈M

Ai = ai
)}
.

• Therefore: Measure the quality of a familyM of subset of U as:∑
a1∈dom(A1)

· · ·
∑

an∈dom(An)

(
min
M∈M

{
rM

( ∧
Ai∈M

Ai = ai
)}
−rU

( ∧
Ai∈U

Ai = ai
))

Intuitively: Count the number of additional tuples.
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Direct Test for Decomposability: Relational

1.

shape
�� �

color
�� �

size
�� �

large
medium

small

2.

shape
�� �

color
�� �

size
�� ��

�

large
medium

small

3.

shape
�� �

color
�� �

size
�� �

large
medium

small

4.

shape
�� �

color
�� �

size
�� �@
@

large
medium

small

5.

shape
�� �

color
�� �

size
�� ��

�

large
medium

small

6.

shape
�� �

color
�� �

size
�� ��

�
@
@

large
medium

small

7.

shape
�� �

color
�� �

size
�� �@
@

large
medium

small

8.

shape
�� �

color
�� �

size
�� ��

�
@
@

large
medium

small
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Comparing Probability Distributions

Definition: Let p1 and p2 be two strictly positive probability distributions on the
same set E of events. Then

IKLdiv(p1, p2) =
∑
E∈E

p1(E) log2
p1(E)

p2(E)

is called the Kullback-Leibler information divergence of p1 and p2.

• The Kullback-Leibler information divergence is non-negative.

• It is zero if and only if p1 ≡ p2.

• Therefore it is plausible that this measure can be used to assess the quality of
the approximation of a given multi-dimensional distribution p1 by the distri-
bution p2 that is represented by a given graph:
The smaller the value of this measure, the better the approximation.

Christian Borgelt A Tutorial on Graphical Models and How to Learn Them from Data 105



Direct Test for Decomposability: Probabilistic

1.

shape
�� �

color
�� �

size
�� �

0.640

−5041

2.

shape
�� �

color
�� �

size
�� ��

�

0.211

−4612

3.

shape
�� �

color
�� �

size
�� �

0.429

−4830

4.

shape
�� �

color
�� �

size
�� �@
@

0.590

−4991

5.

shape
�� �

color
�� �

size
�� ��

�

0

−4401

6.

shape
�� �

color
�� �

size
�� ��

�
@
@

0.161

−4563

7.

shape
�� �

color
�� �

size
�� �@
@

0.379

−4780

8.

shape
�� �

color
�� �

size
�� ��

�
@
@

0

−4401

Upper numbers: The Kullback-Leibler information divergence of the original
distribution and its approximation.

Lower numbers: The binary logarithms of the probability of an example database
(log-likelihood of data).

Christian Borgelt A Tutorial on Graphical Models and How to Learn Them from Data 106



Learning the Structure of a Graphical Model:

Strength of Marginal Dependences
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Strength of Marginal Dependences: Relational

• Learning a relational network consists in finding those subspace, for which the
intersection of the cylindrical extensions of the projections to these subspaces
approximates best the set of possible world states, i.e. contains as few additional
tuples as possible.

• Since computing explicitly the intersection of the cylindrical extensions of the
projections and comparing it to the original relation is too expensive, local
evaluation functions are used, for instance:

subspace color × shape shape × size size × color

possible combinations 12 9 12
occurring combinations 6 5 8
relative number 50% 56% 67%

• The relational network can be obtained by interpreting the relative numbers
as edge weights and constructing the minimum weight spanning tree.
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Strength of Marginal Dependences: Relational

Hartley information needed to determine

coordinates: log2 4 + log2 3 = log2 12 ≈ 3.58
coordinate pair: log2 6 ≈ 2.58

gain: log2 12− log2 6 = log2 2 = 1

Definition: Let A and B be two attributes and R a discrete possibility measure
with ∃a ∈ dom(A) : ∃b ∈ dom(B) : R(A = a,B = b) = 1. Then

I
(Hartley)
gain (A,B) = log2

(∑
a∈dom(A)R(A = a)

)
+ log2

(∑
b∈dom(B)R(B = b)

)
− log2

(∑
a∈dom(A)

∑
b∈dom(B)R(A = a,B = b)

)

= log2

(∑
a∈dom(A)R(A = a)

)
·
(∑

b∈dom(B)R(B = b)
)

∑
a∈dom(A)

∑
b∈dom(B)R(A = a,B = b)

,

is called the Hartley information gain of A and B w.r.t. R.
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Strength of Marginal Dependences: Simple Example

• Intuitive interpretation of Hartley information gain:
The binary logarithm measures the number of questions to find the obtain-
ing value with a scheme like a binary search. Thus Hartley information gain
measures the reduction in the number of necessary questions.

