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Abstract

The desire to augment our 3-dimensional perception and the need to understand multivariate problems
spawned several multidimensional visualization methodologies. Starting from early successes of visual-
ization, like Dr. J. Snow’s dot map in 1854 showing the connection of cholera to a water pump in London,
Scatter plots, Chernoff faces, Andrews plots, Projection Pursuit, Perceptualization of data, Data density,
Trees and Castles, Kinematic displays, Bertin PermutationMatrices and other multivariate techniques
have been developed (see Bibliography A in the Appendix). Some of these will be reviewed in order to
establish the connection between multivariate problems and multidimensional geometry. Understanding
the underlying geometry of a multivariate problem providesimportant insights into what is possible and
what is not. For the unambiguous visualization of multidimensional geometry and, in turn, multivariate
relations Parallel Coordinates – the leading Multidimensional Vis Methodology – is introduced and rigor-
ously developed. Relations among N real variables are mapped uniquely into subsets of 2-space having
geometrical properties enabling the visualization of the corresponding N-dimensional hypersurfaces.
After the basic representation results, associated algorithms for constructions, intersections, transforma-
tions, containment queries, proximity and others will be presented. The development is interlaced with
applications of the relevant results starting with demonstrations of Data Mining on real datasets (i.e. Fea-
ture extraction from LandSat data, Financial, Process Control, Pilot Selection, Raising the Yield and
Quality of VLSI chips, and others). They are followed by Collision Avoidance Algorithms for Air Traf-
fic Control which are based on the representation of lines in multidimensional space. The detection of
coplanar points and the representation of planes and hyperplanes lead to some applications in Computer
Vision, Geometric Modeling and elsewhere. More examples ofVisual Data Mining are given. An efficient
geometric automaticclassifieralgorithm is motivated and is demonstrated on some challenging datasets.
Finally, the representation of curves and hypersurfaces istaken up together with interactive applications
to Process Control, Instrumentation and Heuristic Optimization. Nonlinear VISUAL models, in terms of
hypersurfaces, are constructed from data and used interactively for Decision Support, Sensitivity Analysis,
studying feasibility and effect of constraints as well as trade-off analysis.
NOTE: Do not be intimidated by the formalistic language. Theorganizer is also well known for numero-
logical anecdotes and palindromic diversions. Valuable prizes will be distributed in real-time to those
contributing memorable and noteworthy digressions.

KEYWORDS: Multidimensional Geometry, Multidimensional/ Multivariate Visualization, Infor-
mation Visualization, Parallel Coordinates, Visual & Automatic Data Mining, Intelligent Process
Control & Instrumentation, Nonlinear Modeling, Decision Support.
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VISUALIZATION - An Introduction

** Insight through Images — in the spirit of Hamming’s “we com pute to gain

insight not numbers”. Over half of our sensory neurons are devoted to vision.

A goal of Visualization is to incorporate our tremendous pattern-recognition

ability in our problem-solving loop.

** Emerging Field with Huge Potential – Propelled by Technological Advances

and the need to Visualize the “Unseen”.

** Seminal Report Visualization in Scienti f ic Computing, ACM SIGGRAPH 1987

promoted Scientific Visualization and indirectly Visualization in other fields.

** Techniques are ad hoc and application specific. Roughly speaking the field

consists of a collection of mappings :

Problem(s)Class!Visual Models

** “Escaping flatland is the essential task of envisioning information - for all

the interesting worlds (physical, biological, imaginary,human) that we seek

to understand are inevitably and happily MULTIVARIATE in na ture. Not

flatlands.” – E. R. Tufte preface in Envisioning Information, Graphic Press,

Cheshire, Conn. 1990.
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** Our goal is the visualization of complex problems with many parameters –

Multivariate Visualization or equivalently Multidimensional Visualization we

shall emphasizeInformation Visualization.

** Believe it or not, the fascination with Dimensionality may predate Aristotle

and Ptolemy who argued that space can only have three dimensions. By the

nineteenth century, mathematicians like Riemann, Lobachevsky and Gauss

unshackled our imagination and higher-dimensional and non-Euclidean ge-

ometries came into their own. The intellectual challenge, limited by our 3-

dimensional perceptual experience, and the abundance of multivariate prob-

lems, spawned various methodologies to represent (encode)finite sets of mul-

tivariate data points as indicated in bibliography (APPENDIX A)(It is worth-

while doing a search on WWW for “Multivariate, or Multidimen sional or In-

formation Visualization”).

** What is needed is aconceptual breakthroughto enable the visualization not only

of MultivariateData but also ofRELATIONSwithout Loss of Information.
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MULTIDIMENSIONAL VISUALIZATION

We focus on the leading multidimensional methodology for the visual pre-

sentation of relationships between many variables. It is based on a system of

Parallel Coordinates(abbr. k-coords) and provides a a systematic and rigorous way

of visualizing N-Dimensional geometry. This is in theSpirit o f Descarteswhose co-

ordinate system enables us to tranform relations between 2 and 3 variables (dimen-

sions) to geometric models – their graphs. However, rather than usingorthogonal

axes we place them inparallel for orthogonality “uses up” the plane very fast. It

is Parallelism rather than orthogonality which is the fundamental concept in Ge-

ometry, and contrary to popular belief the concepts are not equivalen. A notion of

angle is required for orthogonality whereas for parallelism what is needed are lines

without points in common.

Based on the experience acccumulated thus far the properties which a desirable

multidimensional visualization methodoly should have arelisted next. You are en-

couraged to contribute your own ideas and requirements.
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WANTED!

