

Neural Networks

Prof. Dr. Rudolf Kruse

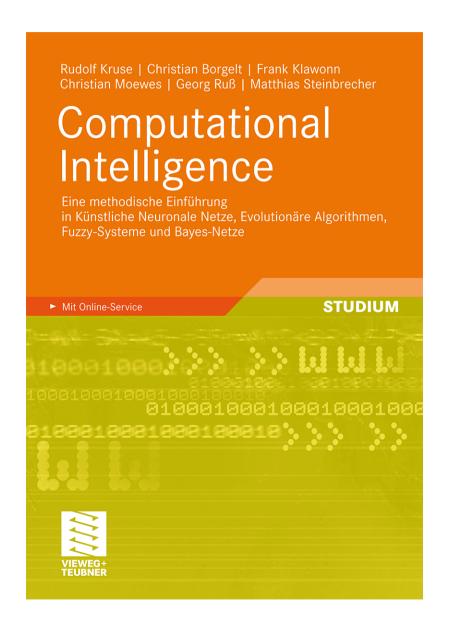
Computational Intelligence Group Faculty for Computer Science kruse@iws.cs.uni-magdeburg.de

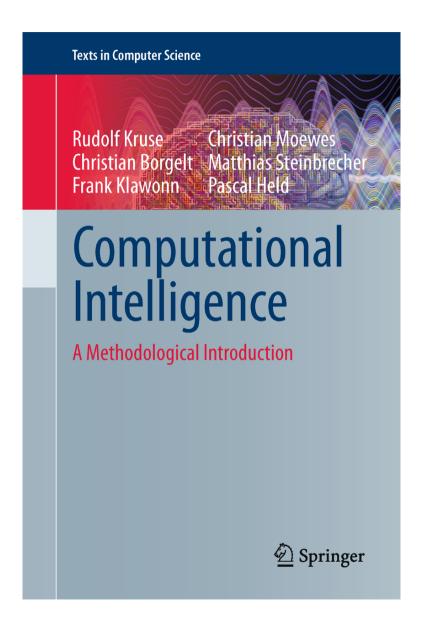


About me: Rudolf Kruse

- 1979 diploma (Mathematics) degree from the University of Braunschweig, Germany
- 1980 PhD in Mathematics, 1984 the venia legendi in Mathematics from the same university
- 2 years at Fraunhofer Gesellschaft
- 1986 joined the University of Braunschweig as a professor in computer science
- Since 1996 professor at the Department of Computer Science at the University of Magdeburg
- Research: data mining, explorative data analysis, fuzzy-systems, neural networks, evolutionary algorithms, bayesian networks
- mailto:kruse@iws.cs.uni-magdeburg.de
- Office: G29-008, Telefon: 0391 67-58706
- Consultation: Mi., 11:00–12:00 Uhr

Bücher zur Vorlesung





Literatur zur Lehrveranstaltung

Kruse, Borgelt, Klawonn, Moewes, Steinbrecher und Held. Computational Intelligence: A Methodological Introduction. Springer, London, 2013.

Kruse, Borgelt, Klawonn, Moewes, Ruß und Steinbrecher. Computational Intelligence: Eine methodische Einführung in Künstliche Neuronale Netze, Evolutionäre Algorithmen, Fuzzy-Systeme und Bayes-Netze. Vieweg+Teubner, Wiesbaden, 2011.

Nauck, Borgelt, Klawonn und Kruse. Neuro-Fuzzy-Systeme: Von den Grundlagen Neuronaler Netze zu modernen Fuzzy-Systemen. Vieweg, Wiesbaden, 3. Aufl., 2003.

Rojas. Theorie der neuronalen Netze: Eine systematische Einführung. Springer, Berlin, 1993.

Zell. Simulation neuronaler Netze. Addison-Wesley, Bonn, 1994.

Haykin. Neural Networks: A Comprehensive Foundation. Prentice-Hall, Upper Saddle River, NJ, 1994.

Kriesel. Ein kleiner Überblick über neuronale Netze. Manuskript, erhältlich auf http://www.dkriesel.com, 2007.

Motivation: Why (artificial) neural networks?