• Results for the simple example:

I
(Hartley)
gain (color, shape) = 1.00 bit

I
(Hartley)
gain (shape, size) ≈ 0.86 bit

I
(Hartley)
gain (color, size) ≈ 0.58 bit

• Applying the Kruskal algorithm yields as a learning result:
�
�

�
�color

�
�

�
�shape

�
�

�
�size

As we know, this graph describes indeed a decomposition of the relation.
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Strength of Marginal Dependences: Probabilistic

Mutual Information / Cross Entropy / Information Gain

Based on Shannon Entropy H = −
n∑
i=1

pi log2 pi (Shannon 1948)

Igain(A,B) = H(A) − H(A | B)

=

︷ ︸︸ ︷
−

nA∑
i=1

pi. log2 pi. −

︷ ︸︸ ︷
nB∑
j=1

p.j

− nA∑
i=1

pi|j log2 pi|j



H(A) Entropy of the distribution on attribute A

H(A|B) Expected entropy of the distribution on attribute A
if the value of attribute B becomes known

H(A)−H(A|B) Expected reduction in entropy or information gain
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Interpretation of Shannon Entropy

• Let S = {s1, . . . , sn} be a finite set of alternatives having positive probabilities
P (si), i = 1, . . . , n, satisfying

∑n
i=1 P (si) = 1.

• Shannon Entropy:

H(S) = −
n∑
i=1

P (si) log2 P (si)

• Intuitively: Expected number of yes/no questions that have to be
asked in order to determine the obtaining alternative.

◦ Suppose there is an oracle, which knows the obtaining alternative,
but responds only if the question can be answered with “yes” or “no”.

◦ A better question scheme than asking for one alternative after the other
can easily be found: Divide the set into two subsets of about equal size.

◦ Ask for containment in an arbitrarily chosen subset.

◦ Apply this scheme recursively→ number of questions bounded by dlog2 ne.
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Question/Coding Schemes

P (s1) = 0.10, P (s2) = 0.15, P (s3) = 0.16, P (s4) = 0.19, P (s5) = 0.40

Shannon entropy: −∑i P (si) log2 P (si) = 2.15 bit/symbol

Linear Traversal

s4, s5

s3, s4, s5

s2, s3, s4, s5

s1, s2, s3, s4, s5

0.10 0.15 0.16 0.19 0.40
s1 s2 s3 s4 s5

1 2 3 4 4

Code length: 3.24 bit/symbol
Code efficiency: 0.664

Equal Size Subsets

s1, s2, s3, s4, s5

0.25 0.75
s1, s2 s3, s4, s5

0.59
s4, s5

0.10 0.15 0.16 0.19 0.40
s1 s2 s3 s4 s5

2 2 2 3 3

Code length: 2.59 bit/symbol
Code efficiency: 0.830
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Question/Coding Schemes

• Splitting into subsets of about equal size can lead to a bad arrangement of the
alternatives into subsets → high expected number of questions.

• Good question schemes take the probability of the alternatives into account.

• Shannon-Fano Coding (1948)

◦ Build the question/coding scheme top-down.

◦ Sort the alternatives w.r.t. their probabilities.

◦ Split the set so that the subsets have about equal probability
(splits must respect the probability order of the alternatives).

• Huffman Coding (1952)

◦ Build the question/coding scheme bottom-up.

◦ Start with one element sets.