A Multidimensional Visualization Methodology which

displays multivariate/multidimensional relations~ without loss of information, and low representational complexity (i.e. for Par-

allel Coordinates the complexity isO(N) while for the common scatterplot ma-

trix it is O(N2)),
which works for any number of dimensions/variables,~~ and treats every variable in the same way,~ enables the object being displayed to be recognized under projective transfor-

mations (i.e. translations, rotations, scaling and perspective),~ such that the properties of the relation uniquely correspond to the properties

of its image, and~ is based on a body of rigorous mathematical and algorithmic results (that is

theorems on how certain objects are displayed rather than adhoc heurestics).
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FORMAL OVERVIEW

This part is for the more mathematicaly inclined.

Don’t let the notation intimidate you!? A RELATIONbetween N real variablesx1;x2; : : : ;xN is a subsetF of RN – the

Euclidean N - Dimensional Space i.e.F � RN.? In order not to lose information we want to map F uniquelyinto a planar pat-

tern i.e. a subset ofR2 – which is a relation betweenx1;x2.? The plan, then, is to construct a mappingJ : 2PN ! 2P2
X IndexSet

where 2A = fB j B� Ag is the power set o f A, which maps subsets ofPN, the

Pro jectiverather than the than Euclidean N - space into subsets of 2-space.

The reasons for using the Projective space as well as theIndex Setwill be ex-

plained shortly.? Further, J should beone�to�oneso thatJ (F1) =J (F2),F1 = F2. By the

way, since thecardinalityof 2PN
and 2P2

are the same, it is in principle possible

to construct anJ satisfying this requirement.? It will be shown that it is possible to construct such a mapping,J , recursively

11



on the dimensionality of the object being represented. Thatis, starting

with points (0-dimensional) – this the non-recursive part directly from the

definition, then successively taking the envelopes of the polygonal lines (1-

dimensional), p-flats (p-dimensional planes0� p� N� 1), then certain hy-

persurfaces. In this the indexing plays a crucial role.? A subsetF of PN is then representedby its image F̄ =J (F). We would like

F̄ to have geometrical properties which will aid our intuition to discover the

properties of the N-dimensional subsetF that it represents. This, of course, is

a cognitive and subjective requirement.

All this formalism will be clarified in the ensuing. There are a couple of miscon-

ceptions, however, that are worth clearing up at this stage.

Occassionaly, mappings between N-space and M-space, whereN > M,

are erroneously referred to as pro jections; but not all such mappings are

pro jections. Specifically, a projection from N to M space takes a point

P(x1;x2; :::;xM;x(M+1); :::;xN) into the point P0(x1;x2; :::;xM). Hence it only has in-

formation about the M variables it retains. So for our purposes, projections are not

desirable since they loseall information about the N-M missing variables. HereJ
is not a projection and, in fact, is not even a point-to-pointmapping. This is par-
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ticularly relevant to scatterplotswhich are a very important technique commonly

used in multivariate visualization. When the number of variables is N, a scatterplot

matrix consists of the N(N� 1)=2 projections of the N variables taken pairwise.

Unfortunately, even such a plethora of projections may loseinformation about the

N-dimensional object it portrays. In 3-D for example, consider the symmetric in-

tersection of 3 cylinders having the same radius r. The 3 pairwise projections of this

object are identical to those of a sphere with radius r, and hence these two relatively

simple objects can not be distinguished by their projections. It is worth coming up

with your own examples.

Also don’t let the name fool you, theProjective Plane, which we will be occas-

sionally mentioning is not related to projective mappings.

PARALLEL COORDINATES – Definition

In the Euclidean plane with xy-Cartesian coordinates, N copies of the real line la-

beled X̄1; X̄2; : : : ; X̄N are placed equidistant (e.g. one unit apart) and perpendicu-

lar to the x-axis. They are the axes of the parallel coordinate system for N-space

all having the same positive orientation as they-axis. A point C with coordinates

(c1 , c2 , . . . ,cN) is represented by the complete polygonal linēC (i.e. the lines of

13



Figure 1: The polygonal lineC represents the point(c1;c2;c3;c4;c5).
which only the local segments are usually shown) whose N vertices are at(i�1;ci)
on the X̄i-axis for i = 1; : : : ;N as shown in Fig. 1. In this way, a 1-1 correspondence

between points in N-space and planar polygonal lines with vertices on the paral-

lel axes is established. The definition is deceptively simple and many people stop

here without realizing the power of Parallel Coordinates which is really a whole

METHODOLOGY.

In Fig. 2 , N = 7 with r = r7 being the required distance. One of the points

shown is the origin though the construction is valid in general.

Here there will be a static display of a multivariate datasetwith 35 parameters

and thousands of data items. Then a set of LandSat data will beexamined showing

14



Figure 2: Constructing the Euclidean Distance between two points.
how feature extraction can be accomplished interactively.

REPRESENTING RELATIONS – START WITH 2-D

What distinguishesk-coords from Nomography, “Profiles”, “Glyphs”, “N-M plots” ,

“Andrews Curves”, “Chernoff’s faces”, etc is the ability to represent and display

not only points but also multivariate relationswithout losing information. We start

our exploration in 2-D not only because it is the simplest, but also because we can

contrast k-coords with Cartesian coordinates.

As we see from Fig. 3 apoint is represented by a lineline. And it is, therefore,

natural to ask “how is a line represented”?
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Figure 3: A Point, (3, -1), in 2-D is represented by a line
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Figure 4: Point ! Line duality in 2-D

17



In Fig. 4, the distance between the parallel axes isd. The line

l : x2 = mx1+b; (1)

is a collection of its pointsA. In turn, the points are represented ink-coords by the

infinite collection of lines Ā on the xy plane. Remarkably, whenm 6= 1 these lines

intersect at the point with xy-coordinates:

l̄ : ( d
1�m

; b
1�m

): (2)

This motivates the tentative (which will be modified as we go along – see Recur-

sive Definition in the previous section) definition on the representation of relations.

Namely, a relation, typically involving infinitely many points, will be represented

by the envelopeof the corresponding infinite family of polygonal lines representing

the points of the relation.