• (Neuro-)Biology / (Neuro-)Physiology / Psychology:

- exploiting the similarities to real (biological) neural networks
- modelling and simulation to gain understanding of the operations of nerves and brain

• Computer Science / engineering / economy

- imitating human perception and processing
- solving problems of learning and tuning as well as prognosis and optimization problems

• Physics / Chemistry

- using neural networks for characterizing physical phenomena
- special case: spin glass (alloying of magnetic and non-magnetic metals)

Conventional computers vs. The Brain

	Computer	Brain
processing units	1 CPU, 10 ⁹ transistors	10 ¹¹ neurons
storage capacity	10 ⁹ Bytes RAM, 10 ¹⁰ Bytes non-volatile memory	10^{11} neurons, 10^{14} synapses
processing speed	10^{-8} sec.	10^{-3} sec.
bandwidth	$10^9 \frac{bits}{s}$	$10^{14} \frac{bits}{s}$
neural updates per sec.	10^{5}	10^{14}

Conventional computers vs. The Brain

- Note: the switching times of the human brain are quite slow, being only 10^{-3} sec., but updates are processed in parallel. In contrast, serial PC simulations take several hundreds of processing cycles for one update.
- Advantages of neural networks:
 - great processing speed by making massively use of parallel processing
 - even after partial failure the network is still in service (fault tolerance)
 - \circ with increasing amount of failing neurons just slow failure of entire system $(graceful\ degradation)$
 - well-suited for inductive learning
- Thus it seems promising to emulate these advantages by using artificial neural networks.

Structure of a prototypical biological neuron



Biological Background

(Very) simplified description of neural information processing

- Axon terminal releases chemicals, called **neurotransmitters**.
- These act on the membrane of the receptor dendrite to change its polarization. (The inside is usually 70mV more negative than the outside.)
- Decrease in potential difference: **excitatory** synapse Increase in potential difference: **inhibitory** synapse
- If there is enough net excitatory input, the axon is depolarized.
- The resulting **action potential** travels along the axon.

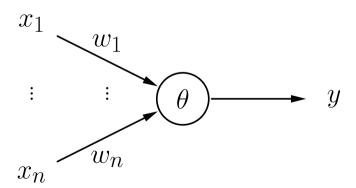
 (Speed depends on the degree to which the axon is covered with myelin.)
- When the action potential reaches the terminal buttons, it triggers the release of neurotransmitters.

Threshold Logic Units

Threshold Logic Units

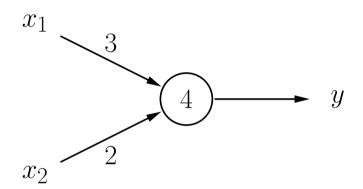
A Threshold Logic Unit (TLU) is a processing unit for numbers with n inputs x_1, \ldots, x_n and one output y. The unit has a **threshold** θ and each input x_i is associated with a **weight** w_i . A threshold logic unit computes the function

$$y = \begin{cases} 1, & \text{if } \vec{x}\vec{w} = \sum_{i=1}^{n} w_i x_i \ge \theta, \\ 0, & \text{otherwise.} \end{cases}$$



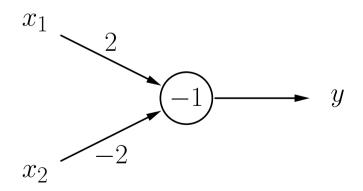
Threshold Logic Units: Examples

Threshold logic unit for the conjunction $x_1 \wedge x_2$.



x_1	x_2	$3x_1 + 2x_2$	y
0	0	0	0
1	0	3	0
0	1	2	0
1	1	5	1

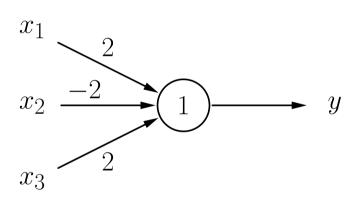
Threshold logic unit for the implication $x_2 \to x_1$.



x_1	x_2	$2x_1 - 2x_2$	y
0	0	0	1
1	0	2	1
0	1	-2	0
1	1	0	1

Threshold Logic Units: Examples

Threshold logic unit for $(x_1 \wedge \overline{x_2}) \vee (x_1 \wedge x_3) \vee (\overline{x_2} \wedge x_3)$.



x_1	x_2	x_3	$\sum_i w_i x_i$	y
0	0	0	0	0
1	0	0	2	1
0	1	0	-2	0
1	1	0	0	0
0	0	1	2	1
1	0	1	4	1
0	1	1	0	0
1	1	1	2	1

Review of line representations

Straight lines are usually represented in one of the following forms:

Explicit Form: $g \equiv x_2 = bx_1 + c$

Implicit Form: $g \equiv a_1x_1 + a_2x_2 + d = 0$

Point-Direction Form: $g \equiv \vec{x} = \vec{p} + k\vec{r}$

Normal Form: $g \equiv (\vec{x} - \vec{p})\vec{n} = 0$

with the parameters:

b: Gradient of the line

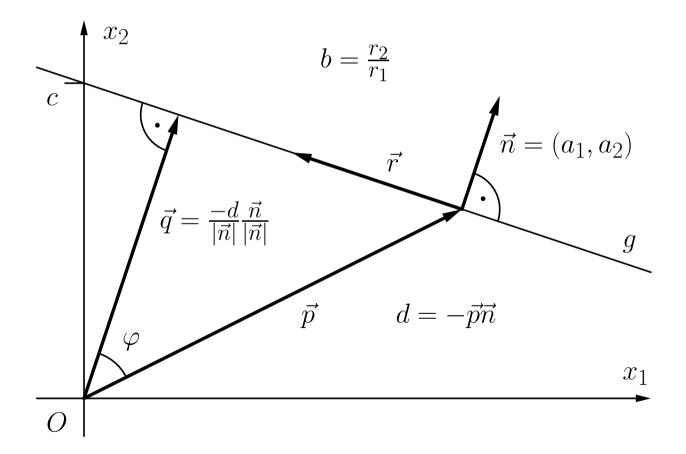
c: Section of the x_2 axis

 \vec{p} : Vector of a point of the line (base vector)

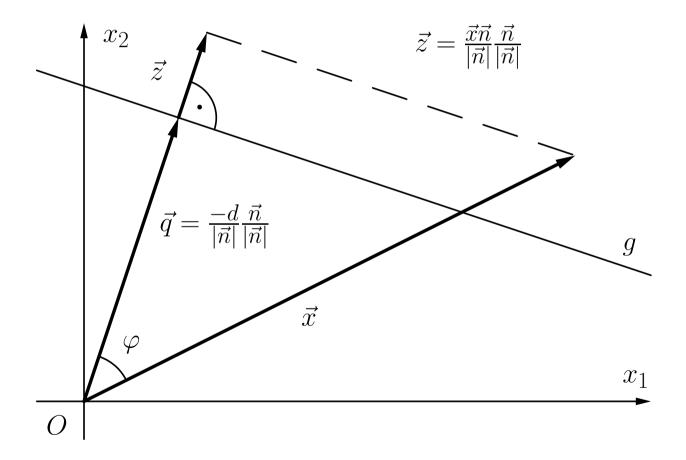
 \vec{r} : Direction vector of the line

 \vec{n} : Normal vector of the line

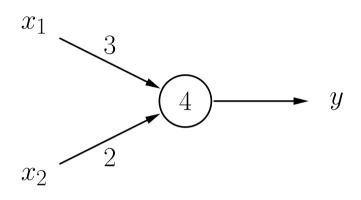
A straight line and its defining parameters.

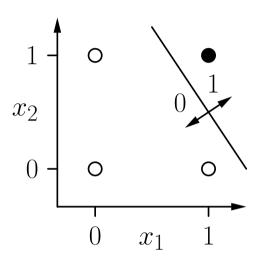


How to determine the side on which a point \vec{x} lies.

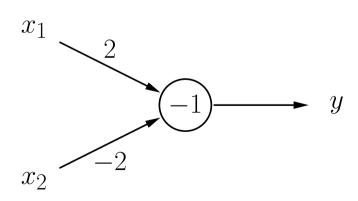


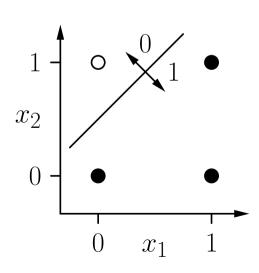
Threshold logic unit for $x_1 \wedge x_2$.



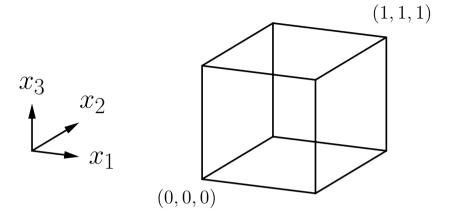


A threshold logic unit for $x_2 \to x_1$.

