
Diplomarbeit

Konzeption und Implementierung eines
Neuro-Fuzzy-Datenanalysetools in Java

(Design and Implementation of a
Neuro-Fuzzy Data Analysis Tool in Java)

von

cand. inform. Ulrike Nauck

Technische Universität Braunschweig

Institut für Betriebssysteme und Rechnerverbund

Aufgabenstellung und Betreuung:

Prof. Dr. R. Kruse

Braunschweig

03.01.1999

Kurzfassung
In dieser Diplomarbeit wird NEFCLASS-J vorgestellt, eine Implementierung des
NEFCLASS-Modells. NEFCLASS ist ein Neuro-Fuzzy-Ansatz zur Klassifikation von
Daten. NEFCLASS-J wurde in der Programmiersprache Java entwickelt, die auf objekt-
orientierten Konzepten beruht und die Unabhängigkeit von einer bestimmten Plattform
garantiert. Das Neuro-Fuzzy-Modell NEFCLASS umfaßt Lernverfahren zur Bestimmung
der Struktur (Regelbasis) und der Parameter (Fuzzy-Mengen) eines Fuzzy-Klassifikators
auf der Grundlage von Daten. Das Ziel des Ansatzes besteht darin, interpretierbare Klassi-
fikatoren zu erzeugen. Daher werden die Lernverfahren mittels Constraints eingeschränkt,
die je nach den Bedürfnissen der in Betracht gezogenen Anwendung ausgewählt werden
können. NEFCLASS-J ist eine Erweiterung vorangegangener Implementierungen des
NEFCLASS-Modells für MS-DOS PC bzw. Unix-Workstations. Die neuen Funktionen
des Softwarewerkzeuges umfassen Batch Learning, automatische Kreuzvalidierung, auto-
matische Bestimmung des Umfangs der Regelbasis, Behandlung fehlender Werte und au-
tomatische Reduktion (pruning) des Klassifikators, um seine Interpretierbarkeit zu
erhöhen. Weiterhin wurde eine vollständig neue Bedienoberfläche entwickelt, die sich in
Aussehen und Bedienung an Standardsoftware anlehnt.

Abstract
In this thesis NEFCLASS-J, a new implementation of NEFCLASS - a neuro fuzzy
approach for classification of data, is presented. NEFCLASS-J is written in Java, a
platform-independent object-oriented programming language.The neuro-fuzzy
classification model NEFCLASS offers learning algorithms to create the structure (rule
base) and the parameters (fuzzy sets) of a fuzzy classifier from data. The aim of the
NEFCLASS approach is to create interpretable classifiers. Therefore the learning
algorithms use contraints which can be selected according to the requirements of the
application of interest. NEFCLASS-J extends previous implementations of the
NEFCLASS model for MS-DOS PC or Unix workstations. The new features offered by
the new tool are batch learning, automatic cross validation, automatic determination of the
rule base size, handling of missing values, and automatic pruning of a classifer to reduce
its size and to increase its interpretability. In addition a complete new graphical user
interface was developed that provides a look and feel of standard software applications.

Contents

Introduction . 1

1 Neuro-Fuzzy Systems. 3

1.1 Classification with Fuzzy Systems . 4
1.1.1 Fuzzy Sets. 5
1.1.2 Fuzzy Rules. 7

1.2 Neural Networks . 8
1.2.1 A Generic Model of Neural Networks. 9
1.2.2 The Multilayer Perceptron. 12
1.2.3 The Backpropagation Algorithm. 14

1.3 Neuro-Fuzzy Systems . 17

2 The NEFCLASS Model . 22

2.1 The Structure of the NEFCLASS Model . 22

2.2 Learning a Rule Base - The Algorithm . 24

2.3 Training Fuzzy Sets - The Algorithm . 27

2.4 Pruning the Rule Base . 31

3 Java for NEFCLASS . 33

3.1 The NEFCLASS-Tool . 33

3.2 The Java Language . 34

4 Experiments with NEFCLASS-J . 36

4.1 The Wisconsin Brest Cancer (WBC) Data Set . 37

4.2 The Experiment . 39
4.2.1 Automatically Create a Classifier and then Prune It 39
4.2.2 Use a Certain Number of Rules to Create the Classifier. 43
4.2.3 Cross Validation of the Classifier. 47