The point (2) represents the linearrelation, Equation (1), and is, in fact, the

envelope of the family of linesĀ. This point, all by itself, suffices to represent the

line for the two parameters m and b specify completely bothl and l̄ . In effect, k-
coords in 2-D induce aPoint 
 Line duality (i.e. mapping points into lines and

vice versa – this is examined more thoroughly in the next section ). But there is a

“little problem” when m= 1. Despite appearances, the point̄l does not “blow up”

asm! 1. Rather, when the limiting process is done carefully, one sees that l̄ goes

18



Figure 5: The x-coordinate of̀depends only on the slope of`
farther out but in the specific direction whose slope isb=d. So lines withm= 1 are

not mapped into a pointbut into a directionand still all the information is there! The

fact that it is a direction tells us that m= 1 while the slope of the direction gives us

the value ofb. What is going on? Well, dualities properly reside in thePro jective

and not the Euclidean Plane. The “directions” are in fact points (called “ideal”) of

the Projective Plane– which will be described shortly. One does not need expertise

in Projective Geometry to dok-coords but awareness is advisable to avoid blunders.
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In Fig. 5 we see an important property of the duality, namely the horizontal

location of l̄ reveals the slope ofl . So parallel lines, having the same slope, are rep-

resented by points on the same vertical line (see Fig. 7) and that enables us to recog-

nize (i.e. “eyeball”) parallelism in k-coords. Further, lines with slope m “meet” at

the ideal point denoted byP∞
m whose imageP∞

m is the vertical line at x = 1=(1�m).
“Let no one ignorant of Geometry enter” .... At entrance to Plato’s Academy

A MODEL OF THE PROJECTIVE PLANE

The Projective Plane can be thought of as the Euclidean Planewith a points at

infinity assigned in every direction. These are the “ideal” points. The ideal point

in the direction with slope m is denoted byP∞
m. It’s image, P∞

m, is the vertical line

at x = 1=(1�m) and which represents all parallel lines with slope m. With the

stereographic projection shown in Fig. 6 to every point of the Euclidean Plane (i.e.

a “regular” point) corresponds a unique point on the hemisphere. Imagining the

limiting process as a point goes farther away from the origin(point of tangency

with the plane) in a constant direction having slope m, yields that an ideal point is

represented by the diameter, on the top disk with direction having slope m. Further,

as shown in Fig 7, Lines map into great semi-circles. Semi-circles representing

parallel lines share thesame diameter(i:e: “meet at the ideal point corresponding
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Figure 6: Model of the Projective Plane

to their direction“).
For a change of pace here we will interactively study a financial dataset. We will

see some occurrences and the significance of the duality in real data. Also we will

discuss the permutations of the axis in the display and discover some surprising

evidence about the gold market.
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Figure 7: Parallel Lines are represented by points on a vertical line
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DETECTING ORTHOGONALITY

With the following two constructions we show that the information on orthogonality

is also preserved ink-coords.

Figure 8: Reflection aboutx = 1=2. Points representing lines with slopem are reflected to points repre-

senting lines with slope 1=m

Figure 9: Circle Inversion and Reflection. Points representing lines with slopem are “inverted”to points

representing lines with slope�m.

Hence the reflection shown in Fig. 8 together with the circle inversion provide

the points representing mutually orthogonal families of lines.
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THE DUALITY AS A LINEAR TRANSFORMATION

In Homogeneous Coordinates

the triple ` : [a1;a2;a3] are the line coordinatesof the line

a1x1 + a2x2 + a3 = 0

which is mapped into the point` : (da2;�a3;a1+a2).
Considering the triples for ` and ` as column vectors yields the

correlation (not to be confused with the same term used in Statistics – In the

language of Projective Geometry this means a linear transformation between

line coordinates and point coordinates):` = A` ; ` = A�1`
where

A = 26666664 0 d 0

0 0 �1

1 1 0

37777775 ; A�1 = 26666664 �1=d 0 1

1=d 0 0

0 �1 0

37777775
and d is the horizontal distance between the parallel axes
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Figure 10: Duality of Transformations

Rotations of a line about a point and translations of a point along a line are dual.

Picture of a square (a), cube in 3-D (b) and Cube in 5-D (c) all having unit side.
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Figure 11: Hypercube Representation in Parallel Coordinates
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\Out of nothing I have created a strange new universe"Bolyai 1823 .... On discovering non-Euclidean Geometry
MULTIDIMENSIONAL LINES

REPRESENTATIONS & CONSTRUCTION ALGORITHMS} A line ` in RN is represented by N � 1 points with two indices

i; j 2 [1; 2; : : : ;N].} There are two common ways to describe lines.} Either in terms of ad jacentvariables :`1;2 : x2 = m2x1 + b2`2;3 : x3 = m3x2 + b3� � �`i�1;i : xi = mixi�1 + bi� � �`N�1;N : xN = mNxN�1 + bN
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} or in terms of a single variable, thebase variablewhich can be taken asx1, i.e.`1;2 : x2 = m1
2x1 + b1

2`1;3 : x3 = m1
3x1 + b1

3� � �`1;i : xi = m1
i x1 + b1

i� � �`1;N : xN = m1
NxN + b1

N} The N�1 indexed points (in homogeneous coordinates) are :} in the first case `i�1;i = ((i�2)(1�mi) + 1; bi; 1�mi) ;} and in the second case `1;i = (i�1; b1
i ; 1�m1

i ) :
The indexingof the points is an essential part of the representation and it is

crucially used in the subsequent algorithms. Though the indexing is often not shown

to save display space, it needs to be accessible.
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Figure 12: Interval on a line inR10

The polygonal lines through all the points represent pointson on the line with

the heavier polygonal lines indicating the endpoints. The points shown here rep-

resenting the line correspond to the adjacent variables parametrization. Here the

indexing, of the points representing the line, can be found from the intersecting seg-

ments of the polygonal line. For example, if¯̀1;2 was shown it would lie to the right

of the X2 axis, ¯̀
7;8 lies between theX7 and X8 axes etc.