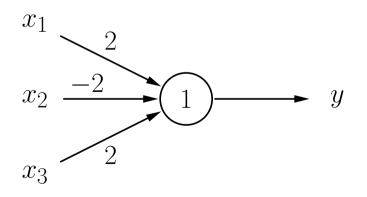


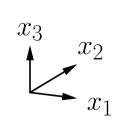


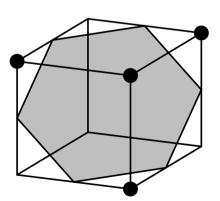
Visualization of 3-dimensional Boolean functions:



Threshold logic unit for $(x_1 \wedge \overline{x_2}) \vee (x_1 \wedge x_3) \vee (\overline{x_2} \wedge x_3)$.







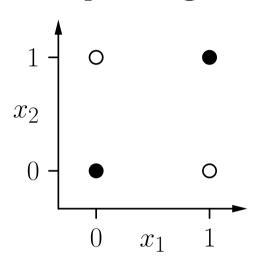
Threshold Logic Units: linear separability

- We call two sets of points in an n-dimensional space linearly separable, if they can separated by an (n-1)-dimensional hyperplane. One of these sets may contain points lying on the hyperplane, too.
- A boolean function is called linearly separable, if the set of fibers of 0 and the set of fibers of 1 are linearly separable.

Threshold Logic Units: Limitations

The biimplication problem $x_1 \leftrightarrow x_2$: There is no separating line.

x_1	x_2	y
0	0	1
1	0	0
0	1	0
1	1	1



Formal proof by reductio ad absurdum:

since
$$(0,0) \mapsto 1$$
: $0 \geq \theta$, (1)
since $(1,0) \mapsto 0$: $w_1 < \theta$, (2)
since $(0,1) \mapsto 0$: $w_2 < \theta$, (3)
since $(1,1) \mapsto 1$: $w_1 + w_2 \geq \theta$. (4)

(2) and (3): $w_1 + w_2 < 2\theta$. With (4): $2\theta > \theta$, or $\theta > 0$. Contradiction to (1).

Threshold Logic Units: Limitations

Total number and number of linearly separable Boolean functions. ([Widner 1960] as cited in [Zell 1994])

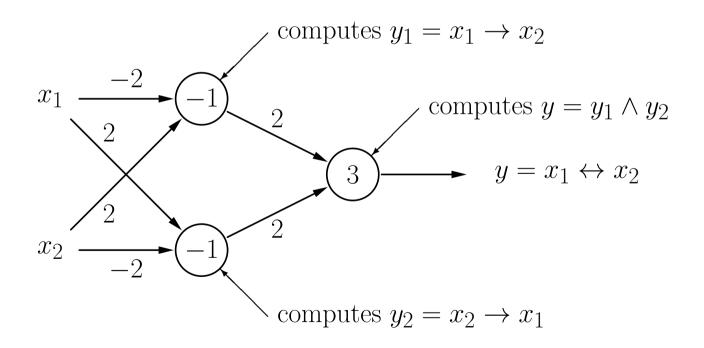
inputs	Boolean functions	linearly separable functions
1	4	4
2	16	14
3	256	104
4	65536	1774
5	$4.3 \cdot 10^9$	94572
6	$1.8 \cdot 10^{19}$	$5.0 \cdot 10^6$

- For many inputs a threshold logic unit can compute almost no functions.
- Networks of threshold logic units are needed to overcome the limitations.

Networks of Threshold Logic Units

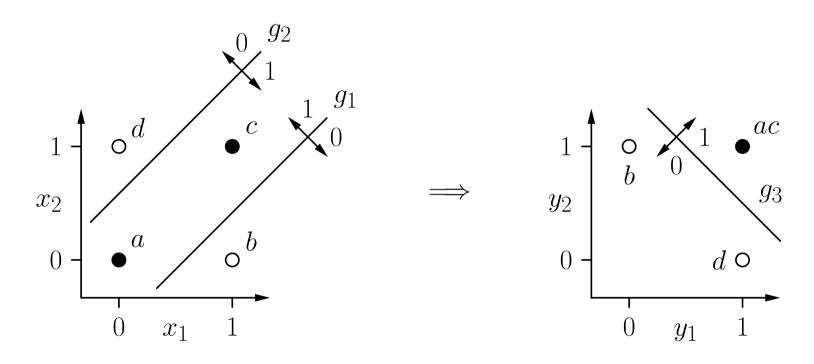
Solving the biimplication problem with a network.

