Fuzzy Systems
 Fuzzy Logic

Prof. Dr. Rudolf Kruse Christian Moewes

\{kruse, cmoewes\}@iws.cs.uni-magdeburg.de Otto-von-Guericke University of Magdeburg Faculty of Computer Science
Department of Knowledge Processing and Language Engineering

Outline

1. Fuzzy Complement/Fuzzy Negation

Strict and Strong Negations
Families of Negations
Representation of Negations

2. Intersection and Union

3. Fuzzy Implications

Fuzzy Complement/Fuzzy Negation

Definition

Let X be a given set and $\mu \in \mathcal{F}(X)$. Then the complement $\bar{\mu}$ can be defined pointwise by $\bar{\mu}(x):=\sim(\mu(x)$ where $\sim:[0,1] \rightarrow[0,1]$ satisfies the conditions

$$
\sim(0)=1, \quad \sim(1)=0
$$

and

$$
\text { for } x, y \in[0,1], x \leq y \Longrightarrow \sim x \geq \sim y \quad(\sim \text { is non-increasing })
$$

Abbreviation: $\sim x:=\sim(x)$

Strict and Strong Negations

Properties can be proposed:

- $x, y \in[0,1], x<y \Longrightarrow \sim x>\sim y$ (\sim is strictly decreasing $)$
- \sim is continuous
- $\sim \sim x=x$ for all $x \in[0,1]$ (\sim is involutive)

According to conditions, two subclasses of negations are defined:

Definition

A negation is called strict if it is also strictly decreasing and continuous. A strict negation is said to be strong if it is involutive, too.
$\sim x=1-x^{2}$, for instance, is strict, not strong, thus not involutive

Families of Negations

standard negation:

$$
\sim x=1-x
$$

threshold negation:

$$
\sim_{\theta}(x)= \begin{cases}1 & \text { if } x \leq \theta \\ 0 & \text { otherwise }\end{cases}
$$

Cosine negation:
$\sim x=\frac{1}{2}(1+\cos (\pi x))$
Sugeno negation:
$\sim_{\lambda}(x)=\frac{1-x}{1+\lambda x}, \quad \lambda>-1$
Yager negation:

$$
\sim_{\lambda}(x)=\left(1-x^{\lambda}\right)^{\frac{1}{\lambda}}
$$

Two Extreme Negations

$$
\begin{array}{r}
\text { intuitionistic negation } \sim_{i}(x)= \begin{cases}1 & \text { if } x=0 \\
0 & \text { if } x>0\end{cases} \\
\text { dual intuitionistic negation } \sim_{d i}(x)= \begin{cases}1 & \text { if } x<1 \\
0 & \text { if } x=1\end{cases}
\end{array}
$$

both negations are not strictly increasing, not continuous, not involutive
thus they are neither strict nor strong
they are "optimal" since their notions are nearest to crisp negation
\sim_{i} and $\sim_{d i}$ are two extreme cases of negations
for any negation \sim the following holds

$$
\sim_{i} \leq \sim \leq \sim_{d i}
$$

Inverse of a Strict Negation

Any strict negation \sim is strictly decreasing and continuous.
Hence one can define its inverse \sim^{-1}.
\sim^{-1} is also strict but in general differs from \sim.
$\sim^{-1}=\sim$ if and only if \sim is involutive.

Every strict negation \sim has a unique value $0<s_{\sim}<1$ such that $\sim s_{\sim}=s_{\sim}$.
s_{\sim} is called membership crossover point.
$A(a)>s_{\sim}$ if and only if $A^{c}(a)<s_{\sim}$ where A^{c} is defined via \sim.
$\sim^{-1}\left(s_{\sim}\right)=s_{\sim}$ always holds as well.

Representation of Negations

Any strong negation can be obtained from standard negation.
Let $a, b \in \mathbb{R}, a \leq b$.
Let $\varphi:[a, b] \rightarrow[a, b]$ be continuous and strictly increasing.
φ is called automorphism of the interval $[a, b] \subset \mathbb{R}$.

Theorem

A function $\sim:[0,1] \rightarrow[0,1]$ is a strong negation if and only if there exists an automorphism φ of the unit interval such that for all $x \in[0,1]$ the following holds

$$
\sim_{\varphi}(x)=\varphi^{-1}(1-\varphi(x)) .
$$

$\sim_{\varphi}(x)=\varphi^{-1}(1-\varphi(x))$ is called φ-transform of the standard negation.