◦ Always combine those two sets that have the smallest probabilities.
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Question/Coding Schemes

P (s1) = 0.10, P (s2) = 0.15, P (s3) = 0.16, P (s4) = 0.19, P (s5) = 0.40

Shannon entropy: −∑i P (si) log2 P (si) = 2.15 bit/symbol

Shannon–Fano Coding (1948)

s1, s2, s3, s4, s5

0.25

0.41

s1, s2

s1, s2, s3
0.59
s4, s5

0.10 0.15 0.16 0.19 0.40
s1 s2 s3 s4 s5

3 3 2 2 2

Code length: 2.25 bit/symbol
Code efficiency: 0.955

Huffman Coding (1952)

s1, s2, s3, s4, s5

0.60
s1, s2, s3, s4

0.25 0.35
s1, s2 s3, s4

0.10 0.15 0.16 0.19 0.40
s1 s2 s3 s4 s5

3 3 3 3 1

Code length: 2.20 bit/symbol
Code efficiency: 0.977
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Question/Coding Schemes

• It can be shown that Huffman coding is optimal if we have to determine the
obtaining alternative in a single instance.
(No question/coding scheme has a smaller expected number of questions.)

• Only if the obtaining alternative has to be determined in a sequence of (inde-
pendent) situations, this scheme can be improved upon.

• Idea: Process the sequence not instance by instance, but combine two, three
or more consecutive instances and ask directly for the obtaining combination
of alternatives.

• Although this enlarges the question/coding scheme, the expected number of
questions per identification is reduced (because each interrogation identifies the
obtaining alternative for several situations).

• However, the expected number of questions per identification cannot be made
arbitrarily small. Shannon showed that there is a lower bound, namely the
Shannon entropy.
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Interpretation of Shannon Entropy

P (s1) = 1
2, P (s2) = 1

4, P (s3) = 1
8, P (s4) = 1

16, P (s5) = 1
16

Shannon entropy: −∑i P (si) log2 P (si) = 1.875 bit/symbol

If the probability distribution allows for a
perfect Huffman code (code efficiency 1),
the Shannon entropy can easily be inter-
preted as follows:

−
∑
i

P (si) log2 P (si)

=
∑
i

P (si)︸ ︷︷ ︸
occurrence
probability

· log2
1

P (si)︸ ︷︷ ︸
path length

in tree

.

In other words, it is the expected number
of needed yes/no questions.

Perfect Question Scheme

s4, s5

s3, s4, s5

s2, s3, s4, s5

s1, s2, s3, s4, s5

1
2

1
4

1
8

1
16

1
16

s1 s2 s3 s4 s5

1 2 3 4 4

Code length: 1.875 bit/symbol
Code efficiency: 1
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Information Gain: Simple Example

projection to
subspace

product of
marginals

s m l s m l

small
medium

large

small
medium

large

information
gain

0.429 bit
40 180 20 160
12 6 120 102
168 144 30 18

88 132 68 112
53 79 41 67
79 119 61 101

0.211 bit
20 180 200
40 160 40
180 120 60

96 184 120
58 110 72
86 166 108

0.050 bit
50 115 35 100
82 133 99 146
88 82 36 34

66 99 51 84
101 152 78 129
53 79 41 67
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Strength of Marginal Dependences: Simple Example

• Results for the simple example:

Igain(color, shape) = 0.429 bit

Igain(shape, size) = 0.211 bit

Igain(color, size) = 0.050 bit

• Applying the Kruskal algorithm yields as a learning result:
�
�

�
�color

�
�

�
�shape

�
�

�
�size

• It can be shown that this approach always yields the best possible spanning
tree w.r.t. Kullback-Leibler information divergence (Chow and Liu 1968).

• In an extended form this also holds for certain classes of graphs
(for example, tree-augmented naive Bayes classifiers).

• For more complex graphs, the best graph need not be found
(there are counterexamples, see below).

Christian Borgelt A Tutorial on Graphical Models and How to Learn Them from Data 119



Strength of Marginal Dependences: General Algorithms

• Optimum Weight Spanning Tree Construction

◦ Compute an evaluation measure on all possible edges
(two-dimensional subspaces).

◦ Use the Kruskal algorithm to determine an optimum weight spanning tree.

• Greedy Parent Selection (for directed graphs)

◦ Define a topological order of the attributes (to restrict the search space).