29



Figure 13: Collinearity of the points̀̄i; j ; ¯̀
j ;k ; ¯̀

i;k.
The three point collinearity property plays a fundamental role in the represen-

tation algorithms for higher dimensional objects. It is found by an application of

Desargues theorem of Projective Geometry . The two triangles shown are in per-

spective with respect to the ideal point in the vertical direction.
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Figure 14: The point̀̄2;5 found by construction

For a line ` in RN the linear relation between any pair of variables can be found

geometricalyfrom the N�1 points representing the line. Here¯̀
2;5 is constructed as

the intersection of the segments joining the coordinates oftwo points (on the line)

on the X̄2 and X̄5 axes.

Figure 15: Rotation of a line about one of it’s points
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“It was recently discovered that the rings of Saturn are madeof lost airline

luggage ... that’s why more of them are discovered every week!”

DISPLAYING AIR TRAFFIC INFORMATION

Figure 16: Path(left) and trajectory(Right) of an aircraft

The 3-D picture shows the path and position while the polygonal line in parallel

coordinates shows the position at a given time. The pointT : 1 represents the linear

relation between timeT and the X1-coordinate while 1 : 2 and 2 : 3 represent the

path, i.e. the pairwise linear relation betweenx1 ; x2 ; x3 .
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Figure 17: Closest approach of two aircraft

The time at which this occursand their corresponding positions. On the four

parallel axes a polygonal line shows the time, value on the T-axis, when the two

positions in ( x1 ; x2 ; x3 ) is attained.
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Figure 18: Two aircraft flying the same path with the same velocity

Note that the 1 : 2 ; 2 : 3 points indicated by boxes (these are thel ’s) are shared

indicating that the paths in 3-D are the same. When that occurs, the leftmostT : 1

corresponds to the greater speed. Here the airplanes have the same velocity since

the two T : 1 points have the same horizontal position.
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Figure 19: Angular deviations for assigned trajectories

A deviation of�θ degrees transforms into a lateral deviation centered aboutthe

appropriate point. Here a deviation of�5 degrees in ground heading is shown when

x3 is the altitude scale.
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DISTANCE & PROXIMITY PROPERTIES

INTERSECTIONS

∇ The pair of lines `; `0 given by`;`1i : xi = mix1 + bi`0; `01i : xi = m0
ix1 + b0i;

i = 2; : : : ;N
∇ and represented in xy-coordinates by the points`1i : x = i�1

1�mi
; y = bi

1�mi

`01i : x = i�1
1�m0

i
; y = b0i

1�m0
i

∇ intersect with `\ `0 = P,
αi = b0i�bi

m0
i �mi

= p1 ; 8i = 2; : : : ;N
∇ where x1(P) = p1.

∇ Analogous criteria exist for different parametrizations.
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Figure 20: Two lines intersecting inR5 - first example

Common parameter isx1. One line, ` is represented by the points̀ 1i and the

other, `0 by `01i for i = 2; 3; 4; 5. The two lines intersect, the linesP
1i, joining `1i

and `01i, intersect at the same point of thex1-axis. The polygonal line represents the

point of intersection.
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Figure 21: Two lines intersecting inR5 - second example

Here the representation is based on consecutive adjacent pairs of coordinates.

The two lines,̀ ; `0 are represented by the points̀ i ; i+1 and `0i ; i+1 i = 1; 2; 3; 4. The

two lines intersect, the line P
i;i+1, joining `i ; i+1 and `0i ; i+1, intersects thexi-axis

at the same point as the linePi+1;i+2, joining joining `i+1 ; i+2 and `0i+1 ; i+2, for all i.

The polygonal line shown represents the point of intersection.
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“Law of Attraction of Unfortunate Events”

“Unfortunate events tend to attract others of their kind.”.......................

MINIMUM DISTANCE BETWEEN TWO LINES4 For the pair of lines ` , `0 previously described in terms of the base variablex1,4 the L1 distance between two points one on each of the lines is given by :

L1(x1) = N

∑
i=2

j xi �x0i j= N

∑
i=2

j ∆mi j j x1�αi j4 The minimum of L1(x1) occurs at anx1 = αi.4 The value ofx1 at which the minimum Euclidean distanceL2 occurs is

α� = ∑αi∆m2
i

∑∆m2
i

where the summation is only over those values ofi where ∆mi 6= 0.4 It turns out that the minimum L1 occurs very close or atα�.
For comparison the minimum L2 distance occurs atx1 = α�. The j ∆mi j are

added on the bar chart (to the right of thex6 axis) in the order 6; 2; 4; 3; 6 obtained

from the order of increasing α (as shown on thex1-axis). TheI where the mid-point

value of the∑ j ∆mi j occurs provides the correctx1 = αI . Here j ∆4 j dominates the

sum yielding I = 4.

All joint intercepts are equal.
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Figure 22: Findingx1 = αI minimizing theL1 distance between two lines

Figure 23: Here theL1 andL2 minima coincide
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Figure 24: Intersecting lines in 4-D

Y

X

T̄ X̄1 X̄2 X̄3

¯̀
T3

¯̀0
T3

¯̀
T2

¯̀
T2

¯̀
T1

¯̀0
T1

D = 20 T = .9

Figure 25: Non-intersection between two lines in 4-D. Here the minimum distance is 20 and occurs at time

= .9. Note the maximum gap on thēT-axis formed by the lines joining thè̄’s with the same subscript.