4.3 Comparison of Different Approaches . 49

4.4 Conclusion . 51

iv Contents

5 How to Use NEFCLASS-J . 52

5.1 The Training Data Set . 52

5.2 Guided Tour through NEFCLASS-J . 53
5.2.1 The Philosophy. 57
5.2.2 Create a Project. 59

5.2.4 Use Prior Knowledge. 81
5.2.5 Pruning the Rule Base. 83

5.3 Strategies to Create a Classifier . 84

5.4 The Main Menue . 84

5.5 The Files of a NEFCLASS Project . 89
5.5.1 The Data File. 89
5.5.2 The Parameter File. 91
5.5.3 The Network File. 91
5.5.4 The Training Protocol File. 91
5.5.5 The Result File. 92

6 The Structure of NEFCLASS-J . 93

6.1 The Graphical User Interface . 93

6.2 The Data Structure of the NEFCLASS Model . 96

6.3 Training Data . 99

6.4 Utility Classes. 99

7 Conclusion . 100

References. 102

Introduction

In a time of world wide computerisation and data collection not only computer scientists
have the problem to handle data bases. Simultaneously the variety of problems in data
analysis increase. The traditional statistical methods are powerfull, but they are often based
on assumptions that do not hold for the real world data and the results can be hard to
interpret. They come up with a high precision which may not be necessary in any case but
can cost a lot. Furthermore there is need for fundamental mathematical knowledge to use
these approaches. There are many questions in the scientific and economical world that are
wished to be answered with low costs and sufficient precision.

The kind of questions this thesis deals with are classification problems. Classification of
customer data, for instance, is an important data analysis problem for modern companies.
It is, for example, necessary to know if a customer may be interested in a certain mailing,
if certain services should be offered to him, or if there is a danger that he might cancel the
contract. The task is to develop a classifier out of a data file. The development-tool should
be easy to understand and to use, the development of the classifier should not cost too
much effort and the validation of the classifier should be possible. Furthermore the
classifier should be interpretable, because it is not only the question to which class a
pattern belongs, but also why it belongs to it.

There are soft computing methods which take these demands into consideration. The term
soft computing was coined by Lotfi A. Zadeh, the founder of fuzzy logic. Soft computing
includes approaches to human reasoning that try to make use of the human tolerance for
incompleteness, uncertainty, imprecision and fuzziness in decision making processes
[NAUCK ET AL 97].

The model used here is the neuro-fuzzy system. These systems combine the learning ability
of neural networks and the ability of fuzzy systems to handle linguistic rules. These are
qualities needed to develop a tool which is able to create a classifier out of data by
learning, and on the other hand is able to ensure a certain interpretability with the help of
linguistic rules. Furthermore, prior knowledge can be inserted in form of linguistic rules.
The neuro-fuzzy approach is described in the first chapter.

The resulting development-tool is NEFCLASS-J, which is short for NEuro Fuzzy
CLASSification programmed in Java. There are previous tools like NEFCLASS-X
[HOFERICHTER 96 / BODE 97], a tool for Unix systems and NEFCLASS-PC [UNAUCK 97],
a system developed in Pascal convenient for MS-DOS/Windows PC. NEFCLASS-J can be
seen as an extension of NEFCLASS-PC, but there are some completely new features and
the graphical interface changed completely. It is adapted now to the graphic interfaces of
Windows and Unix X-Terminals. In Chapter 2 the NEFCLASS model is described on
which this tool is based.

2 Introduction

In order to get a platform independent NEFCLASS-Tool Java was chosen as the
programing language. In Chapter 3 the existing NEFCLASS-Tools are compared to
NEFCLASS-J and the benefits of the Java language and the development kit are depicted.