◦ Compute an evaluation measure on all single attribute hyperedges.

◦ For each preceding attribute (w.r.t. the topological order):
add it as a candidate parent to the hyperedge and
compute the evaluation measure again.

◦ Greedily select a parent according to the evaluation measure.

◦ Repeat the previous two steps until no improvement results from them.
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Another Probabilistic Evaluation Measure: K2 Metric

• Idea: Compute the probability of a graph given the data (Bayesian approach)

P (~G | D) =
1

P (D)

∫
Θ
P (D | ~G,Θ)f (Θ | ~G)P (~G) dΘ

~G directed acyclic graph underlying the graphical model

Θ probability parameters of the graphical model

D database to learn from

• In order to compare two graphs, it is sufficient to compute the Bayes factor

P (~G1 | D)

P (~G2 | D)
=
P (~G1, D)

P (~G2, D)
=

∫
Θ1
P (D | ~G1,Θ1)f (Θ1 | ~G1)P (~G1) dΘ1∫

Θ2
P (D | ~G2,Θ2)f (Θ2 | ~G2)P (~G2) dΘ2

.

In this way one can avoid computing the probability P (D).
Assuming equal probability of all graphs simplifies further.
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Another Probabilistic Evaluation Measure: K2 Metric

• Assumptions about data and parameter independence yield:

P (~G,D) = γ
r∏
k=1

mk∏
j=1

∫
· · ·
∫

θijk

 nk∏
i=1

θ
Nijk
ijk

 f (θ1jk, . . . , θnkjk) dθ1jk . . . dθnkjk

r number of attributes describing the domain under consideration

nk number of values of the k-th attribute Ak, i.e., nk = | dom(Ak)|

mk number of instantiations of the parents of the k-th attribute in ~G,
i.e., mk =

∏
Aj∈parents(Ak) nj =

∏
Aj∈parents(Ak) | dom(Aj)|

θijk probability that the k-th attribute takes its i-th value and

its parents in ~G take their j-th instantiation

Nijk number of sample cases in which the k-th attribute has its i-th value

and its parents in ~G have their j-th instantiation

γ normalization factor
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Another Probabilistic Evaluation Measure: K2 Metric

• Choose f (θ1jk, . . . , θnkjk) = const. [Cooper and Herskovits 1992]

• Then the solution can be obtained via Dirichlet’s integral:

K2(~G,D) = γ
r∏
k=1

mk∏
j=1

(nk − 1)!

(N.jk + nk − 1)!

nk∏
i=1

Nijk!

• Since this formula is a product over the attributes,
each attribute can be handled more or less separately.

• Core ideas of the K2 algorithm:

◦ Fix a topological order of the attributes.
(Reduces the search space and ensures that the graph is acyclic.)

◦ Select the parents of each attribute greedily
based on the K2 metric (or rather its corresponding factor).
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A Generalization of the K2 Metric

• Choose a maximum likelihood estimation of the probability parameters:

f (θ1jk, . . . , θnkjk) =
nk∏
i=1

δ

(
θijk −

Nijk
N.jk

)

⇒ g∞(~G,D) = γ
r∏
k=1

mk∏
j=1

nk∏
i=1

(
Nijk
N.jk

)Nijk (equivalent to
information gain)

• Choose the likelihood function scaled to maximum 1 and raised to the power α:

fα(θ1jk, . . . , θnkjk) = β ·
nk∏
i=1

θ
αNijk
ijk

⇒ gα(~G,D) = γ
r∏
k=1

mk∏
j=1

Γ(αN.jk + nk)

Γ((α + 1)N.jk + nk)
·
nk∏
i=1

Γ((α + 1)Nijk + 1)

Γ(αNijk + 1)

• The parameter α can be interpreted as a sensitivity parameter, which deter-
mines the strength of the tendency to select parent attributes.
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Strength of Marginal Dependences: Drawbacks

large
medium

small

large
medium

small

large
medium

small

large
medium

small
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Strength of Marginal Dependences: Drawbacks