The polygonal lines representing the points where the minimum distance occurs are shown.
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Y

X

T̄ X̄1 X̄2

D = 10 T = 1.6

¯̀
T1

¯̀0
T1

¯̀
T3

¯̀0
T3

¯̀
T2

¯̀0
T2

X̄3

Figure 26: Non-intersection between two lines in 4-D. Here the minimum distance is 10 and occurs at time

= 1.6. Note the the diminishing maximum gap on theT̄-axis formed by the lines joining thè̄’s with the

same subscript and compare with Fig. 25. The polygonal linesrepresenting the points where the minimum

distance occurs are shown.

Y

X

T̄ X̄1 X̄2 X̄3

¯̀
T1

¯̀0
T1

¯̀
T2

¯̀0
T2

¯̀
T3

¯̀0
T3

D = 1.5 T = 1.8

Figure 27: Near intersection between two lines in 4-D. Here the minimum distance is 1.5 and occurs at

time = 1.8. Note the the diminished maximum gap on theT̄-axis formed by the lines joining thè̄’s with

the same subscript. The polygonal lines representing the points where the minimum distance occurs are

shown.
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“Law of Inopportune Timing”

“If a fortunate event occurs at all it tends to happen a bit toosoon or a bit too late”

CONFLICT DETECTION & RESOLUTION FOR AIR TRAF-

FIC CONTROL

THE BASIC ALGORITHM

Figure 28: Protected airspace in 3-D
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Figure 29: Determining the front and back scrapes

At t = 0 all particles on the vertical line x1 = p0
1k are poised to move with the

same velocity asACk. Particles which just scrape the circle from the front (i.e.start-

ing at x2 = f 0
ik) and back (i.e. starting atx2 = b0

ik define thelimiting tra jectories.

Here there is a conflict betweenACk and ACi since f 0
ik < p0

2k < b0
ik.

Figure 30: The limiting trajectories (scrapes) information in parallel coordinates

The ordinates of the pointsP21 and P22 are the coordinates of the intersection of

Bik with the conflict parallelogram.
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Figure 31: Relation Between Maneuver-Speed and Turn-Angle

Maneuver with no speed changecan be done with turn angleα. Turn angles

greater or less thanα require a slower or faster speed respectively thanjVk j.
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RESOLUTION OF A CONFLICT SCENARIO

Figure 32: Six aircraft from scenario flying at the same altitude

Initial positions (T = 0 sec.) and circles centered at each aircraft with radius 2.5

nm (5 nm separation standard) are shown to scale with arrows representing velocity

vectors.

Figure 33: Conflicts among the six aircraft

A conflict occurs when the separation between any two aircraft is less than 5 nm

(i.e. two circles intersect). Several conflicts occur within the first 5 minutes (time

elapsed in seconds is indicated in the lower left hand corner).
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Figure 34: Conflict intervals (CI)

Using the data of conflict scenario theCI1k ; k = 2;3;4;5;6 (i.e. of aircraft

2,3,4,5,6 versus 1 ) are plotted. Vertical scale units of distance are representing

specific paths parallel to those of aircraft 1. Times shown indicate entry and exit

from corresponding conflict parallelogram.

Figure 35: Conflict Parallelograms

Parallelograms are with respect to aircraft 4 where the two dashed lines (repre-

senting the “particle” lines) intersect and for circles whose radius isdoubled.
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Figure 36: Three pairs of tangent circles

Resolution with equal speed parallel offset maneuvers.

Figure 37: Triple tangency

Scraping circles indicate that the minimum displacement from original course is

used.
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Figure 38: Resolution in 3 dimensions

Aircraft are at different altitudes and the protected spaceis cylindrical.
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Planes, Flats & Hyperplanes

REPRESENTING HYPERPLANES WITH VERTICAL LINES

Figure 39: InP3 planes are represented by two vertical lines and a polygonalline A

This generalizes to N-dimensions where hyperplanes are represented by N-1 par-

allel lines and a polygonal line representing one of its points.

Figure 40: Set of coplanar on a regular grid points in 3-D
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EXAMPLE – INDUSTRIAL DATA

Figure 41: Industrial Data. Note pattern between the variables R111 and R112

Figure 42: Enlarged R111 - R112 portion of previous plot

Figure 43: R111 vs. R112 linear relation between these 2 and another parameter
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DUALITY BETWEEN TRANSLATIONS OF A POINT ALONG A LINE AND ROTA TIONS OF

A LINE ABOUT A POINT

`
P1

P2

x1

x2

x3Y2

Y1

π

X̄1 X̄2 X̄3

Ȳ1 Ȳ2

X

Y

P̄1

P̄2

¯̀
23

¯̀
12

η̄12

Ȳ2
12

Ȳ1
23

Ȳ2
23Ȳ1

12

Figure 44: A linè on a planeπ is represented by one point̄η12 in terms of the planar coordinates̄Y1 and

Ȳ2 which is collinear with it’s two point̄̀ 12 and ¯̀
23.
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`
P1

P2

x1

x2

x3Y2

Y1

π

X̄1 X̄2 X̄3

Ȳ1 Ȳ2

X

Y

P̄1

P̄2

¯̀
23

¯̀
12

η̄12 π�η̄�12

Ȳ�
1 Ȳ�

2

Figure 45: Rotation of a plane about a line$ Translation of a point along a line.
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REPRESENTING FLATS BY INDEXED POINTS

From Ph. D. Thesis of J. Eickemeyer @ UCLA~ A p� f lat in RN specified byN� p linearly independent equations of the form

:~
πi1:::i(p+1) :

p+1

∑
k=1

cik
xik

= co~ can be represented by the(N� p)� p points :~
π i�1:::i�(p+1) : (p+1

∑
k=1

d�ikcik
; co ; p+1

∑
k=1

cik
)

for O� p< N~ where

1. each variablexi appears ontwo parallel axesXi and X0
i,

2. d�i is the distance from the y-axis to theX�
i axes,

3. Permutations such asi1i2 : : : iq consists of unique integers in[1; 2; : : : ;N],
4. and i�k = ik when j � k or i�k = i0k for j > k:

54



DETECTING RANDOMLY CHOSEN COPLANAR POINTS

Figure 46: On the first 3 axes a set of randomly chosed coplanarpoints is shown

Figure 47: Coplanarity

From the points in Fig. 46 the two point representation of thelines is constructed.

