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Biological Background
Structure of a prototypical biological neuron

cell core

axon

myelin sheath

cell body
(soma)

terminal button

synapsis
dendrites
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Biological Background
Simplified description of neural information processing

The axon terminal releases chemicals, called neurotransmitters.

They act on the membrane of the receptor dendrite to change its
polarization (inside is usually 70 mV more negative than outside).

• decrease in potential difference: excitatory synapse

• increase in potential difference: inhibitory synapse

If there is enough net excitatory input, the axon is depolarized.

The resulting action potential travels along the axon (the speed
depends on the degree to which the axon is covered with myelin).

When the action potential reaches terminal buttons,
it triggers the release of neurotransmitters.
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The Perceptron Model

Rosenblatt (1962) described a neuronal model as a computer program,
which he called perceptron.

It was constructed to solve pattern recognition problems.

It constructs a rule to separate data of 2 classes using examples.

Each neuron is a threshold logic unit.

• n inputs x = (x1, . . . , xn) ∈ X ⊂ IR
n

• one output y ∈ {−1, +1}

• output is connected with inputs by

y = sgn{〈w , x〉 − b}

• inner product 〈u, v〉, threshold b ∈ IR

• weights w = (w1, . . . , wn) ∈ X ⊂ IR
n

x1

...

xn

w1

...

wn

b y
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The Perceptron Model: Geometrical

Representation

A neuron defines two regions in X where it takes values −1 and +1.

These regions are separated by

〈w , x〉 − b = 0

During the learning process, the perceptron chooses appropriate
coefficients w

0

y = +1

y = −1

x1

xn

〈w〉 x − b = 0
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The Perceptron Model: Net of Neurons

Rosenblatt considered the composition
of several neurons

• arranged in some levels,

• last level with only one neuron.

Choosing appropriate coefficients for
all neurons of the net: perceptron
specifies two regions in X .

The regions are separated by piecewise
linear surfaces.

Learning: Find coefficients for all
neurons using the training data.

In the 1960s it wasn’t clear how to
choose coefficients simultaneously.

y

x1 x2 x3
· · ·

xn

· · ·
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The Perceptron Model: Learning Algorithm

Therefore Rosenblatt suggested the following scheme:

1. Fix the coefficients of all neurons, except for the last one.
X is transformed into a new space Z.

2. During training, find the coefficients of the last neuron,
i.e. construct a separating hyperplane in Z.

He suggested to learn with reward and punishment stimuli.

• Training data (x1, y1), . . . , (x l , yl)

• Corresponding training data (z1, y1), . . . , (z l , yl) in Z

• At each time step k, Perceptron processes one example.

• w(k) denotes the coefficient vector of the last neuron at time k.
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The Perceptron Model: Learning Algorithm

(cont.)

The initial vector w is zero, i.e. w(0) = 0.

If the next example of the training data (zk , yk) is classified correctly,
i.e.

yk · 〈w(k − 1), zk〉 > 0,

the coefficient vector of the hyperplane is not changed,
i.e. w(k) = w(k − 1).

If, however, the next example is misclassified, i.e.

yk · 〈w(k − 1), zk〉 < 0,

the coefficient vector is changed by w(k) = w(k − 1) + yk · zk
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The Idea of Neural Networks

In 1986 several researchers independently proposed a method

• to simultaneously find the coefficients for all neurons of a
perceptron

• using the so-called back-propagation.

It replaces the discontinuous sgn{〈w , x〉 − b} by a sigmoid function

y = S (〈w , x〉 − b)

S is a monotonic function with S(−∞) = −1 and S(+∞) = +1,
e.g. S(u) = tanh(u).

The composition of neurons is a continuous function which, for any
fixed x, has a gradient w.r.t. all coefficients of all neurons.

The back-propagation method solves this gradient.

It only guarantees to find one of the local minima.
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Neuro-Fuzzy Systems

Building a fuzzy system requires both

• prior knowledge (fuzzy rules, fuzzy sets),

• manual tuning which is time-consuming and error-prone.