Outline

1. Fuzzy Complement/Fuzzy Negation
2. Intersection and Union

Triangular Norms and Conorms
De Morgan Triplet
Examples
The Special Role of Minimum and Maximum
Continuous Archimedean t-norms and t-conorms
Families of Operations

3. Fuzzy Implications

Classical Intersection and Union

Classical set intersection represents logical conjunction.
Classical set union represents logical disjunction.
Generalization from $\{0,1\}$ to $[0,1]$ as follows:

$A \wedge B$	0	1
0	0	0
1	0	1

$A \vee B$	0	1
0	0	1
1	1	1

Fuzzy Intersection and Union

Let A, B be fuzzy subsets of X, i.e. $A, B \in \mathcal{F}(X)$.
Their intersection and union can be defined pointwise using:

$$
\begin{array}{lll}
\top:[0,1]^{2} \rightarrow[0,1] & \text { such that } & (A \cap B)(x)=\top(A(x), B(x)) \\
\perp:[0,1]^{2} \rightarrow[0,1] & \text { such that } & (A \cup B)(x)=\perp(A(x), B(x)) .
\end{array}
$$

Triangular Norms and Conorms I

for all $x, y \in[0,1]$, the following laws hold

Identity Law

$\begin{array}{ll}\text { T1: } \top(x, 1)=x & (A \cap X=A) \\ \text { C1: } \perp(x, 0)=x & (A \cup \emptyset=A) .\end{array}$

Commutativity
T2: $\top(x, y)=T(y, x) \quad(A \cap B=B \cap A)$,
C2: $\perp(x, y)=\perp(y, x) \quad(A \cup B=B \cup A)$.

Triangular Norms and Conorms II

for all $x, y, z \in[0,1]$, the following laws hold

Associativity
T3: $\top(x, \top(y, z))=\top(\top(x, y), z) \quad(A \cap(B \cap C)=(A \cap B) \cap C)$,
C3: $\perp(x, \perp(y, z))=\perp(\perp(x, y), z) \quad(A \cup(B \cup C)=(A \cup B) \cup C)$.

Monotonicity

$y \leq z$ implies
T4: $\top(x, y) \leq \top(x, z)$
C4: $\perp(x, y) \leq \perp(x, z)$.

Triangular Norms and Conorms III

\top is a triangular norm (t-norm) $\Longleftrightarrow \top$ satisfies conditions T1-T4
\perp is a triangular conorm (t-conorm) $\Longleftrightarrow \perp$ satisfies C1-C4
Both identity law and monotonicity respectively imply

$$
\begin{aligned}
\forall x \in[0,1]: \top(0, x) & =0 \\
\forall x \in[0,1]: \perp(1, x) & =1 \\
\text { for any } t \text {-norm } \top: \top(x, y) & \leq \min (x, y), \\
\text { for any } t \text {-conorm } \perp: \perp(x, y) & \geq \max (x, y) .
\end{aligned}
$$

note: $x=1 \Rightarrow T(0,1)=0$ and
$x \leq 1 \Rightarrow T(x, 0) \leq T(1,0)=T(0,1)=0$

De Morgan Triplet I

For every T and strong neg. \sim, one can define t-conorm \perp by

$$
\perp(x, y)=\sim \top(\sim x, \sim y), \quad x, y \in[0,1] .
$$

Additionally, in this case $T(x, y)=\sim \perp(\sim x, \sim y), x, y \in[0,1]$.
\perp, \top are called N-dual t-conorm and N-dual t-norm to \top, \perp, resp.

In case of the standard negation $\sim x=1-x$ for $x \in[0,1]$, N -dual \perp and \top are called dual t-conorm and dual t-norm, resp.
$\perp(x, y)=\sim T(\sim x, \sim y)$ expresses "fuzzy " De Morgan's law.
note: De Morgan's laws $(A \cup B)^{c}=A^{c} \cap B^{c},(A \cap B)^{c}=A^{c} \cup B^{c}$

De Morgan Triplet II

Definition

The triplet (T, \perp, \sim) is called De Morgan triplet if and only if
\top is t-norm, \perp is t-conorm, \sim is strong negation,
\top, \perp and \sim satisfy $\perp(x, y)=\sim \top(\sim x, \sim y)$.