The lines on these points form the pencil of lines shown in Fig. 47 – this occurrs only

the original points are coplanar.

55



Figure 48: A plane in 3-dimensions is represented by 2 points

Second point is generated by translating theX1 to the X
0
1 axis and repeating the

process.

Figure 49: Four points generated from the coplanar points

The points are generated with theX0
i (i = 1;2;3) axes.
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Figure 50: Reading the equation of a plane from its representation

A plane π : c1x1 + c2x2 + c3x3 = co. The coefficients are the distances between

adjacent (by indices) points.

Figure 51: Randomly chosed points on an approximate plane (“slab”) in 3-dimensions on left 3 axes
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Figure 52: Approximate coplanarity obtained using the points shown in Fig. 51.

Figure 53: The point clusters indicating the approximate plane – from the points shown in Fig. 51.
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Figure 54: Detection of several approximate planes (slabs)

Starting from a set of points, represented by polygonal lines, lines are formed.

No pattern is seen since points are not from a single slab.

Figure 55: Detecting several slabs from randomly chosen points
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A histogram giving the number of intersections per point.

Figure 56: Original points belonged to 3 slabs

Histogram is queried for points with more than 2 hits.

HIGHER DIMENSIONAL EXAMPLES

Figure 57: Points (0-flats) on an approximate hyperplane in 6-dimensions
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Figure 58: Portions of Lines (1-flats) formed from the previous points

No “structure” is evident

Figure 59: Portions of planes (2-flats) formed from the previous lines

Again no pattern is seen.
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Figure 60: Portions of 3-Flats formed from the previous 2-flats

No apparent “structure”

Figure 61: Portions of 4-Flats formed from the previous 3-flats

Pencil of lines showing that the original points are very near to a hyperplane

(5-Flat) in 6-dimensions.
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Figure 62: Points representing the hyperplane inR6

Repeating the process in terms of the auxiliary axesX0
i ; i = 1;2; : : : ;6 yields the

points representing the hyperplane. As in the 3-D example the distance between ad-

jacent by index pair of points provides the coefficients of the hyperplanes equation.

Figure 63: Detecting points belonging to several slabs in 5-D

Portions of 4-flats formed from original set of 5-D points.
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Figure 64: Number of intersections per position

Figure 65: Two “hits” with more than 1 intersection. Points are ontwohyperplanes
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MORE ADVANCED DATAMINING

Visual Data Mining

Selected Examples – an effort will be made to match the audience’s interests

A Geometric Classifier

Classification is a basic task in data analysis and pattern recognition and an al-

gorithm accomplishing it is called a Classifier. The input isa datasetP and a

designated subsetS. The output is a characterization, that is a set of conditions

or rules, to distinguish elements ofS from all other members of P. With paral-

lel coordinates a datasetP with N variables is transformed into a set of points in

N-dimensional space. In this setting, the designated subset S can be described by

means of a hypersurface which encloses just the points ofS. In practical situations

the strict enclosure requirement is dropped and some pointsof S may be omitted

(“false negatives”), and some points ofP�S are allowed (“false positives”) in the

hypersurface. The description of such a hypersurface is equivalent to the rule for

identifying, within some acceptable error, the elements ofS. This is thegeometrical

basis for the classifier presented here. The algorithm accomplishing this entails:
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} use of an efficient “wrapping” algorithm to enclose the points of S in a hyper-

surface S1 containing S and typically also some points ofP�S; so S� S1, of

course such anS1 is not unique.

the points in (P�S)\S1 are isolated and the wrapping algorithm is applied to

enclose them, and usually also a few points ofS1, producing a new hypersur-

faceS2 with S� (S1�S2),}} the points in Snot included in S1�S2 are next marked for input to the wrap-

ping algorithm, a new hypersurfaceS3 is produced containing these points as

well as some other points inP� (S1�S2) resulting in S� (S1�S2)[S3,} the process is repeated alternatively producing upper and lower containment

bounds for S; termination occurs when an error criterion (which can be user

specified) is satisfied or when convergence is not achieved.

It can and does happen that the process does not converge whenP does not

contain sufficient information to characterize S. It may also happen that S is so

“porous” (i.e. sponge-like) that an inordinate number of iterations are required.

On convergence the output is a description of the hypersurface containing S the

rule is given in terms of the minimum number of variables needed to describeS

without loss of information. Unlike other methods, like the Principal Component
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Analysis (PCA), the classifier discards only the redundant variables. It is impor-

tant to clarify this point. A subset Sof a multidimensional setP is not necessarily of

the same dimensionality asP. So the classifier finds the dimensionality ofS in terms

of the original variables and retains only those describingS. That is, it finds the

basisin the mathematical sense of the smallest subspace containing S, or more pre-

cisely the current approximation for it. This basis is the minimal setMr of variables

needed to describeS. We call this dimensionality selection to distinguish it from

dimensionality reductionwhich is usually donewith loss of information. Retaining

the original variables is important in the applications where the domain experts

have developed intuition about the variables they measure.The classifier presents

Mr ordered according to a criterion which optimizes the clarity of separation. This

may be appreciated with the example provided in the attachedfigure, in addition.

The implementation allows the user to select a subset of the available variables

and restrict the rule generation to these variables. In certain applications, as in

process control, not all variables can be controlled and hence it would be useful

to have a rule involving such variables that are “accessible” in a meaningful way.

There are also two options available :

� either minimize the number of variables used in the rule, or
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� minimize the number of steps, in terms of the unions and (relative) comple-

ments, in the rule.