In Chapter 4 some experiments to test the performance of the NEFCLASS-J algorithms are
described. For the experiments the ‘Wisconsin brest cancer’ (WBC) data set is used. A
classifier is created where the size of the rule base is determined automatically. This
results in a rule base that covers all patterns of the data set. However, this rule base
consists of a large number of rules. To reduce the size of the rule base in order to get a
more interpretable classifier, an automatic pruning procedure is used. After a promising
rule base is found the cross validation procedure allows statements about the quality of the
classifier. The results of these experiments are compared to the results of other classifiers.

In Chapter 5 NEFCLASS-J is described in detail. In some instance the philosophy of the
tool differs from that of NEFCLASS-PC so that some features may not be recognized by
users of the former tool. So references to NEFCLASS-PC are given when necessary. The
features are introduced in form of a tutorial. In a guided tour it can be learned that
NEFCLASS-J is very easy to use for beginners, because suitable default values are set.
After developing a feeling for the data and the tool, changing parameters, editing and
pruning the rule base is trained. Furthermore the files created by the NEFCLASS tool are
described.

The program structure of NEFCLASS-J is described in Chapter 6. The classes of the
graphical user interface, the NEFCLASS model, the training data and utility classes are
described and the hierarchy of classes is visualized.

The thesis is completed with the conclusion in Chapter 7.

NEFCLASS-J can be obtained
� by anonymous ftp at fuzzy.cs.uni-magdeburg.de in /pub/nefclass
� via World Wide Web at http://fuzzy.cs.uni-magdeburg.de/nefclass

1

Neuro-Fuzzy Systems

Neuro-fuzzy systems are a combiniation of neural networks and fuzzy systems. These two
models have at first their place in independent areas. The connections to each other are
merely marginal but we will see that a combination of both brings benefit for the solution
of many problems.

It was the theory of fuzzy sets with which Lotfi A. Zadeh founded 1965 a computational
approach to human thinking and behavior [ZADEH 65]. Terms like big, small or
approximately are named fuzzy. They are sufficient for communication in daily life but not
for processing with a machine. It is the model of fuzzy systems which offers a
computational representation of these terms. First these systems were successfull in
solving control problems. Up to now fuzzy systems are not only used for control problems
but also used in many other areas. In this thesis they are used for classification.

Experts can do their job without calculating a mathematical model. They normally get the
experience by solving problems. The idea of fuzzy systems is to let the expert specify his
actions in form of linguistic rules. These rules are translated into a framework of fuzzy set
theory providing a calculus which can simulate the behavior of the expert. The translation
into fuzzy set theory is not formalized and arbitrary choices concerning, for example, the
shape of membership functions can be made. These uncertainties in the process of building
a fuzzy system mostly result in a heuristic tuning process to overcome the initial design
errors [NAUCK ET AL 97].

Neural networks are systems that try to make use of some of the known or expected
organizing principles of the human brain. They consist of a number of independent, simple
processors - the neurons. These neurons communicate with each other via connected
weights - the synaptic weights. At first , research in this area was driven bei
neurobiological interest but here we will restrict ourselves to the problem of information
processing , and do not consider biological aspects. Neural networks can solve difficult
problems by using a learning procedure that depends on the neural model and the given
problem, but they are black boxes. It is not possible to determine how the solution was
found. Furthermore it is not possible to insert prior knowledge to a neural network
[NAUCK ET AL 97].

The combination of the learning ability of neural networks and the linguistic rule handling
of fuzzy systems results in a self-tuning neuro-fuzzy system which is interpretable and in
which prior knowledge can be inserted.

4 Neuro-Fuzzy Systems

1.1 Classification with Fuzzy Systems

The process of creating a model for the behavior of a human experts is called cognitive
analysis [KRUSE ET AL. 95]. As just mentioned a method of modelling the behavior of an
expert is to compile his knowledge in linguistic rules. As an example the classification of
iris flowers is used. There are three classes of iris flowers (Setosa, Virginica, Versicolor).
They can be identified with the help of the different length an width of the petal and sepal.
So there are four independant variables that form the antecedent of the rule, and three
dependent variables that form the consequent of the rule. So the rules are of the form:

if petal length is small and
petal width is medium and
sepal length is small and
sepal lenght is small then class is Setosa

The problem now is to describe what small or medium means. Two experts discussing
about iris flowers would intuitively know it, but for a computational model these terms
must be defined precisely, however, if possible without loosing the vague nature of the
terms.