In the following, some important De Morgan triplets will be shown, only the most frequently used and important ones.

In all cases, the standard negation $\sim x=1-x$ is considered.

The Minimum and Maximum I

$T_{\text {min }}(x, y)=\min (x, y), \quad \perp_{\max }(x, y)=\max (x, y)$
Minimum is the greatest t-norm and max is the weakest t-conorm. $\top(x, y) \leq \min (x, y)$ and $\perp(x, y) \geq \max (x, y)$ for any \top and \perp

The Minimum and Maximum II

$T_{\text {min }}$ and $\perp_{\text {max }}$ can be easily processed numerically and visually, e.g. linguistic values young and approx. 20 described by μ_{y}, μ_{20}. $T_{\min }\left(\mu_{y}, \mu_{20}\right)$ is shown below.

The Product and Probabilistic Sum

$T_{\text {prod }}(x, y)=x \cdot y, \quad \perp_{\text {sum }}(x, y)=x+y-x \cdot y$
Note that use of product and its dual has nothing to do with probability theory.

The Łukasiewicz t-norm and t-conorm

$\top_{\text {Łuka }}(x, y)=\max \{0, x+y-1\}, \quad \perp_{\text {Łuka }}(x, y)=\min \{1, x+y\}$
$\top_{\text {Łuka }}, \perp_{\text {Łuka }}$ are also called bold intersection and bounded sum.

The Nilpotent Minimum and Maximum

$T_{\min _{0}}(x, y)= \begin{cases}\min (x, y) & \text { if } x+y>1 \\ 0 & \text { otherwise }\end{cases}$
$\perp_{\text {max }_{1}}(x, y)= \begin{cases}\max (x, y) & \text { if } x+y<1 \\ 1 & \text { otherwise }\end{cases}$
New since found in 1992 and independently rediscovered in 1995.

The Drastic Product and Sum

$$
\begin{aligned}
& \top_{-1}(x, y)= \begin{cases}\min (x, y) & \text { if } \max (x, y)=1 \\
0 & \text { otherwise }\end{cases} \\
& \perp_{-1}(x, y)= \begin{cases}\max (x, y) & \text { if } \min (x, y)=0 \\
1 & \text { otherwise }\end{cases}
\end{aligned}
$$

\top_{-1} is the weakest t-norm, \perp_{-1} is the strongest t-conorm.

$$
\top_{-1} \leq \top \leq \top_{\min }, \quad \perp_{\max } \leq \perp \leq \perp_{-1} \text { for any } \top \text { and } \perp
$$

Examples of Fuzzy Intersections

t-norm $\top_{\min }$

$$
t \text {-norm } \top_{\text {Łuka }}
$$

t-norm $\top_{\text {prod }}$

t-norm \top_{-1}

Note that all fuzzy intersections are contained within upper left graph and lower right one.

Examples of Fuzzy Unions

Note that all fuzzy unions are contained within upper left graph and lower right one.

The Special Role of Minimum and Maximum I

$T_{\text {min }}$ and $\perp_{\text {max }}$ play key role for intersection and union, resp. In a practical sense, they are very simple.

Apart from the identity law, commutativity, associativity and monotonicity, they also satisfy the following properties for all $x, y, z \in[0,1]:$

Distributivity

$$
\begin{aligned}
& \perp_{\max }\left(x, \top_{\min }(y, z)\right)=\top_{\min }\left(\perp_{\max }(x, y), \perp_{\max }(x, z)\right), \\
& \top_{\min }\left(x, \perp_{\max }(y, z)\right)=\perp_{\max }\left(\top_{\min }(x, y), \top_{\min }(x, z)\right)
\end{aligned}
$$

Continuity

$T_{\text {min }}$ and $\perp_{\text {max }}$ are continuous.

The Special Role of Minimum and Maximum II

Strict monotonicity on the diagonal
$x<y$ implies $\top_{\min }(x, x)<\top_{\min }(y, y)$ and $\perp_{\max }(x, x)<\perp_{\max }(y, y)$.