The classifier provides:� an approximate convex-hull boundary for each cavity is obtained,� utilizing properties of the representation of multidimensional objects in k-
coords, a very low polynomial worst case complexity ofO(N2jPj2) in the num-

ber of variables N and dataset sizejPj is obtained; it is worth contrasting this

with the often unknown, or unstated, or very high (even exponential) complex-

ity of other classifiers,� an intriguing prospect, due to the low complexity, is that the rule can be de-

rived in near real-time making the classifier adaptive to changing conditions,� the minimal subset of variables needed for classification isfound,� the rule is given explicitly in terms of conditions on these variables, i.e. in-

cluded and excluded intervals, and provides “a picture” showing the complex

distributions with regions where there is data and “holes” with no data; that

can provide significant insights to the domain experts,
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Figure 66: The monkey dataset showing the separation achieved by two of the 9 out 32 parameters obtained

from the dimensionality selection.

The dataset chosen to illustrate has two classes to be distinguished consisting of

pulses measured on two types of neurons in a monkey’s brain (poor thing!). There

are 600 samples with 32 variables. Remarkably, convergencewas obtained and
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required only 9 of the 32 parameters. The resulting orderingshows a striking sep-

aration. In the attached figure the first pair of variables x1;x2 originally given is

plotted showing no separation. In the adjoining plot the best pair x11;x14, as chosen

by the classifier’s ordering, shows remarkable separation.The result shows that

the data consists of two “banana-like”1 clusters in 9-D one (the complement in this

case) enclosing the other (class for which the rule was found). Note that the clas-

sifier can actually describe highly complex regions. It can build and “carve” the

cavity shown. It is no wonder that separation attempts in terms of hyperplanes or

nearest-neighbor techniques can fail badly on such datasets. The rule gave an error

of 3.92 % using train-and-test with 66 % of the data for training).

1Perhaps the monkey was dreaming about bananas during this fateful experiment ...
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CURVES

point-curve 7! line-curve– envelope of it’s tangents.

Conics map into conics in six different ways.

Figure 67: Ellipses always map into hyperbolas. Each assymptote is the image of a point where the tangent

has slope 1.

Figure 68: A parabola whose ideal point does not have direction with slope 1always transforms to a

hyperbola with a vertical assymptote. The other assymptoteis the image of the point where the parabola

has tangent with slope 1.
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Figure 69: A parabola whose ideal point has direction with slope 1 transforms to a parabola - self-dual.

Figure 70: Hyperbola to ellipse – dual of case shown in Fig. 67
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Figure 71: Hyperbola to parabola. This occurs when one of theassymptotes has slope 1 – dual of case

shown in Fig. 68

.

Figure 72: Hyperbola to hyperpola – self-dual case.
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Algebraic Curves

From M.Sc. Thesis Tsur Itshakian, CS Dept. Tel Aviv Univ. 2001

Degreen 7! n(n�1) and less when there are singularities. An efficient algorithm

was found which gives the exact equation of the image even forimplicitly defined

polynomials. Here a mappingpoint-curve 7! point-curve is used which overcomes

the over-plotting problem.

x2

x1

x2x1

y

x

Figure 73: A 3rd degree curve with singularity maps to another 3rd degree curve.
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Figure 74: A 3rd degree curve with different singularity maps into a 4th degree curve.
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Generalized conics – Gconics

Like conics, gconics map into gconics in 6 different ways

Figure 75: Gconics - three types of sections: (left) boundedconvex setbc, (right) unbounded convex set

ucand (middle) hyperbola-likegh regions.

Figure 76: Generalization of Fig. 67 —bc to gh.
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Figure 77:uc to uc– self-dual

Figure 78:uc to gh
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Figure 79:gh to bc.

Figure 80:gh to gh – self-dual
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Further Dualities

Figure 81: Cusps are transformed into inflection points

Figure 82: DualityCusps$ In f lection Points
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Operational Dualities and Convexity Algorithms

Figure 83: Interior and boundary points of bounded convex set

Figure 84: Convex-Hull construction

The boundary of thegh of a set of points corresponds to it’s CONVEX-HULL.
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Figure 85: Convex Union ofbcs corresponds to the Outer Union of their imagesghs.

Figure 86: Inner Intersection and Intersection are Dual.
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LINE NEIGHBORHOODS

A Topologoly for proximity of flats

How can measure “closeness” between lines and more general between planes?

Figure 87: A family of line transformations

Fixing r and varying Θ defines a family of lines tangent to the circle whose paral-

lel coordinate representation is a hyperbola while fixingΘ and varying r produces

vertical lines.
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Figure 88: Line neighborhood in orthogonal(doesn’t work) and parallel coordinates. The unbounded

region (on the right) is replaced by a bounded one.

Figure 89: Several line neighborhoods. Here the transformed neighborhoods are distinct.
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HYPERSURFACES

Figure 90: A sphere inR5 centered at the origin (0,0,0,0,0).

Interior Point Construction Algorithm

Figure 91: The polygonal line represents the point found interior to the Hyperellipsoid in 6-D. The same

algorithm applies to any piecewise convex hypersurface.
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Application to Process Control and Intelligent Instrumentation

Figure 92: Finding a Feasible Point – state of the system – fora Process Represented by the Hypersurface.

A process being a relation among several variables can be represented by a hypersurface. A feasible state

of the system involved corresponds to an interior point of the hypersurface – since all the constraints

are satisfied simultaneously. The intermediate envelopes on both sides of the polygonal line indicate the

local curvature of the hypersurface in a neighborhood of thepoint. Notice that hereX13 ; X14 ; X15 are

the critical variablessince the available ranges involved – for maintaining control – are the narrowest.