Before we show how this can be done with the help of the fuzzy set concept it should be
stressed that fuzzy classifiers are not a replacement for methods like statistics or other
forms of machine learning and it does not yield better results. Fuzzy classification offers
a different way to achieve the same goal. If a decision is made for a fuzzy classifier usually
the following advantages are considered:

� vague knowledge can be used,
� the classifier is interpretable in form of linguistic rules,
� from an applicational point of view the classifier is easy to implement, to use and

understand.

But it should also be remembered that fuzzy classifiers that use rules like the one given
above are only useful, if direct dependencies of features to class informations are to be
modeled. It is implicitly assumed that the features itself are independent from each other.
If more complex domains must be modeled, where dependencies or conditional
dependencies between all variables of a given problem have to be explicitly represented,
then graphical models (dependency networks) like, for instance, Bayesian networks
[KRUSE ET AL. 91] or possibilistic networks [KRUSE ET AL. 94] should be preferred. Fuzzy
classifiers can be viewed as an alternative to neural networks, regression models, or
nearest neighbour classifiers, i the abover-mentioned advantages are of interest
[NAUCK/KRUSE 98].

Neuro-Fuzzy Systems 5

grey-haired

No. of hairs

0 5.000 10.000

yes

no

grey-haired

0 5.000 10.000

1

0

No. of hairs

1

0

0,5

natural color greying grey-haired

0 10.0005.000

1.1.1 Fuzzy Sets

Fuzzy sets can be used to model terms of every-day language. To define that a person is
grey-haired if there are 10.000 grey hairs can not mean that a person with 9.999 grey hairs
has his natural color.

Figure 1.1: In the left figure the crisp and in the right figure the vague modeling of
the term grey-haired can be seen

In the fuzzy set theory those terms are modeled through vague sets. The whole domain that
differs from natural color to grey-haired has to be partitioned into fuzzy sets which can
even overlap. An object in the crisp definition is a member of a class or it is not. In the
fuzzy set theory it has a membership degree where 1 means full membership and 0 means
no membership. A fuzzy set is given by a membership function which can beµ: Ü� [0,1]
seen as a generalization of the characteristic function of a normal (crisp) set.

Figure 1.2: A possible fuzzy-partition of the domain ‘greying’

There are three kind of functions that are commonly used to represent fuzzy sets, because
they are defined by only a few parameters and they have useful features like convexity and
normality [Kruse et al. 94]. These are triangular, trapezoidal and bell-shaped functions.

6 Neuro-Fuzzy Systems

1

138

approximately 13

6

between 6 and 8,
or so

nearly 2

2

Membership Degree

0

1

µ µ'�

µ µ'F

µ µ'

x

Figure 1.3: Types of fuzzy sets

The next task is to find operators for the intersection and union of fuzzy sets. Functions
that fulfil minimum requirements for the intersection operator are called t-norms. The
t-conorm is the dual of the t-norm and t-conorms are the basis for the definition of union
operators [KRUSE ET AL 94]. For the NEFCLASS-model the minimum is used:

\min(a, b) = min {a, b}.

Figure 1.4: Intersection and union of two fuzzy sets

With help of the fuzzy sets as depicted above it is now possible to create fuzzy rules which
can be used as a basic construct to model expert knowledge. The intersection operator is
used to model the and connective and the union operator models the or connective.