Idea: logical decomposition $x_1 \leftrightarrow x_2 \equiv (x_1 \to x_2) \land (x_2 \to x_1)$



Networks of Threshold Logic Units

Solving the biimplication problem: Geometric interpretation



- The first layer computes new Boolean coordinates for the points.
- After the coordinate transformation the problem is linearly separable.

Representing Arbitrary Boolean Functions

Let $y = f(x_1, \ldots, x_n)$ be a Boolean function of n variables.

- (i) Represent $f(x_1, \ldots, x_n)$ in disjunctive normal form. That is, determine $D_f = K_1 \vee \ldots \vee K_m$, where all K_j are conjunctions of n literals, i.e., $K_j = l_{j1} \wedge \ldots \wedge l_{jn}$ with $l_{ji} = x_i$ (positive literal) or $l_{ji} = \neg x_i$ (negative literal).
- (ii) Create a neuron for each conjunction K_j of the disjunctive normal form (having n inputs one input for each variable), where

$$w_{ji} = \begin{cases} 2, & \text{if } l_{ji} = x_i, \\ -2, & \text{if } l_{ji} = \neg x_i, \end{cases}$$
 and $\theta_j = n - 1 + \frac{1}{2} \sum_{i=1}^n w_{ji}.$

(iii) Create an output neuron (having m inputs — one input for each neuron that was created in step (ii)), where

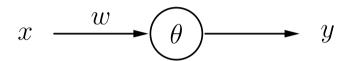
$$w_{(n+1)k} = 2, \quad k = 1, \dots, m,$$
 and $\theta_{n+1} = 1.$

- Geometric interpretation provides a way to construct threshold logic units with 2 and 3 inputs, but:
 - Not an automatic method (human visualization needed).
 - Not feasible for more than 3 inputs.

• General idea of automatic training:

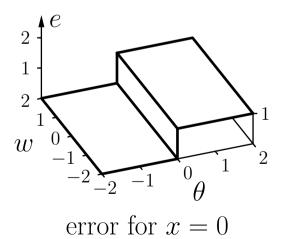
- Start with random values for weights and threshold.
- Determine the error of the output for a set of training patterns.
- \circ Error is a function of the weights and the threshold: $e = e(w_1, \dots, w_n, \theta)$.
- Adapt weights and threshold so that the error gets smaller.
- Iterate adaptation until the error vanishes.

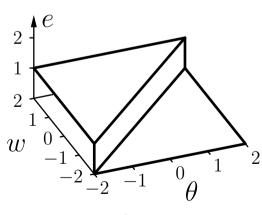
Single input threshold logic unit for the negation $\neg x$.

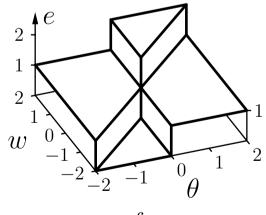


x	y
0	1
1	0

Output error as a function of weight and threshold.

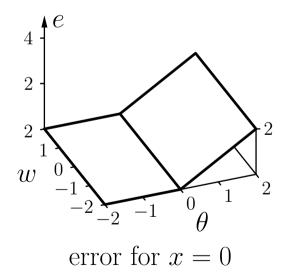


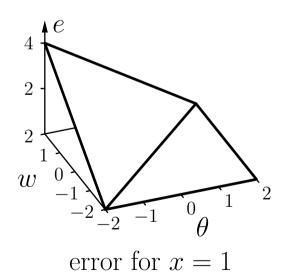


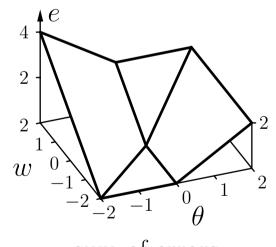


- The error function cannot be used directly, because it consists of plateaus.
- Solution: If the computed output is wrong, take into account, how far the weighted sum is from the threshold.

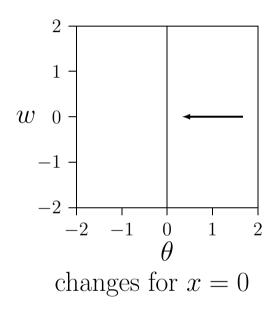
Modified output error as a function of weight and threshold.

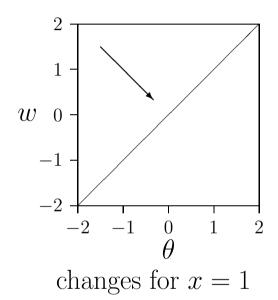


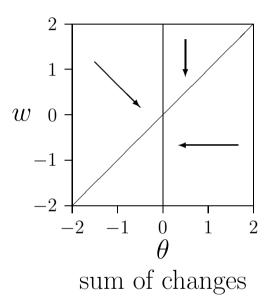




Schemata of resulting directions of parameter changes.