This process can be supported by learning, e.g.

• learning fuzzy rules (structure learning),

• learning fuzzy sets (parameter learning).

How to use approaches from artificial neural networks for that?
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Comparison of Neural Networks and Fuzzy

System

Neural Networks Fuzzy Systems

are low-level deal with reasoning on
computational structures a higher level

perform well when use linguistic information
enough data are present from domain experts

can learn neither learn nor adjust themselves
to new environment

are black-boxes for the user are based on natural language

Neuro-fuzzy systems shall combine the parallel computation and
learning abilities of neural networks with the human-like knowledge
representation and explanation abilities of fuzzy systems.

As a result, neural networks become more transparent, while fuzzy
systems become capable of learning.
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Hybridization of Both Techniques

The idea of hybrid methods is to map fuzzy sets and fuzzy rules to a
neural network structure.

For that, we consider the fuzzy rules Ri of a Mamdani controller

Ri : If x1 is µ
(1)
i and . . . and xn is µ

(n)
i

then y is µi ,

or the fuzzy rules R ′

i of a TSK controller

R ′

i : If x1 is µ
(1)
i and . . . and xn is µ

(n)
i , then y = fi(x1, . . . , xn).

The activation ãi of these rules can be calculated by a t-norm.

With input x and the minimum t-norm, we get

ãi(x1, . . . , xn) = min{µ
(1)
i (x1), . . . , µ

(n)
i xn}.
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Hybridization of Both Techniques

Main idea: We replace each connection weight wji ∈ IR from an input

neuron uj to an inner neuron ui by a fuzzy set µ
(j)
i .

Thus ui represents a rule and the connections from the input units
represent the fuzzy sets of the antecedents of the rules.

To calculate the rule activation of ui , we must modify their network
input functions.

For example, with minimum t-norm we obtain

neti = min{µ
(1)
i (x1), . . . , µ

(n)
i xn}

as network input function.

R. Kruse, C. Moewes FS – NFS Lecture 12 12 / 61

mailto:kruse@iws.cs.uni-magdeburg.de
mailto:cmoewes@ovgu.de


Fuzzy Sets as Weights

x1

x2

min �ai

µ
(1)
i

µ
(2)
i

If we replace the activation function of the neuron by the identity, then
it corresponds to the rule activation ãi .

So, the neuron can be used directly to compute the rule activity of any
fuzzy rule.
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Fuzzy Sets as Activation Functions

x1

x2

min �ai

µ
(1)
i

µ
(2)
i

Another representation: The fuzzy sets of the antecedent are modeled
as separate neurons.

The network input function is here the identity and the activation
function is the fuzzy membership function.

We need 2 neuron layers to model the antecedent of a fuzzy rule.

Advantage: The fuzzy sets can be directly used in several rules
(ensures interpretability).
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Neuron Output Computation

For TSK each rule we get one more unit for evaluating the output
function fi .

It will be connected to all of the input units (x1, . . . , xn).

In the output layer, the outputs are be combined with the rule
activations ãi .

This output neuron will finally calculate the output by the network
input function

out =

∑r
i=1 ãi · fi(xi , . . . , xn)

∑r
i=1 ãi

.

For Mamdani rules, it depends on the chosen t-conorm and the
defuzzification method.

Also, a common output neuron combines the activations of the rule
neurons and calculates a crisp output value.
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Summary of Hybridization Steps

1. For every input xi , create a neuron in the input layer.

2. For every fuzzy set µ
(j)
i , create a neuron and connect it to the

corresponding xi .

3. For every output variable yi , create one neuron.

For every fuzzy rule Ri , create an inner (rule) neuron and specify
a t-norm for calculating the rule activation.

4. Every Ri is connected according to its fuzzy rule to the
“antecedent” neurons.

5.a) Mamdani: Every rule neuron is connected to the output neuron
according to the consequent. A t-conorm and the defuzzification
method have to be integrated into the output neurons.