Idempotency

$\top_{\text {min }}(x, x)=x, \quad \perp_{\text {max }}(x, x)=x$

Absorption

$\top_{\text {min }}\left(x, \perp_{\max }(x, y)\right)=x, \quad \perp_{\max }\left(x, \top_{\text {min }}(x, y)\right)=x$

Non-compensation
$x<y<y$ imply $\top_{\min }(x, z) \neq \top_{\min }(y, y)$ and
$\perp_{\max }(x, z) \neq \perp_{\max }(y, y)$.

The Special Role of Minimum and Maximum III

Is $\left(\mathcal{F}(X), \top_{\text {min }}, \perp_{\text {max }}, \sim\right)$ a boolean algebra?

Consider the properties (B1)-(B9) of any Boolean algebra.
For $\left(\mathcal{F}(X), \top_{\text {min }}, \perp_{\text {max }}, \sim\right)$ with strong negation \sim only complementary (B7) does not hold.
Hence $\left(\mathcal{F}(X), \top_{\min }, \perp_{\max }, \sim\right)$ is a completely distributive lattice with identity element μ_{X} and zero element μ_{\emptyset}.

No lattice $(\mathcal{F}(X), \top, \perp, \sim)$ forms a Boolean algebra due to the fact that complementary (B7) does not hold:

- There is no complement/negation \sim with $T(A, \sim A)=\mu_{\emptyset}$.
- There is no complement/negation \sim with $\perp(A, \sim A)=\mu_{X}$.

Complementary Property of Fuzzy Sets I

Using fuzzy sets, it's impossible to keep up a Boolean algebra.
Verify, e.g. that law of contradiction is violated, i.e.

$$
(\exists x \in X)\left(A \cap A^{c}\right)(x) \neq \emptyset .
$$

We use min, max and strong negation \sim as fuzzy set operators.
So we need to show that

$$
\min \{A(x), 1-A(x)\}=0
$$

is violated for at least one $x \in X$.
easy: This Equation is violated for all $A(x) \in(0,1)$.
It is satisfied only for $A(x) \in\{0,1\}$.

Complementary Property of Fuzzy Sets II: Example

What is a pseudoinverse?

Definition (Pseudoinverse)

Let $f:[a, b] \rightarrow[c, d]$ be a monotone function between two closed subintervals of extended real line. The pseudoinverse function to f is the function $f^{(-1)}:[c, d] \rightarrow[a, b]$ defined as

$$
f^{(-1)}(y)= \begin{cases}\sup \{x \in[a, b] \mid f(x)<y\} & \text { for } f \text { non-decreasing, } \\ \sup \{x \in[a, b] \mid f(x)>y\} & \text { for } f \text { non-increasing. }\end{cases}
$$

Continuous Archimedean t-norms and t-conorms

broad class of problems relates to representation of multi-place functions by composition of "simpler" functions, e.g.

$$
K(x, y)=g(f(x)+f(y))
$$

So, one should consider suitable subclass of all t-norms.
Definition
A t-norm T is
(a) continuous if T as function is continuous on unit interval,
(b) Archimedean if T is continuous and $T(x, x)<x$ for all $x \in] 0,1[$.

Definition

A t-conorm \perp is
(a) continuous if \perp as function is continuous on unit interval,

Continuous Archimedean t-norms

Theorem

A t-norm T is continuous and Archimedean if and only if there exists a strictly decreasing and continuous function $f:[0,1] \rightarrow[0, \infty]$ with $f(1)=0$ such that

$$
\begin{equation*}
\top(x, y)=f^{(-1)}(f(x)+f(y)) \tag{1}
\end{equation*}
$$

where

$$
f^{(-1)}(x)= \begin{cases}f^{-1}(x) & \text { if } x \leq f(0) \\ 0 & \text { otherwise }\end{cases}
$$

is the pseudoinverse of f. Moreover, this representation is unique up to a positive multiplicative constant.
\top is generated by f if T has representation (1).
f is called additive generator of T.