Neuro-Fuzzy Systems 7

1.1.2 Fuzzy Rules

Fuzzy rules for solving classification problems haqve the following general form:

Rr: If then � Cj .x1 is A(1)
j1

and ... andxn is A(n)
j n

(x1, x2, ..., xn)

Where are linguistic terms, which are represented by the fuzzy setsA(1)
j1

, ..., A(n)
j n

. is a pattern subset and represents the class j. The patterns are inputµ(1)
j1

, ..., µ(n)
j n

Cj I IRn

tuples . It is assumed that they can be devided into disjunctx
 (x1, x2 ,..., xn) � IRn

classes, so that every pattern can be related to a class Cj. Every value xi of the input tuple

is to be partitioned by qi fuzzy sets . The classification is defined by a rule baseµ(i)
1 , ..., µ(i)

qi

with k fuzzy rules .R1, ..., Rk

In the beginning of this chapter the example of the iris flower was given. The data set
consists of patterns with four input parameters (x1, x2, x3, x4) given by length and width of
the petal and sepal. The domain of every parameter xi is represented by three fuzzy sets
(small = sm, medium = md, large = lg). There are three possible classes (Setosa, Virginica,
Versicolor). Of course, different definitions are possible but this depends on the view of
the expert. The example from the beginning is now:

if x1 is sm and x2 is md and x3 is sm and x4 is sm then Setosa

Figure 1.5 shows a graphical representation of a rule base with k rules an n input
parameters.

In contrast to fuzzy control rules where the consequent of a rule is a fuzzy set, a fuzzy
classification rule results in a crisp value which is assigned to a class. This value is
computed by the t-norm \min, while the classification result processed over all rules is
given by the t-conorm]max.

This all seems to be very easy and clear but it should be remembered that for every task a
representation has to be found which is not obvious. The choice of the membership
functions and the partitioning of the domain are only two problems. The fuzzy sets need
not to be symmetric or regularly distributed over the domain.

And there is always an optimisation problem. The more fuzzy sets are used to partition the
domains of the variables, the more fuzzy rules can be constructed. Thus the classification
can be made arbitrarily exact. On the other hand a fuzzy system with a large rule base is a
slow and confusing system. A small number of rules can be leveled out with non-
symmetric fuzzy sets. But this reduces the interpretability of the system. So there is the
dual problem of performance and interpretability.

8 Neuro-Fuzzy Systems

If and

If and

If

rule 1

rule 2

rule k
and

min

min

min

max

1-

1-

1- 1-

1-

1-

xnx1
class j

Figure 1.5: Fuzzy rule base and evaluation with minimum and maximum
operator

The NEFCLASS-Model adresses these problems. The fuzzy rule base is directly learned
from the data. It is possible but not necessary to insert prior knowledge in form of fuzzy
rules. Afterwards the fuzzy sets are learned. This cannot solve the described optimization
problem completely but it can ease it. Depending on the data constraints given by the user
of the system are considered. He has to decide if the classifier should be tuned to a near
zero error result or if the priority is on the interpretability of the system and a certain error
can be accepted.

1.2 Neural Networks

Research on artificial neural networks started around 1940 and was inspired by interest in
the neurophysiological fundamentals of the human brain. It was known that the brain
consists of interconnected nerve cells - the neurons - that influence each other by electrical
signals. A neuron conducts its signals via its axon that projects from its cell body (soma)
[NAUCK ET AL 97]. It receives signals from other neurons over its dentrites which scan the
axons of these neurons for signals. The joints of dendrites and axon are named synapses.
This is a very little gap where chemical transmitters are activated if the signal of the axon

Neuro-Fuzzy Systems 9

is strong enough. That means that the collection of incomming signals into the neuron
reach a certain value. Some synapses inhibit the signal others pass the signal through. This
is the way of filtering signals.

It cannot be the task to develop an artificial brain. On one hand there is too little biological
knowledge to create a successful model and on the other hand the computer recources are
to small to compute only a fraction of the millions and millions of a brain’s neurons. So
we will restrict ourselves to the problem of information processing, and do not consider
biological aspects.

Now a generic model is introduced which lays the foundation of all models for neural
networks [NAUCK ET AL. 97]. After this the model used for the NEFCLASS system is
depicted, the multilayer perceptron.