A

C D

B

pA a1 a2

0.5 0.5

pB b1 b2

0.5 0.5

pC|AB a1b1 a1b2 a2b1 a2b2

c1 0.9 0.3 0.3 0.5
c2 0.1 0.7 0.7 0.5

pD|AB a1b1 a1b2 a2b1 a2b2

d1 0.9 0.3 0.3 0.5
d2 0.1 0.7 0.7 0.5

pAD a1 a2

d1 0.3 0.2
d2 0.2 0.3

pBD b1 b2

d1 0.3 0.2
d2 0.2 0.3

pCD c1 c2

d1 0.31 0.19
d2 0.19 0.31

• Greedy parent selection can lead to suboptimal results
if there is more than one path connecting two attributes.

• Here: the edge C → D is selected first.
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Learning the Structure of a Graphical Model:

Conditional Independence Tests
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Structure Learning with Conditional Independence Tests

General Idea: Exploit the theorems that connect conditional independence
graphs and graphs that represent decompositions.

In other words: we want a graph describing a decomposition,
but we search for a conditional independence graph.

This approach has the advantage that a single conditional independence test,
if it fails, can exclude several candidate graphs.

Assumptions:

• Faithfulness: The domain under consideration can be accurately described
with a graphical model (more precisely: there exists a perfect map).

• Reliability of Tests: The result of all conditional independence tests coincides
with the actual situation in the underlying distribution.

• Other assumptions that are specific to individual algorithms.
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Conditional Independence Tests: Relational

large
medium

small

large
medium

small

large
medium

small

large
medium

small
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Conditional Independence Tests: Relational

• The Hartley information gain can be used directly to test for (approximate)
marginal independence.

attributes relative number of Hartley information gain
possible value combinations

color, shape 6
3·4 = 1

2 = 50% log2 3 + log2 4− log2 6 = 1

color, size 8
3·4 = 2

3 ≈ 67% log2 3 + log2 4− log2 8 ≈ 0.58

shape, size 5
3·3 = 5

9 ≈ 56% log2 3 + log2 3− log2 5 ≈ 0.85

• In order to test for (approximate) conditional independence:

◦ Compute the Hartley information gain for each possible instantiation of
the conditioning attributes.

◦ Aggregate the result over all possible instantiations, for instance, by simply
averaging them.
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Conditional Independence Tests: Simple Example

large
medium

small

color Hartley information gain

log2 1 + log2 2− log2 2 = 0

log2 2 + log2 3− log2 4 ≈ 0.58
log2 1 + log2 1− log2 1 = 0

log2 2 + log2 2− log2 2 = 1

average: ≈ 0.40

shape Hartley information gain

log2 2 + log2 2− log2 4 = 0

log2 2 + log2 1− log2 2 = 0

log2 2 + log2 2− log2 4 = 0

average: = 0

size Hartley information gain

large log2 2 + log2 1− log2 2 = 0

medium log2 4 + log2 3− log2 6 = 1

small log2 2 + log2 1− log2 2 = 0

average: ≈ 0.33
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Conditional Independence Tests: Simple Example

• The Shannon information gain can be used directly to test for (approximate)
marginal independence.

• Conditional independence tests may be carried out by summing the information
gain for all instantiations of the conditioning variables:

Igain(A,B | C)

=
∑

c∈dom(C)

P (c)
∑

a∈dom(A)

∑
b∈dom(B)

P (a, b | c) log2
P (a, b | c)

P (a | c) P (b | c)
,

where P (c) is an abbreviation of P (C = c) etc.

• Since Igain(color, size | shape) = 0 indicates the only conditional independence,
we get the following learning result:

�
�

�
�color

�
�

�
�shape

�
�

�
�size
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Conditional Independence Tests: General Algorithm

Algorithm: (conditional independence graph construction)

1. For each pair of attributes A and B, search for a set SAB ⊆ U\{A,B} such
that A⊥⊥B | SAB holds in P̂ , i.e., A and B are independent in P̂ conditioned
on SAB. If there is no such SAB, connect the attributes by an undirected edge.

2. For each pair of non-adjacent variables A and B with a common neighbour C
(i.e., C is adjacent to A as well as to B), check whether C ∈ SAB.