6.b) TSK: For every rule unit, one more neuron is created for the
output function. These neurons are connected to the
corresponding output neuron.
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Advantages and Problems of this Approach

Now learning algorithms of artificial neural networks can be applied to
this structure.

Usually the learning methods have to be modified due to some reasons:

• The network input and activation functions changed.

• Not the real-valued network weights but the parameter of the
fuzzy sets have to be learned.

In the following, we discuss 2 hybrid neuro-fuzzy systems,
i.e. ANFIS [Jang, 1993] and NEFCLASS [Nauck and Kruse, 1997].
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Models with Supervised Learning Methods

NFS with supervised learning optimize the fuzzy sets of a given rule
base by observed input-output tuples.

Requirement: An existing (fuzzy) rule base must exist.

Convenient for replacing a standard controller by a fuzzy controller.

If no initial rule base is available, we might apply fuzzy clustering to
the input data for that.

In the following, we discuss a typical example for a neuro-fuzzy system
with supervised learning, i.e. the ANFIS model

Several other approaches are discussed, e.g. in [Nauck et al., 1997].
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The ANFIS Model

In [Jang, 1993] the neuro-fuzzy system ANFIS

(Adaptive-Network-based Fuzzy Inference System) was developed.

By now it has been integrated in many controllers and simulation
tools, e.g. Matlab.

The ANFIS model is based on a hybrid structure, i.e. it can be
interpreted as neural network and as fuzzy system.

The model uses the fuzzy rules of a TSK controller.

R. Kruse, C. Moewes FS – NFS Lecture 12 19 / 61

mailto:kruse@iws.cs.uni-magdeburg.de
mailto:cmoewes@ovgu.de


Example of an ANFIS Model

x2

x1

µ
(1)
1

µ
(1)
2

µ
(2)
1

µ
(2)
2

∏

∏

∏

�a3

�a2

�a1

N

N

N

fla3

fla2

fla1
�f1

�f2

�f3

fly1

fly2

fly3

∑ y

1. 2. 3. 4. 5. layer
This is a model with three fuzzy rules:

R1 : If x1 is A1 and x2 is B1 then y = f1(x1, x2)

R2 : If x1 is A1 and x2 is B2 then y = f2(x1, x2)

R3 : If x1 is A2 and x2 is B2 then y = f3(x1, x2)

with linear output functions fi = pix1 + qi x2 + ri in the antecedent
part.
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ANFIS: Layer 1 – The Fuzzification Layer

Here, neurons represent fuzzy sets of the fuzzy rule antecedents.

The activation function of a membership neuron is set to the function
that specifies the neuron’s fuzzy set.

A fuzzification neuron receives a crisp input and determines the degree
to which this input belongs to the neuron’s fuzzy set.

Usually bell-curved functions are used, e.g.

µ
(j)
i (xj) =

1

1 +
(

xj−ai

bi

)2ci

where ai , bi , ci are parameters for center, width, and slope, resp.

The output of a fuzzification neuron thus also depends on the
membership parameters.
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ANFIS: Layer 2 – The Fuzzy Rule Layer

Each neuron corresponds to a single TSK fuzzy rule.

A fuzzy rule neuron receives inputs from the fuzzification neurons that
represent fuzzy sets in the rule antecedents.

It calculates the firing strength of the corresponding rule.

In NFS, the intersection is usually implemented by the product.

So, the firing strength ãi of rule Ri is

ãi =
k

∏

j=1

µ
(j)
i (xj).
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ANFIS: Layer 3 – The Normalization Layer

Each neuron in this layer receives the firing strengths from all neurons
in the rule layer.

The normalised firing strength of a given rule is calculated here.

It represents the contribution of a given rule to the final result.

Thus, the output of neuron i in layer 4 is determined as

āi = ai = neti =
ãi

∑

j ãj

.
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ANFIS: Layers 4 and 5 – Defuzzification and

Summation

Each neuron in layer 4 is connected to the respective normalisation
neuron, and also receives the raw input values x.