1.2.1 A Generic Model of Neural Networks

As depicted in [NAUCK ET AL. 97] an artificial neural network can be generally seen as a
formal structure that can be easily described by a set and a few mappings.

Definition 1.1 A neural network is a tuple (U, W, A, O, NET, ex), where:

(i) U is a finite set of processing units (neurons),

(ii) W, the network structure, is a mapping from the cartesian product to the set of real
values ,W : U × U � IR

(iii) A is a mapping that assigns an activation function to each ,Au: IR 3
� IR u � U

(iv) O is a mapping that assigns an output function to each ,Ou: IR � IR u � U

(v) NET is a mapping that assigns a network input function NETu: (IR × IR)U
� IR

to each , andu � U

(vi) ex is an internal input function , that assigns to each anex: U � IR u � U
external input in the form of a real value .exu
 ex(u) � IR

This definition describes the static features of a neural network in such a general way that
it is a basis for all kind of neural network models. In the following a detailed explanation
of the components and parameters is given according to [NAUCK ET AL. 97].

The Processing Units

The processing units or neurons of a neural network can be viewed as simple processors.
Depending on their current state and their current input - both given by real values - they
produce an output value and assume a new state. The units process their input values in
parallel and independenly of each other. In most neural network models there is one input

10 Neuro-Fuzzy Systems

ou1
oun

W(u'1 , u) W(u'n , u)

Unit u

netu =

Σ W(u', u) ⋅ ou'u'�U

exu

au = Au (au
(old), netu , exu)

ou = Ou (au)

Input value

layer, one or more hidden layers and one output layer. The units of the input and output
layers are used to communicate with the environment of the network. The state of the
hidden units cannot be directly influenced or observed from the environment.

Figure 1.6: A processing unit u of a neural network

The Network Structure

The mapping W is usually called the network structure. It can be displayed as a weighted
directed graph, where the nodes represent network units, and the weighted edges are
weighted communication links. The network structure is the basis of the communication
of the processing units. The output of one unit becomes the input of other units.The
weighted connections enable each unit to consider the output values of the other units to
a large or small extend, or to disregard them alltogether. We say:

the connection between u’ and u
does not exist if W(u’, u) = 0,
is called excitatory if W(u’, u) > 0,
is called inhibitory if W(u’, u) < 0.

W determines the structure of the neural network. By setting certain weights to zero we can
obtain a layered network where units are not connected to each other, if they lay in the
same layer or in layers that are not adjacent to each other. An importent type of neural
network is the multilayer perceptron which is also the basis for the NEFCLASS-Model
(see figure 1.8).

Neuro-Fuzzy Systems 11

The mapping W can be modified in a so-called learning mode. During this phase one tries
to determine W with help of a learning rule in such a way that the neural network produces
certain output patterns in the presence of certain input patterns.

Output Functions

Each processing unit may posess its own output function Ou, which transforms the
activation into an output value. In most neural network models the activation and the
output values of a unit are identical. So each unit uses the identity as an output function.

Propagation Functions

The mapping NET assigns to each unit u of the neural network a network input function
NETu, which is also called propagation function or transfer function. Also in this case
generally only one kind of function is used. It is the weighted sum of the output of all
network units.

External Input Functions

An external input function ex provides the connection to the external environment for a
neural network. It creates an external input for the network, which reacts by changing the
activation of its units to produce an output. Usually only a subset of the network units can
receive input values, i.e. ex is only defined for this subset of input units. In the multilayer
perceptron these units build a layer that means they are not connectd. As activation
function the identity is chosen, so the activation only depends from exu

Activation Functions

The mapping A makes it possible to assign to each unit of the network its own activation
function. However, all units normally use the same function. An activation function Au

calculates the current activation au of a unit . In order to model a kind of "memory"u � U
or to simulate a process of "slowly forgetting" the activation function may depend on the
former activation. Moreover it can depend on the network input and the external input. In
most neural network models one of the activation functions shown in figure 1.7 is used.

For the multilayer perceptron the activation function of the input layer is the identity. For
the hidden layers and the output layer the sigmoid function is used because the learning
algorithm needs a continuously differentiable function.