Additive Generators of t-norms - Examples

Find an additive generator f of $T_{\text {tuka }}=\max \{x+y-1,0\}$.
for instance $f_{\text {tuka }}(x)=1-x$
then, $f_{\text {Łuka }}^{(-1)}(x)=\max \{1-x, 0\}$
thus $\top_{\text {Łuka }}(x, y)=f_{\text {Łuka }}^{(-1)}\left(f_{\text {Łuka }}(x)+f_{\text {Łuka }}(y)\right)$

Find an additive generator f of $\top_{\text {prod }}=x \cdot y$.
to be discussed in the exercise
hint: use of logarithmic and exponential function

Continuous Archimedean t-conorms

Theorem

A t-conorm \perp is continuous and Archimedean if and only if there exists a strictly increasing and continuous function $g:[0,1] \rightarrow[0, \infty]$ with $g(0)=0$ such that

$$
\begin{equation*}
\perp(x, y)=g^{(-1)}(g(x)+g(y)) \tag{2}
\end{equation*}
$$

where

$$
g^{(-1)}(x)= \begin{cases}g^{-1}(x) & \text { if } x \leq g(1) \\ 1 & \text { otherwise }\end{cases}
$$

is the pseudoinverse of g. Moreover, this representation is unique up to a positive multiplicative constant.
\perp is generated by g if \perp has representation (2).
g is called additive generator of \perp.

Additive Generators of t-conorms - Two Examples

Find an additive generator g of $\perp_{\text {Łuka }}=\min \{x+y, 1\}$. for instance $g_{\text {Łuka }}(x)=x$ then, $g_{\text {Łuka }}^{(-1)}(x)=\min \{x, 1\}$
thus $\perp_{\text {Łuka }}(x, y)=g_{\text {Łuka }}^{(-1)}\left(g_{\text {Łuka }}(x)+g_{\text {Łuka }}(y)\right)$
Find an additive generator g of $\perp_{\text {sum }}=x+y-x \cdot y$.
to be discussed in the exercise
hint: use of logarithmic and exponential function
Now, let us examine some typical families of operations.

Hamacher Family I

$$
\begin{aligned}
\top_{\alpha}(x, y) & =\frac{x \cdot y}{\alpha+(1-\alpha)(x+y+x \cdot y)}, \quad \alpha \geq 0 \\
\perp_{\beta}(x, y) & =\frac{x+y+(\beta-1) \cdot x \cdot y}{1+\beta \cdot x \cdot y}, \quad \beta \geq-1 \\
\sim_{\gamma}(x) & =\frac{1-x}{1+\gamma x}, \quad \gamma>-1
\end{aligned}
$$

Theorem
(\top, \perp, \sim) is a De Morgan triplet such that

$$
\begin{aligned}
& \top(x, y)=\top(x, z) \Longrightarrow y=z \\
& \perp(x, y)=\perp(x, z) \Longrightarrow y=z \\
& \forall z \leq x \exists y, y^{\prime} \text { such that } \top(x, y)=z, \perp\left(z, y^{\prime}\right)=x
\end{aligned}
$$

and \top and \perp are rational functions if and only if there are numbers $\alpha \geq 0, \beta \geq-1$ and $\gamma>-1$ such that $\alpha=\frac{1+\beta}{1+\gamma}$ and $T=\top_{\alpha}, \perp=\perp_{\beta}$ and $\sim=\sim_{\gamma}$.

Hamacher Family II

Additive generators f_{α} of T_{α} are

$$
f_{\alpha}= \begin{cases}\frac{1-x}{x} & \text { if } \alpha=0 \\ \log \frac{\alpha+(1-\alpha) x}{x} & \text { if } \alpha>0\end{cases}
$$

Each member of these families is strict t-norm and strict t-conorm, respectively.

Members of this family of t-norms are decreasing functions of parameter α.

Sugeno-Weber Family I

For $\lambda>1$ and $x, y \in[0,1]$, define

$$
\begin{aligned}
& \top_{\lambda}(x, y)=\max \left\{\frac{x+y-1+\lambda x y}{1+\lambda}, 0\right\} \\
& \perp_{\lambda}(x, y)=\min \{x+y+\lambda x y, 1\} .
\end{aligned}
$$

$\lambda=0$ leads to $\top_{\text {Łuka }}$ and $\perp_{\text {Łuka }}$, resp.
$\lambda \rightarrow \infty$ results in $\top_{\text {prod }}$ and $\perp_{\text {sum }}$, resp.
$\lambda \rightarrow-1$ creates \top_{-1} and \perp_{-1}, resp.

Sugeno-Weber Family II

Additive generators f_{λ} of T_{λ} are

$$
f_{\lambda}(x)= \begin{cases}1-x & \text { if } \lambda=0 \\ 1-\frac{\log (1+\lambda x)}{\log (1+\lambda)} & \text { otherwise }\end{cases}
$$

$\left\{\top_{\lambda}\right\}_{\lambda>-1}$ are increasing functions of parameter λ.
Additive generators of \perp_{λ} are $g_{\lambda}(x)=1-f_{\lambda}(x)$.