A defuzzification neuron calculates the weighted consequent value of a
given rule as

ȳi = ai = neti = āi fi(x1, . . . , xn).

The single neuron in layer 5 calculates the sum of outputs from all
defuzzification neurons and produces the overall ANFIS output:

y = f (x i) = aout = netout =
∑

i

ȳi =

∑

i ãi fi(x1, . . . , xn)
∑

i ãi
.
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How does ANFIS learn? – The Forward Pass

ANFIS uses a hybrid learning algorithm that combines least-squares
and gradient descent [Jang, 1993].

Each learning epoch is composed of one forward and one backward
pass.

In the forward pass, a training set of input-output tupples (xk , yk) is
presented to the ANFIS, neuron outputs are calculated on the
layer-by-layer basis, and rule consequent parameters are identified by
least squares.

Goal: minimize mean squared error e =
∑m

i=1 |y(k) − f (x(k))|2
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How does ANFIS learn? – The Forward Pass

rij : parameters of output function fi , xi(k): input values, y(k): output
value of k-th training pair, āi(k): relative control activation

Then we obtain

y(k) =
∑

i

āi(k)yi (k) =
∑

i

āi(k)





n
∑

j=1

rijxj(k) + ri0



 , ∀i , k.

Therefore, with x̂i(k) := [1, x1(k), . . . , xn(k)]T we obtain the
overdetermined linear equation system

y =—aRX

for m > (n + 1) · r with m number of training points, r number of
rules, n number of input variables.

The consequent parameters are adjusted while the antecedent
parameters remain fixed.
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How does ANFIS learn? – The Backward Pass

In the backward pass, the error is determined in the output units
based on the new calculated output functions.

Also, with the help of gradient descent, the parameters of the fuzzy
sets are optimized.

Back propagation is applied to compute the “error” of the neurons in
the hidden layers

It updates the parameters of these neurons by the chain rule.
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ANFIS: Summary

Forward and backward passes improves convergence.

Reason: Least squares already has an optimal solution for the
parameters of the output function w.r.t. the initial fuzzy sets.

Unfortunately ANFIS has no restrictions for the optimization of the
fuzzy sets in the antecedents. So, after optimization the input range
might not be covered completely with fuzzy sets.

Thus definition gaps can appear which have to be checked afterwards.

Fuzzy sets can also change, independently form each other, and can
also exchange their order and so their importance, too.

We have to pay attention to this, especially if an initial rule base was
set manually and the controller has to be interpreted afterwards.
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Learning Fuzzy Sets

Gradient descent procedures are only applicable, if a differentiation is
possible, e.g. for Sugeno-type fuzzy systems.

Applying special heuristic procedures that do not use any gradient
information can facilitate the learning of Mamdani-type rules.

Learning algorithms such as NEFCLASS [Nauck and Kruse, 1997] are
based on the idea of backpropagation but constrain the learning
process to ensure interpretability.
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Learning Fuzzy Sets

Mandatory constraints: Fuzzy sets must . . .

• stay normal and convex,

• not exchange their relative positions (they must not “pass” each
other),

• always overlap.

Optional constraints:

• Fuzzy sets must stay symmetric.

• The membership degrees must add up to 1.

A learning algorithm must enforce these constraints.
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Example: Medical Diagnosis

The Wisconsin Breast Cancer Dataset stores results from patients
tested for breast cancer.

These data can be used to train and evaluate classifiers.

For instance, decision support systems must tell if unseen data indicate
malignant or benign case?

A surgeon must be able to check this classification for plausibility.

We are looking for a simple and interpretable classifier.
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Example: WBC Data Set

699 cases (16 cases have missing values).

2 classes: benign (458), malignant (241).

9 attributes with values from {1, . . . , 10} (ordinal scale, but usually
interpreted numerically).

In the following, x3 and x6 are interpreted as nominal attributes.

x3 and x6 are usually seen as “important” attributes.
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Applying NEFCLASS-J

A tool for developing neuro-
fuzzy classifiers.