12 Neuro-Fuzzy Systems

netu

auau

au au

1 1

11

Linear threshold function Semi-linear function

Linear function Sigmoid function

netu

netunetu

Figure 1.7: Activation functions

It was just mentioned that there exist many different neural network models. The most
important is the multilayer perceptron which is also used for the NEFCLASS model. The
following chapter shows the structure of this network as well as the learning process is
described.

1.2.2 The Multilayer Perceptron

The multilayer perceptron is an extension of the simple perceptron introduced by Frank
Rosenblatt in 1958 [ROSENBLATT 58]. A detailed description can be read in [NAUCK ET

AL. 97]. The multilayer perceptron is a neural network that consists of an input layer, one
or more hidden layers and an output layer. The units of the input layer do not perform any
computation, they just pass on their input values. The output layer can consist of more than
one unit. In classification tasks one for each class is needed. Figure 1.8 shows a multilayer
perceptron using the description of a unit given in Figure 1.6.

The formal definition of a multilayer perceptron reads in [NAUCK ET AL. 97] as follows:

Neuro-Fuzzy Systems 13

au
 Au(ex(u))
 ex(u)

au
 Au(netu)
 f (netu)

netu
 M
u �

� Ui	1

W(u �, u) # ou � � �u

Definition 1.2 A multilayer perceptron is a neural network
MLP = (U, W, A, O, NET, ex), that has the following properties:

(i) , is a set of processing units (neurons) where isU
 U1 A ... A Un n�3

assumed. Furthermore, for all and forUi g L i � {1, ..., n} Ui B Uj
 L

. U1 is called the input layer and Un the output layer. The Ui with 1 < i < n areigj
called hidden layers.

(ii) The network structure is given by the function . There onlyW : U × U � IR
exist connections between consecutive layers.
Thus, for all .(u �

� Ui � W(u �, u) g 0) < u � Ui�1 i � {1, ..., n	1}

(iii) A assigns an activation function to each unit toAu : IR � [0, 1] u � U
calculate the activation au with

for all andu � U1

for all u � Ui, , where all units use the same non-linear functioni � {2, ..., n}
.f : IR � [0, 1]

(iv) O assigns an output function to each unit u � U to calculateOu : IR � [0, 1]

the output ou with for all u � U.ou
 Ou(au)
 au

(v) NET assingns a network input (propagation) function
 to each u � Ui, to compute the networkNETu : (IR × IR)

U(i	1) � IR (2�i�n)
input netu with

 is the bias of the unit u.�u � IR

(vi) assigns an external input exu = ex(u) to each input unitex : U1 � [0, 1]

u � U1.

A multilayer perceptron uses real-valued units and therefore, a continous activation
function is necessary. The learning algorithm for the multilayer perceptron requires the
activation function to be diffentiable.

14 Neuro-Fuzzy Systems

W(u'12 , u21)W(u'11 , u22)

ou=Ou(au)=au

Input values xi

exu

ou=Ou(au)=au

W(u'11 , u21)

au = Au (exu) = ex(u)

au = Au (netu)

ou=Ou(au)=au

au = Au (exu) = ex(u)

exu

au = Au (netu)

ou=Ou(au)=au

W(u'12 , u22)

au = Au (netu)

ou=Ou(au)=au

W(u'21 , u31) W(u'22 , u31)

Input layer

Hidden layer

Output layer

netu=Σ W(u',u)⋅ou'+θu
u'��U1

netu=Σ W(u',u)⋅ou'+θu
u'��U1

netu=Σ W(u',u)⋅ou'+θu
u'��U1

Figure 1.8: A multilayer perceptron

1.2.3 The Backpropagation Algorithm

Up to now only the structure of neural networks was considered. A very important part of
neural networks are the algorithms that allow to change the weights W. The goal of the so-
called learning algorithms is to determine W in such a way that the network produces
certain output values when certain input values are given. The network should react in a
reasonable way, when new, unknown values are presented. To achieve this goal the
provided known input patterns are propagated through the network. The determined
outputs are then are compared to the target output patterns. Then W is changed in a way
that the network comes closer to the target output, when the same pattern is propagated
again [NAUCK ET AL. 97].