Yager Family

For $0<p<\infty$ and $x, y \in[0,1]$, define

$$
\begin{aligned}
& \top_{p}(x, y)=\max \left\{1-\left((1-x)^{p}+(1-y)^{p}\right)^{1 / p}, 0\right\}, \\
& \perp_{p}(x, y)=\min \left\{\left(x^{p}+y^{p}\right)^{1 / p}, 1\right\} .
\end{aligned}
$$

Additive generators of T_{p} are

$$
f_{p}(x)=(1-x)^{p},
$$

and of \perp_{p} are

$$
g_{p}(x)=x^{p} .
$$

$\left\{\top_{p}\right\}_{0<p<\infty}$ are strictly increasing in p.
Note that $\lim _{p \rightarrow+0} \top_{p}=\top_{\text {Łuka }}$.

Outline

1. Fuzzy Complement/Fuzzy Negation

2. Intersection and Union

3. Fuzzy Implications

S-Implications
R-Implications
QL-Implications
Axioms
List of Fuzzy Implications
Selection of Fuzzy Implications

Fuzzy Implications

They are as essential for approximate reasoning as classical implications for classical reasoning.

In general, a fuzzy implication is a function

$$
I:[0,1] \times[0,1] \rightarrow[0,1]
$$

which defines truth value $I(a, b)$ of "if p, then q " for any truth values a, b of given fuzzy propositions p, q, resp.
I should extend classical implication $p \rightarrow q$ from $\{0,1\}$ to $[0,1]$.
For $a, b \in\{0,1\}$, I can be defined in different ways.
All these ways are equivalent in the classical logic.
The extensions to fuzzy logic are not equivalent.

Fuzzy Implications

crisp: $x \in A \Rightarrow x \in B$, fuzzy: $x \in \mu \Rightarrow x \in \mu^{\prime}$

Definitions of Fuzzy Implications

One way of defining I is to use $\forall a, b \in\{0,1\}$

$$
I(a, b)=\neg a \vee b
$$

In fuzzy logic, disjunction and negation are t-conorm and fuzzy complement, resp., thus $\forall a, b \in[0,1]$

$$
I(a, b)=\perp(\sim a, b)
$$

Another way in classical logic is $\forall a, b \in\{0,1\}$

$$
I(a, b)=\max \{x \in\{0,1\} \mid a \wedge x \leq b\} .
$$

In fuzzy logic, conjunction represents t-norm, thus $\forall a, b \in[0,1]$

$$
I(a, b)=\sup \{x \in[0,1] \mid \top(a, x) \leq b\}
$$

So, classical definitions are equal, fuzzy extensions are not.

Definitions of Fuzzy Implications

$I(a, b)=\perp(\sim a, b)$ may also be written as either

$$
\begin{aligned}
& I(a, b)=\neg a \vee(a \wedge b) \quad \text { or } \\
& I(a, b)=(\neg a \wedge \neg b) \vee b .
\end{aligned}
$$

Fuzzy logical extensions are thus, respectively,

$$
\begin{aligned}
& I(a, b)=\perp(\sim a, \top(a, b)) \\
& I(a, b)=\perp(T(\sim a, \sim b), b)
\end{aligned}
$$

where (T, \perp, n) must be a De Morgan triplet.
So again, classical definitions are equal, fuzzy extensions are not.
reason: Law of absorption of negation does not hold in fuzzy logic.

S-Implications

Implications based on $I(a, b)=\perp(\sim a, b)$ are called S-implications.
Symbol S is often used to denote t-conorms.
Four well-known S-implications are based on $\sim a=1-a$:

Name	Formula	$\perp(a, b)=$
Kleene-Dienes	$I_{\max }(a, b)=\max (1-a, b)$	$\max (a, b)$
Reichenbach	$I_{\text {sum }}(a, b)=1-a+a b$	$a+b-a b$
Łukasiewicz	$I_{Ł}(a, b)=\min (1,1-a+b)$	$\min (1, a+b)$
largest	$I_{-1}(a, b)= \begin{cases}b, & \text { if } a=1 \\ 1-a, & \text { if } b=0 \\ 1, & \text { otherwise }\end{cases}$	$\begin{cases}b, & \text { if } a=0 \\ a, & \text { if } b=0 \\ 1, & \text { otherwise }\end{cases}$