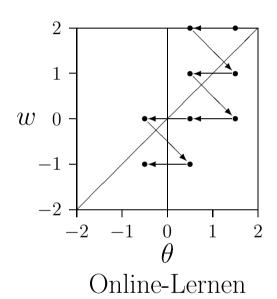


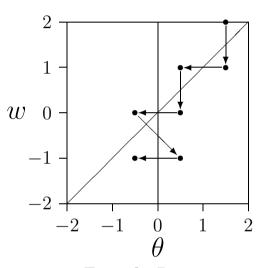


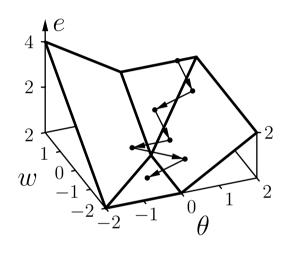


- Start at random point.
- Iteratively adapt parameters according to the direction corresponding to the current point.

Example training procedure: Online and batch training.

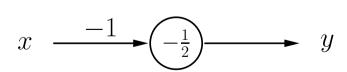


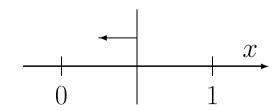




Batch-Lernen

Batch-Lernen





Formal Training Rule: Let $\vec{x} = (x_1, \dots, x_n)$ be an input vector of a threshold logic unit, o the desired output for this input vector and y the actual output of the threshold logic unit. If $y \neq o$, then the threshold θ and the weight vector $\vec{w} = (w_1, \dots, w_n)$ are adapted as follows in order to reduce the error:

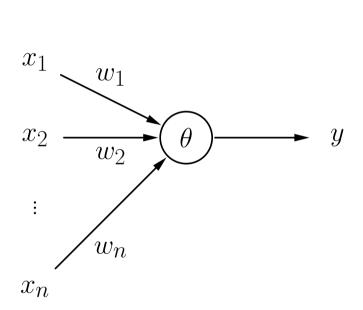
$$\theta^{(\text{new})} = \theta^{(\text{old})} + \Delta\theta \quad \text{with} \quad \Delta\theta = -\eta(o - y),$$

$$\forall i \in \{1, \dots, n\}: \quad w_i^{(\text{new})} = w_i^{(\text{old})} + \Delta w_i \quad \text{with} \quad \Delta w_i = -\eta(o - y)x_i,$$

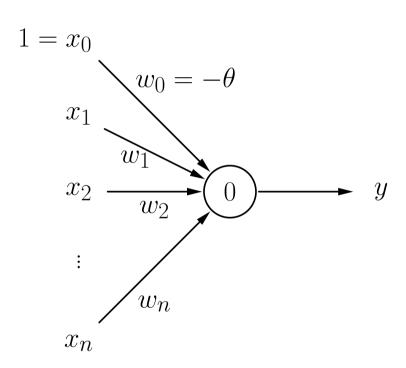
where η is a parameter that is called **learning rate**. It determines the severity of the weight changes. This procedure is called **Delta Rule** or **Widrow–Hoff Procedure** [Widrow and Hoff 1960].

- Online Training: Adapt parameters after each training pattern.
- Batch Training: Adapt parameters only at the end of each epoch, i.e. after a traversal of all training patterns.

Turning the threshold value into a weight:



$$\sum_{i=1}^{n} w_i x_i \ge \theta$$



$$\sum_{i=1}^{n} w_i x_i - \theta \ge 0$$

```
procedure online_training (var \vec{w}, var \theta, L, \eta);
                                           (* output, sum of errors *)
\mathbf{var}\ y,\ e;
begin
  repeat
                                           (* initialize the error sum *)
    e := 0;
    for all (\vec{x}, o) \in L do begin (* traverse the patterns *)
       if (\vec{w}\vec{x} \ge \theta) then y := 1; (* compute the output *)
                    else y := 0; (* of the threshold logic unit *)
                                  (* if the output is wrong *)
       if (y \neq o) then begin
                                  (* adapt the threshold *)
         \theta := \theta - \eta(o - y);
         \vec{w} := \vec{w} + \eta(o - y)\vec{x};
                                  (* and the weights *)
         e := e + |o - y|;
                                           (* sum the errors *)
       end;
    end;
  until (e \leq 0);
                                           (* repeat the computations *)
                                           (* until the error vanishes *)
end;
```

```
procedure batch_training (var \vec{w}, var \theta, L, \eta);
                                                   (* output, sum of errors *)
\mathbf{var}\ y,\ e,
                                                   (* summed changes *)
     \theta_c, \vec{w}_c;
begin
  repeat
     e := 0; \ \theta_c := 0; \ \vec{w}_c := \vec{0};
                                                   (* initializations *)
     for all (\vec{x}, o) \in L do begin
                                                   (* traverse the patterns *)
                                                   (* compute the output *)
        if (\vec{w}\vec{x} \ge \theta) then y := 1;
                       else y := 0;
                                                   (* of the threshold logic unit *)
       if (y \neq o) then begin
                                                   (* if the output is wrong *)
                                                   (* sum the changes of the *)
          \theta_c := \theta_c - \eta(o-y);
          \vec{w}_c := \vec{w}_c + \eta(o - y)\vec{x};
                                                   (* threshold and the weights *)
          e := e + |o - y|;
                                                   (* sum the errors *)
        end:
     end;
     \theta := \theta + \theta_c:
                                                   (* adapt the threshold *)
     \vec{w} := \vec{w} + \vec{w_c}:
                                                   (* and the weights *)
                                                   (* repeat the computations *)
  until (e \leq 0);
                                                   (* until the error vanishes *)
end;
```

Training Threshold Logic Units: Online

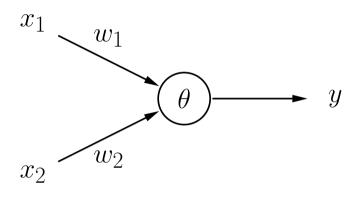
epoch	x	0	$\vec{x}\vec{w}$	y	e	$\Delta \theta$	Δw	θ	w
								1.5	2
1	0	1	-1.5	0	1	-1	0	0.5	2
	1	0	1.5	1	-1	1	-1	1.5	1
2	0	1	-1.5	0	1	-1	0	0.5	1
	1	0	0.5	1	-1	1	-1	1.5	0
3	0	1	-1.5	0	1	-1	0	0.5	0
	1	0	0.5	0	0	0	0	0.5	0
4	0	1	-0.5	0	1	-1	0	-0.5	0
	1	0	0.5	1	-1	1	-1	0.5	-1
5	0	1	-0.5	0	1	-1	0	-0.5	-1
	1	0	-0.5	0	0	0	0	-0.5	-1
6	0	1	0.5	1	0	0	0	-0.5	-1
	1	0	-0.5	0	0	0	0	-0.5	-1

Training Threshold Logic Units: Batch

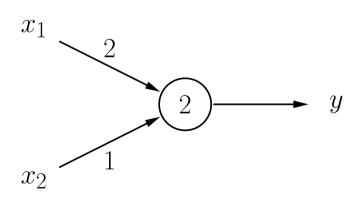
epoch	x	0	$\vec{x}\vec{w}$	y	e	$\Delta\theta$	Δw	θ	w
								1.5	2
1	0	1	-1.5	0	1	-1	0		
	1	0	0.5	1	-1	1	-1	1.5	1
2	0	1	-1.5	0	1	-1	0		
	1	0	-0.5	0	0	0	0	0.5	1
3	0	1	-0.5	0	1	-1	0		
	1	0	0.5	1	-1	1	- 1	0.5	0
4	0	1	-0.5	0	1	-1	0		
	1	0	-0.5	0	0	0	0	-0.5	0
5	0	1	0.5	1	0	0	0		
	1	0	0.5	1	-1	1	- 1	0.5	-1
6	0	1	-0.5	0	1	-1	0		
	1	0	-1.5	0	0	0	0	-0.5	-1
7	0	1	0.5	1	0	0	0		
	1	0	-0.5	0	0	0	0	-0.5	-1

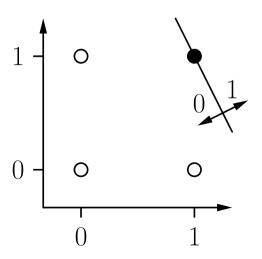
Training Threshold Logic Units: Conjunction

Threshold logic unit with two inputs for the conjunction.