It is written in Java.

A free version for research is
available.

This project started at our
group.

http://fuzzy.cs.ovgu.de/nefclass/nefclass-j/
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NEFCLASS: Neuro-Fuzzy Classifier

output variables

unweighted connections

fuzzy rules

fuzzy sets (antecedents)

input attributes (variables)
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NEFCLASS: Features

It automatically induces a fuzzy rule base from data.

It can handle several shapes of fuzzy sets.

It processes numeric and symbolic attributes.

It treats missing values (no imputation).

It automatically prunes the rule base.

It fuses expert knowledge and rules obtained from data.
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Representation of Fuzzy Rules

Example: 2 rules
R1 : if x is large and y is small, then class is c1

R2 : if x is large and y is large, then class is c2

Connections x → R1 and x → R2 are linked.

Fuzzy set large is a shared weight,
i.e. the term large has always the same meaning
in both rules.
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1. Training Step: Initialization

Specify initial fuzzy partitions for all input variables.
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1. Training Step: Rule Base

for each pattern p {
find antecedent A such that A(p) is maximal
if A /∈ L {

add A to L

}
}
for each antecedent A ∈ L {

find best consequent C for A

create rule base candidate R = (A, C)
determine performance of R

add R to B

}
return one rule base from B

Fuzzy rule bases can also be created by using prior knowledge, fuzzy
cluster analysis, fuzzy decision trees, evolutionary algorithms, . . .
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Selection of a Rule Base

The performance of a rule is evaluated by

Pr =
1

N

∑

i=1

N(−1)cRr (x i )

with

c =

{

0 if class(xi) = con(Rr ),

1 otherwise

Then the rules are sorted by performance.

Either the best r rules or the best r/m rules per class are selected.

r is either given or is determined automatically such that all patterns
are covered.
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Rule Base Induction

NEFCLASS uses modified Wang-Mendel procedure.
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Computing the Error Signal

fuzzy error (jth output):

Ej = sgn(d)(1 − γ(d))

with d = tj − oj and γ : IR →

[0, 1], γ(d) = exp −
(

a·d
dmax

)2
(t:

correct output, o: actual output)

rule error:

Er = (τr (1 − τr ) + ε)Econ(Rr )

with 0 < ε ≪ 1
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3. Training Step: Fuzzy Sets

e.g. triangular membership function:

µa,b,c : IR → [0, 1], µa,b,c(x) =















x−a
b−a

if x ∈ [a, b),
c−x
c−b

if x ∈ [b, c],

0 otherwise

Parameter updates for an antecedent fuzzy set:

f =

{

σµ(x) if E < 0,

σ(1 − µ(x)) otherwise

∆b = f · E · (c − a) sgn(x − b)

∆a = −f · E · (b − a) + ∆b

∆c = f · E · (c − b) + ∆b
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Training of Fuzzy Sets

Heuristics: A fuzzy set is moved away from x (towards x) and its
support is reduced (enlarged) in order to reduce (enlarge) the degree
of membership of x .
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Training of Fuzzy Sets

do {
for each pattern {

accumulate parameter updates
accumulate error

}
modify parameters

} while change in error

observing the error on validation set

variations:

• adaptive learning
rate

• online/batch
learning

• optimistic learning
(n step look ahead)
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Constraints for Training Fuzzy Sets

• valid parameter values

• non-empty intersection of
adjacent fuzzy sets

• keep relative positions

• maintain symmetry

• complete coverage (degrees of
membership add up to 1 for
each element)
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4. Training Step: Pruning

Goal: Remove variables, rules, and fuzzy sets in order to improve the
interpretability and generalization.
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Pruning Methods

do {
select pruning method
do {

execute pruning step
train fuzzy sets
if no improvement {

undo step
}

} while there is improvement
} while there is further method

1. Remove variables (use correlations, information gain etc.).

2. Remove rules (use rule performance).

3. Remove terms (use degree of fulfillment).

4. Remove fuzzy sets (use fuzziness).
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Example: WBC Fuzzy Rules
R1: if uniformity of cell size is small and bare nuclei is fuzzy0 then benign