• If it is, continue.

• If it is not, add arrow heads pointing to C, i.e., A→ C ← B.

3. Recursively direct all undirected edges according to the rules:

• If for two adjacent variables A and B there is a strictly directed path from A
to B not including A→ B, then direct the edge towards B.

• If there are three variables A, B, and C with A and B not adjacent, B −C,
and A→ C, then direct the edge C → B.
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Conditional Independence Tests: Simple Example

Suppose that the following conditional independence statements hold:

A⊥⊥
P̂
B | ∅ B⊥⊥

P̂
A | ∅

A⊥⊥
P̂
D | C D⊥⊥

P̂
A | C

B⊥⊥
P̂
D | C D⊥⊥

P̂
B | C

All other possible conditional independence statements that can be formed with
the attributes A, B, C, and D (with single attributes on the left) do not hold.

• Step 1: Since there is no set rendering A and C, B and C and C and D
independent, the edges A− C, B − C, and C −D are inserted.

• Step 2: Since C is a common neighbor of A and B and we have A⊥⊥
P̂
B | ∅,

but A⊥6⊥
P̂
B | C, the first two edges must be directed A→ C ← B.

• Step 3: Since A and D are not adjacent, C−D and A→ C, the edge C−D
must be directed C → D.
(Otherwise step 2 would have already fixed the orientation C ← D.)
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Conditional Independence Tests: Drawbacks

• The conditional independence graph construction algorithm presupposes that
there is a perfect map. If there is no perfect map, the result may be invalid.

Aa
BaH DaI

CaHI

A = a1 A = a2pABCD
B = b1 B = b2 B = b1 B = b2

D = d1
1/47

1/47
1/47

2/47
C = c1 D = d2

1/47
1/47

2/47
4/47

D = d1
1/47

2/47
1/47

4/47
C = c2 D = d2

2/47
4/47

4/47
16/47

• Independence tests of high order, i.e., with a large number of conditions,
may be necessary.

• There are approaches to mitigate these drawbacks.
(For example, the order is restricted and all tests of higher order are assumed
to fail, if all tests of lower order failed.)
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The Cheng–Bell–Liu Algorithm

• Drafting: Build a so-called Chow–Liu tree as an initial graphical model.

◦ Evaluate all attribute pairs (candidate edges) with information gain.

◦ Discard edges with evaluation below independence threshold (∼0.1 bits).

◦ Build optimum (maximum) weight spanning tree.

• Thickening: Add necessary edges.

◦ Traverse remaining candidate edges in the order of decreasing evaluation.

◦ Test for conditional independence in order to determine
whether an edge is needed in the graphical model.

◦ Use local Markov property to select a condition set: an attribute is
conditionally independent of all non-descendants given its parents.

◦ Since the graph is undirected in this step,
the set of adjacent nodes is reduced iteratively and greedily
in order to remove possible children.
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The Cheng–Bell–Liu Algorithm (continued)

• Thinning: Remove superfluous edges.

◦ In the thickening phase a conditional independence test may have failed,
because the graph was still too sparse.

◦ Traverse all edges that have been added to the current graphical model
and test for conditional independence.

◦ Remove unnecessary edges.
(two phases/approaches: heuristic test/strict test)

• Orienting: Direct the edges of the graphical model.

◦ Identify the v-structures (converging directed edges).
(Markov equivalence: same skeleton and same set of v-structures.)

◦ Traverse all pairs of attributes with common neighbors and check which
common neighbors are in the (maximally) reduced set of conditions.

◦ Direct remaining edges by extending chains and avoiding cycles.
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Learning Undirected Graphical Models Directly

• Drafting: Build a Chow–Liu tree as an initial graphical model

◦ Evaluate all attribute pairs (candidate edges) with specificity gain.

◦ Discard edges with evaluation below independence threshold (∼0.015).

◦ Build optimum (maximum) weight spanning tree.

• Thickening: Add necessary edges.

◦ Traverse remaining candidate edges in the order of decreasing evaluation.

◦ Test for conditional independence in order to determine
whether an edge is needed in the graphical model.

◦ Use local Markov property to select a condition set: an attribute is
conditionally independent of any non-neighbor given its neighbors.