x_1	x_2	y
0	0	0
1	0	0
0	1	0
1	1	1





47

Training Threshold Logic Units: Conjunction

epoch	x_1	x_2	0	$\vec{x}\vec{w}$	y	e	$\Delta \theta$	Δw_1	Δw_2	θ	w_1	w_2
										0	0	0
1	0	0	0	0	1	-1	1	0	0	1	0	0
	0	1	0	-1	0	0	0	0	0	1	0	0
	1	0	0	-1	0	0	0	0	0	1	0	0
	1	1	1	-1	0	1	-1	1	1	0	1	1
2	0	0	0	0	1	-1	1	0	0	1	1	1
	0	1	0	0	1	-1	1	0	-1	2	1	0
	1	0	0	-1	0	0	0	0	0	2	1	0
	1	1	1	-1	0	1	-1	1	1	1	2	1
3	0	0	0	-1	0	0	0	0	0	1	2	1
	0	1	0	0	1	-1	1	0	-1	2	2	0
	1	0	0	0	1	-1	1	-1	0	3	1	0
	1	1	1	-2	0	1	-1	1	1	2	2	1
4	0	0	0	-2	0	0	0	0	0	2	2	1
	0	1	0	-1	0	0	0	0	0	2	2	1
	1	0	0	0	1	-1	1	-1	0	3	1	1
	1	1	1	-1	0	1	-1	1	1	2	2	2
5	0	0	0	-2	0	0	0	0	0	2	2	2
	0	1	0	0	1	-1	1	0	-1	3	2	1
	1	0	0	-1	0	0	0	0	0	3	2	1
	1	1	1	0	1	0	0	0	0	3	2	1
6	0	0	0	-3	0	0	0	0	0	3	2	1
	0	1	0	-2	0	0	0	0	0	3	2	1
	1	0	0	-1	0	0	0	0	0	3	2	1
	1	1	1	0	1	0	0	0	0	3	2	1

Training Threshold Logic Units: Biimplication

epoch	x_1	x_2	0	$\vec{x}\vec{w}$	y	e	$\Delta\theta$	Δw_1	Δw_2	θ	w_1	w_2
										0	0	0
1	0	0	1	0	1	0	0	0	0	0	0	0
	0	1	0	0	1	-1	1	0	-1	1	0	-1
	1	0	0	-1	0	0	0	0	0	1	0	-1
	1	1	1	-2	0	1	-1	1	1	0	1	0
2	0	0	1	0	1	0	0	0	0	0	1	0
	0	1	0	0	1	-1	1	0	-1	1	1	-1
	1	0	0	0	1	-1	1	-1	0	2	0	-1
	1	1	1	- 3	0	1	-1	1	1	1	1	0
3	0	0	1	0	1	0	0	0	0	0	1	0
	0	1	0	0	1	-1	1	0	-1	1	1	-1
	1	0	0	0	1	-1	1	-1	0	2	0	-1
	1	1	1	-3	0	1	-1	1	1	1	1	0

Training Threshold Logic Units: Convergence

Convergence Theorem: Let $L = \{(\vec{x}_1, o_1), \dots (\vec{x}_m, o_m)\}$ be a set of training patterns, each consisting of an input vector $\vec{x}_i \in \mathbb{R}^n$ and a desired output $o_i \in \{0, 1\}$. Furthermore, let $L_0 = \{(\vec{x}, o) \in L \mid o = 0\}$ and $L_1 = \{(\vec{x}, o) \in L \mid o = 1\}$. If L_0 and L_1 are linearly separable, i.e., if $\vec{w} \in \mathbb{R}^n$ and $\theta \in \mathbb{R}$ exist, such that

$$\forall (\vec{x}, 0) \in L_0: \quad \vec{w}\vec{x} < \theta \quad \text{and}$$

 $\forall (\vec{x}, 1) \in L_1: \quad \vec{w}\vec{x} \ge \theta,$

then online as well as batch training terminate.

- The algorithms terminate only when the error vanishes.
- Therefore the resulting threshold and weights must solve the problem.
- For not linearly separable problems the algorithms do not terminate.

Training Networks of Threshold Logic Units

- Single threshold logic units have strong limitations: They can only compute linearly separable functions.
- Networks of threshold logic units can compute arbitrary Boolean functions.
- Training single threshold logic units with the delta rule is fast and guaranteed to find a solution if one exists.
- Networks of threshold logic units cannot be trained, because
 - there are no desired values for the neurons of the first layer,
 - the problem can usually be solved with different functions computed by the neurons of the first layer.
- When this situation became clear, neural networks were seen as a "research dead end".