R2: if uniformity of cell size is large then malignant
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Example: WBC Classification Performance

predicted class

malign benign
∑

malign 228 (32.62%) 13 (1.86%) 241 (34.99%)
benign 15 (2.15%) 443 (63.38%) 458 (65.01%)
∑

243 (34.76) 456 (65.24) 699 (100.00%)

estimated performance on unseen data (cross validation):

NEFCLASS-J: 95.42% NEFCLASS-J (numeric): 94.14%
Discriminant Analysis: 96.05% Multilayer Perceptron: 94.82%
C 4.5: 95.10% C 4.5 Rules: 95.40%
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Example: WBC Fuzzy Sets
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Example: Stock Market Prediction
[Kruse et al., 1998]

Prognosis of the daily proportional changes of the German stock
exchange DAX (Siemens).

Database: Time series from 1986 to 1997.

DAX Composite-DAX

German 3 months interest rate Return Germany

German Morgan-Stanley index Dow Jones industrial index

DM / US-$ US treasure bonds

gold price Japanese Nikkei-Index

European Morgan-Stanley-Index Price earning ratio
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Fuzzy Rules in Finance

trend rule:
IF DAX is decreasing AND US-$ is decreasing

THEN DAX prediction is decreasing

WITH high certainty

turning point rule:
IF DAX is decreasing AND US-$ is increasing

THEN DAX prediction is increasing

WITH low certainty

delay rule:
IF DAX is stable AND US-$ is decreasing

THEN DAX prognosis is decreasing

WITH very high certainty

in general:
IF x1 is µ1 AND x2 is µ2 AND . . . AND xn is µn

THEN y = η

WITH weight k
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Neuro-Fuzzy Architecture
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From Rules to Artificial Neural Networks

Evaluation of the membership degrees:

Evaluation of the rules (rule activity):

µl = IR
n → [0, 1]r , x ⇒

Dl
∏

j=1

µ(j)
c,s(xi)

Accumulation of rule inputs and normalization:

NF : IR
n → IR, x ⇒

r
∑

l=1

wl

kl µl(x)
∑r

j=1 kjµj(x)
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Dimension Reduction of the Weight Space
Semantics-Preserving Learning Algorithm

Membership functions of different inputs share their parameters, e.g.

µstabil
DAX = µstabil

C-DAX.

Membership functions of same input variable are not allowed to pass
each other, they must keep their original order, e.g.

µdecreasing < µstable < µincreasing

Benefits:

• The optimized rule base can still be interpreted.
• The number of free parameters has been reduced.
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Return-on-Investment Curves

Different models have been evaluated.

Validation data: from 1 March 1994 until April 1997.
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Example: Line Filtering

Extraction of edge segments (Burns’ operator)

Production net: edges → lines → long lines → parallel lines →
runways
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Example: Line Filtering

Problems:

• There are extremely many lines due to distorted images.

• The execution times of the production net is long.
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Example: Line Filtering

Only few lines are used for a runway assembly!
Approach:

• Extract the textural features of the lines.

• Identify and discard superfluous lines.
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Example: Line Filtering

Several classifiers: Minimum distance, k-NN, C 4.5, NEFCLASS

Problems: Classes are overlapping and extremely unbalanced.

Result above with modified NEFCLASS:

• All runway lines have been found, a reduction to 8.7% of the edge
segments.
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Summary

Neuro-fuzzy systems can be very useful for knowledge discovery.

The interpretability enables plausibility checks and improves the
acceptance.

(Neuro-)fuzzy systems exploit the tolerance for sub-optimal solutions.

Neuro-fuzzy learning algorithms must observe constraints not to
jeopardize the semantics of the model.

There is no automatic model creator! The user must work with the
tool!

Such simple learning techniques support an explorative data analysis.
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