◦ Since the graphical model to be learned is undirected,
no (iterative) reduction of the condition set is needed
(decisive difference to Cheng–Bell–Liu Algorithm).
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Learning Undirected Graphical Models Directly

• Moralizing: Take care of possible v-structures.

◦ If one assumes a perfect undirected map, this step is unnecessary.
However, v-structures are too common and cannot be represented
without loss in an undirected graphical model.

◦ Possible v-structures can be taken care of by connecting the parents.

◦ Traverse all edges with an evaluation below the independence threshold
that have a common neighbor in the graph.

◦ Add edge if conditional independence given the neighbors does not hold.

• Thinning: Remove superfluous edges.

◦ In the thickening phase a conditional independence test may have failed,
because the graph was still too sparse.

◦ Traverse all edges that have been added to the current graphical model
and test for conditional independence.
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Learning the Structure of a Graphical Model:

Experiments and Applications
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Danish Jersey Cattle Blood Type Determination

network edges params. train test

indep. 0 59 −19921.2 −20087.2
orig. 22 219 −11391.0 −11506.1

Optimum Weight Spanning Tree Construction

measure edges params. train test
Igain 20.0 285.9 −12122.6 −12339.6

χ2 20.0 282.9 −12122.6 −12336.2

Greedy Parent Selection w.r.t. a Topological Order

measure edges add. miss. params. train test
Igain 35.0 17.1 4.1 1342.2 −11229.3 −11817.6

χ2 35.0 17.3 4.3 1300.8 −11234.9 −11805.2

K2 23.3 1.4 0.1 229.9 −11385.4 −11511.5

L
(rel)
red 22.5 0.6 0.1 219.9 −11389.5 −11508.2
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Fields of Application (DaimlerChrysler AG)

• Improvement of Product Quality by Finding Weaknesses

◦ Learn decision trees or inference network
for vehicle properties and faults.

◦ Look for unusual conditional fault frequencies.

◦ Find causes for these unusual frequencies.

◦ Improve construction of vehicle.

• Improvement of Error Diagnosis in Garages

◦ Learn decision trees or inference network
for vehicle properties and faults.

◦ Record properties of new faulty vehicle.

◦ Test for the most probable faults.
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A Simple Approach to Fault Analysis

• Check subnets consisting of an attribute and its parent attributes.

• Select subnets with highest deviation from independent distribution.

Vehicle Properties

el. sliding
roof

air con-
ditioning

area
of sale

cruise
control

tire
type

anti slip
control

B
B
B
B
B
B
B
B
B
B
B
B
BN

�
�
�
�
�
�
�
�
�
�
�
�
� ?

J
J
J
J
J
J
J
J
J
J
J
J
Ĵ ?


























�

battery
fault

paint
fault

brake
fault

Fault Data
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Example Subnet

Influence of special equipment on battery faults:

(fictitious) frequency of
battery faults

electrical sliding roof
with

without

air conditioning
with without

8 % 3 %

3 % 2 %

• Significant deviation from independent distribution.

• Hints to possible causes and improvements.

• Here: Larger battery may be required, if an air conditioning system.
and an electrical sliding roof are built in.

(The dependencies and frequencies of this example are fictitious, true numbers are confidential.)
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Summary

• Decomposition: Under certain conditions a distribution δ (e.g. a probability
distribution) on a multi-dimensional domain, which encodes prior or generic
knowledge about this domain, can be decomposed into a set {δ1, . . . , δs} of
(overlapping) distributions on lower-dimensional subspaces.

• Simplified Reasoning: If such a decomposition is possible, it is sufficient
to know the distributions on the subspaces to draw all inferences in the domain
under consideration that can be drawn using the original distribution δ.

• Graphical Model: The decomposition is represented by a graph (in the
sense of graph theory). The edges of the graph indicate the paths along which
evidence has to be propagated. Efficient and correct evidence propagation
algorithms can be derived, which exploit the graph structure.

• Learning from Data: There are several highly successful approaches to
learn graphical models from data, although all of them are based on heuristics.
Exact learning methods are usually too costly.
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