S-Implications

The drastic sum \perp_{-1} leads to the largest S-implication I_{-1} due to the following theorem:

Theorem

Let \perp_{1}, \perp_{2} be t-conorms such that $\perp_{1}(a, b) \leq \perp_{2}(a, b)$ for all $a, b \in[0,1]$. Let I_{1}, I_{2} be S-implications based on same fuzzy complement \sim and \perp_{1}, \perp_{2}, respectively. Then $I_{1}(a, b) \leq I_{2}(a, b)$ for all $a, b \in[0,1]$.

Since \perp_{-1} leads to the largest S-implication, similarly, $\perp_{\max }$ leads to the smallest S-implication $I_{\text {max }}$.
Furthermore,

$$
I_{\max } \leq I_{\text {sum }} \leq I_{Ł} \leq I_{-1}
$$

R-Implications

$I(a, b)=\sup \{x \in[0,1] \mid \top(a, x) \leq b\}$ leads to R-implications.
Symbol R represents close connection to residuated semigroup.
Three well-known R-implications are based on $\sim a=1-a$:

- Standard fuzzy intersection leads to Gödel implication

$$
I_{\min }(a, b)=\sup \{x \mid \min (a, x) \leq b\}= \begin{cases}1, & \text { if } a \leq b \\ b, & \text { if } a>b\end{cases}
$$

- Product leads to Goguen implication

$$
I_{\text {prod }}(a, b)=\sup \{x \mid a x \leq b\}= \begin{cases}1, & \text { if } a \leq b \\ b / a, & \text { if } a>b\end{cases}
$$

- Łukasiewicz t-norm leads to Łukasiewicz implication

$$
I_{Ł}(a, b)=\sup \{x \mid \max (0, a+x-1) \leq b\}=\min (1,1-a+b)
$$

R-Implications

Name	Formula	$T(a, b)=$
Gödel	$I_{\min }(a, b)= \begin{cases}1, & \text { if } a \leq b \\ b, & \text { if } a>b\end{cases}$	$\min (a, b)$
Goguen	$I_{\text {prod }}(a, b)= \begin{cases}1, & \text { if } a \leq b \\ b / a, & \text { if } a>b\end{cases}$	$a b$
Łukasiewicz	$I_{Ł}(a, b)=\min (1,1-a+b)$	$\max (0, a+b-1)$
largest	$I_{\mathrm{L}}(a, b)=\left\{\begin{array}{lll}b, & \text { if } a=1 \\ 1, & \text { otherwise }\end{array}\right.$	not defined

L_{L} is actually the limit of all R-implications.
It serves as least upper bound.

R-Implications

Theorem

Let \top_{1}, \top_{2} be t-norms such that $\top_{1}(a, b) \leq \top_{2}(a, b)$ for all $a, b \in[0,1]$. Let I_{1}, l_{2} be R-implications based on \top_{1}, \top_{2}, respectively. Then $I_{1}(a, b) \geq I_{2}(a, b)$ for all $a, b \in[0,1]$.

It follows that Gödel $I_{\text {min }}$ is the smallest R-implication.
Furthermore,

$$
I_{\text {min }} \leq I_{\text {prod }} \leq I_{\mathrm{K}} \leq I_{\mathrm{L}} .
$$

QL-Implications

Implications based on $I(a, b)=\perp(\sim a, \top(a, b))$ are called $Q L$-implications ($Q L$ from quantum logic).

Four well-known QL-implications are based on $\sim a=1-a$:

- Standard min and max lead to Zadeh implication

$$
I_{Z}(a, b)=\max [1-a, \min (a, b)] .
$$

- The algebraic product and sum lead to

$$
I_{\mathrm{p}}(a, b)=1-a+a^{2} b
$$

- Using $T_{Ł}$ and $\perp_{Ł}$ leads to Kleene-Dienes implication again.
- Using T_{-1} and \perp_{-1} leads to

$$
I_{\mathrm{q}}(a, b)= \begin{cases}b, & \text { if } a=1 \\ 1-a, & \text { if } a \neq 1, b \neq 1 \\ 1, & \text { if } a \neq 1, b=1\end{cases}
$$