The display shown can serve as the systems intrumentation. As a value of a variable is fixed the display

provides theavailable rangefor the remaining variables.
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DETECTING CONVEX POLYTOPES

Ph.D. thesis A. Chatterjee @ USC
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Figure 93: Adjacency relationship of the 2-faces of the convex 3-polytope in Parallel Coordinates

The 123 representation of the 6 2-flats containing the 6 2-faces of the 3-polytope is shown. The 3-polytope

in this example being convex, all the adjacency relationships are represented by line segments.
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Figure 94: Adjacency relationship of the 2-faces of the non-convex 3-polytope in Parallel Coordinates

The 123 representation of the 6 2-flats containing the 6 2-faces of the 3-polytope is shown. The 3-polytope

in this example being non-convex has some adjacency relationships (π4
123 andπ5

123, π5
123 andπ6

123, π6
123

andπ4
123 ) which are represented by lines instead of line-segments.
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Representing surfaces by their tangent planes – see also next section.
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Figure 95: A Sphere in 3-D represented by its tangent planes (points). The hyperbolic pattern of the

envelopes indicates that the object isconvex.

The conjecture is that with the tangent plane representation convex objects in N-D are represented by

generalized hyperbolas – see gconics.
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REPRESENTING SURFACES IN TERMS OF THEIR

TANGENT PLANES

Chao-Kuei Hung @ USC

DEVELOPABLE SURFACES – QUADRICS

CONICS! CONICS

Figure 96: Representation is a pair of ellipses

Cone vertex is (0,0,1), axis vector is (6,8,7), circle center is at (6,8,8), radius is 5.
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Figure 97: Representation is a pair of parabolas

Cone vertex is (0,0,1), axis vector is (-0.6,0.8,5), circlecenter is at (-0.6,0.8,6), radius is 7.

Figure 98: Representation is a pair of hyperbolas

Cone vertex is at (0,0,1), axis vector is (6,8,7), circle center is at (6,8,8), radius is 1.
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Figure 99: Representation is a pair of hyperbolas

Representation of cylinder with axis defined by the points (2,2,2), (2,3,3), radius is 5.

Ruled Surfaces

X

Y

Z

X

Y

X2 X3 X1’

 

Figure 100: Hyperbolic paraboloid - Sampling along rulingsgives meshes of straight lines – self-dual.
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VISUAL & COMPUTATIONAL DECISION SUPPORT SYSTEMS

Finally we illustrate the methodology’s ability to model multivariate relations in

terms of hypersurfaces – just as we model a relation between two variables by a

planar region. Then by using the interior point algorithm, with the model we can

do trade-off analyses, discover sensitivities, understand the impact of constraints,

and in some cases do optimization. For this purpose we shall use a dataset consisting

of the outputs of various economic sectors and other expenditures of a particular

(and real) country. It consists of the monetary values over several years for the

Agricultural, Fishing, and Mining sector outputs, Manufacturing and Construction

industries, together with Government, Miscellaneous spending and resulting GNP;

eight variables altogether. We will not take up the full ramifications of constructing

a model from data. Rather, we want to illustrate howk-coords may be used as a

modeling tool. Using the Least Squares technique we “fit” a function to this dataset

and we are not concerned at this stage whether the choice of function is a “good”

choice or not. The function we obtained bounds a region inR8 and is represented

by the upper and lower curves shown in Fig. 101.

The picture is in effect a simplisticvisualmodel of the country’s economy, incor-

porating it’s capabilities, limitations and interelationships among the sectors etc. A
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Figure 101: Model of a country’s economy

point interior to the region, satisfies all the constraints simultaneously, and there-

fore represents (i.e. the 8-tuple of values) afeasible economic policyfor that country.

Using the interior point algorithm we can construct such points. It can be done in-

teractively by sequentially choosing values of the variables and we see the result

of one such choice in Fig. 101. Once a value of the first variable is chosen (in this

case the agricultural output) within it’s range, the dimensionality of the region is
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reduced by one. In fact, the upper and lower curves between the 2nd and 3rd

axes correspond to the resulting 7-dimensional hypersurface and show theavail-

able range of the second variable (Fishing) reduced by the constraint. In fact, this

can be seen (but not shown here) for the rest of the variables.That is, due to the

relationship between the 8 variables, a constraint on one ofthem impacts all the

remaining ones and restricts their range. The display allows us to experiment and

actually see the impact of such decisions “downstream”. By interactively varying

the chosen value for the first variable we found, that it not possible to have a policy

that favors Agriculture without also favoring Fishing and vice versa.
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Figure 102: Competition for labor between the Fishing & Mining sectors – compare with previous figure94



Proceeding, a very high value from the available range of Fishing is chosen and

it corresponds to very low values of the Mining sector. By contrast in Fig. 101 we

see that a low value in Fishing yields high values for the Mining sector. This inverse

correlation was examined and it was found that the country inquestion has a large

number of migrating semi-skilled workers. When the fishing industry is doing well

most of them are attracted to it leaving few available to workin the mines and vice

versa. The comparison between the two figures shows thecompetition for the same

resourcebetween Mining and Fishing. It is especially instructive todiscover this

interactively. The construction of the interior point proceeds in the same way.

A theorem guarantees that a polygonal line which is in-between all the inter-

mediate curves/envelopes represents an interior point of the hypersurface and all

interior points can be found in this way. If the polygonal line is tangent to anyone of

the intermediate curves then it represents aboundary point, while if it crosses any-

one of the intermediate curves it represents anexterior point. The later enables us to

see, in an application, the first variable for which the construction failed and what is

needed to make corrections. By varying the choice of value over the available range

of the variable interactively, sensitive regions (where small changes produce large

changes downstream) and other properties of the model can beeasily discovered.
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Once the construction of a point is completed it is possible to vary the values of

each variable and see how this effects the remaining variables. So one can dotrade-

off analysisin this way and provide a powerful tool for, Decision Support, Process

Control and other applications. As new data becomes available the model can be

updated with the Decision Making being based on the most recent information.
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APPENDIX A – BIBLIOGRAPHY ON

MULTIVARIATE MULTI-DIMENSIONAL

VISUALIZATION
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