Axioms

All / come from generalizations of the classical implication.
They collapse to the classical implication when truth values are 0 or 1 .
Generalizing classical properties leads to following axioms:

- $a \leq b$ implies $I(a, x) \geq I(b, x) \quad$ (monotonicity in 1st argument)
- $a \leq b$ implies $I(x, a) \leq I(x, b) \quad$ (monotonicity in 2nd argument)
- $I(0, a)=1$ (dominance of falsity)
- $\quad l(1, b)=b$
- $l(a, a)=1$
(neutrality of truth)
(identity)
- $I(a, I(b, c))=I(b, I(a, c))$
(exchange property)
- $I(a, b)=1$ if and only if $a \leq b$ (boundary condition)
- $I(a, b)=I(\sim b, \sim a)$ for fuzzy complement \sim (contraposition)
- I is a continuous function (continuity)

Generator Function

I that satisfy all listed axioms are characterized by this theorem:

Theorem

A function I: $[0,1]^{2} \rightarrow[0,1]$ satisfies Axioms 1-9 of fuzzy implications for a particular fuzzy complement \sim if and only if there exists a strict increasing continuous function $f:[0,1] \rightarrow[0, \infty)$ such that $f(0)=0$,

$$
I(a, b)=f^{(-1)}(f(1)-f(a)+f(b))
$$

for all $a, b \in[0,1]$, and

$$
\sim a=f^{-1}(f(1)-f(a))
$$

for all $a \in[0,1]$.

Example

Consider $f_{\lambda}(a)=\ln (1+\lambda a)$ with $a \in[0,1]$ and $\lambda>0$.
Its pseudo-inverse is

$$
f_{\lambda}^{(-1)}(a)= \begin{cases}\frac{e^{a}-1}{\lambda,}, & \text { if } 0 \leq a \leq \ln (1+\lambda) \\ 1, & \text { otherwise }\end{cases}
$$

The fuzzy complement generated by f for all $a \in[0,1]$ is

$$
n_{\lambda}(a)=\frac{1-a}{1+\lambda a} .
$$

The resulting fuzzy implication for all $a, b \in[0,1]$ is thus

$$
I_{\lambda}(a, b)=\min \left(1, \frac{1-a+b+\lambda b}{1+\lambda a}\right) .
$$

If $\lambda \in(-1,0)$, then I_{λ} is called pseudo- Łukasiewicz implication.

List of Fuzzy Implications

Name	Class	Form $I(a, b)=$	Axioms	Complement
Gaines-Rescher		$\begin{cases}1 & \text { if } a \leq b \\ 0 & \text { otherwise }\end{cases}$	1-8	$1-a$
Gödel	R	$\begin{cases}1 & \text { if } a \leq b \\ b & \text { otherwise }\end{cases}$	1-7	
Goguen	R	$\begin{cases}1 & \text { if } a \leq b \\ b / a & \text { otherwise }\end{cases}$	1-7, 9	
Kleene-Dienes	S, QL	$\max (1-a, b)$	1-4, 6, 8, 9	1-a
Łukasiewicz	R, S	$\min (1,1-a+b)$	1-9	$1-a$
Pseudo-Łukasiewicz 1	R, S	$\min \left[1, \frac{1-a+(1+\lambda) b}{1+\lambda a}\right]$	1-9	$\frac{1-a}{1+\lambda a},(\lambda>-1)$
Pseudo-Łukasiewicz 2	R, S	$\min \left[1,1-a^{w}+b^{w}\right]$	1-9	$\left(1-a^{w}\right)^{\frac{1}{w}},(w>0)$
Reichenbach	S	$1-a+a b$	1-4, 6, 8, 9	$1-a$
Wu		$\begin{cases}1 & \text { if } a \leq b \\ \min (1-a, b) & \text { otherwise }\end{cases}$	1-3,5,7,8	$1-a$
Zadeh	QL	$\max [1-a, \min (a, b)]$	1-4, 9	$1-a$

Which Fuzzy Implication?

Since the meaning of I is not unique, we must resolve the following question:
Which I should be used for calculating the fuzzy relation R ?
Hence meaningful criteria are needed.
They emerge from various fuzzy inference rules, i.e. modus ponens, modus tollens, hypothetical syllogism.