Neuro-Fuzzy Systems 15

In every step of processing, the input patterns that means the data influence the output
values. Data with unknown results determine a free learning problem. The task is to
receive similar output values for similar input values. If the result of the data is known the
learning problem is called fixed. To express whether two inputs or outputs are similar or
close to each other we need to define a similarity or error measure. This measure depends
on the type of network and learning algorithm. In [NAUCK ET AL. 97] a learning algorithm
is defined as:

Definition 1.3 A learning algorithm is a procedure that changes the structure W of a
neural network using a learning problem. The learning algorithm is successful, if the
network solves the learning problem after the application of this procedure, or if the error
of the network is less than a given error bound. Otherwise the learning algorithm has
failed. A learning algorithm that uses a free learning problem is called an unsupervised
learning algorithm. If a fixed learning problem is used, the procedure is called a
supervised learning algorithm.

For the NEFCLASS-Model a fixed learning problem is used so a supervised learning
algorithm has to be defined. There are two problems to be solved for the definition of a
learning algorithm for multilayer perceptrons. At first an output error for every unit of the
hidden layer has to be calculated. Remember that these units cannot be observed from the
environment. Second it has to be fixed in which way the changing of the weights should
happen.

In 1986 Rumelhart, Hinton and Williams introduced in [RUMELHART/MCCLELLAND86] an
algorithm which achieves to do this. This method is named backpropagation because the
output error is propagated back through the network.

This is the way to solve the first problem and it needs four steps. In the first step the input
values are propagated through the network till the output values are calculated. The second
step is to calculate an error with help of an error function. To distribute this error value
backwards through the network is the third step. The error values are weighted in the same
way as the input values in the first step. These weighted errors reach the units and are
accumulated in step four. As a result every unit gets the partial amount of the total error
that it caused.

The error measure that has to be minimized for each input/output pair is defined in
[NAUCK ET AL. 97].

16 Neuro-Fuzzy Systems

e : IR
UO × IR

UO � IR�

0

e(l)
u
 (t (l)

u 	 o (l)
u)

e(l)

 M

u�UO

(t (l)
u 	 o (l)

u)2.

Definition 1.4 Let be a fixed learning problem, and l � a pair of patterns that/
a

/
a

have to be learned.

(i) An error measure for a supervised learning algorithm is a mapping

such that for all a, b � IR
UO

e(a, b) = 0 @ a = b

holds. The error e(l), that is caused by a neural network when processing the pair
of patterns l � is given by e(l) = e(t(l), o(l)), where o(l) is the output (vector) of the/

a

network to the input patterns i (l), and t (l) is the target pattern given by the learning
problem.

(ii) The error of an output unit u � UO when processing the input pattern l � isJ
(l)
u /

a

the differnce between the output value detrmined by the learning problem andt (l)
u

the output value :o (l)
u

With the definition of the error measure some questions have to be considered. To prohibit
that negative and positive deviations neutralize each other the square of the Euclidean
distance is used:

If instead of the square the absolute value is used, then another possible error measure is
obtained which does not overrate large and underrate small deviations.

The second problem in defining a learning algorithm is to determine a method for
changing the weights in a manner that the error can be minimized. The common
supervised learning algorithms approximate a gradient descent in W and try to reduce the
global error to zero this way. However, such a learning procedure cannot allways
guarantee convergence, becauce it is equivalent to a local heuristic search procedure. The
algorithm follows the gradient in the error surface defined on W, starting at a point given
by the initialization of W and the learning problem . The algorithm stops when it/

a

reaches a local minimum. If this local minimum is not also the global minimum, i.e. the
error limit is not reached, then the learning process failed.J

If the gradient decent is not matched closely enough, then the learning algorithm can
oscillate. In such a situation the procedure aproches a minimum, but overshoots the mark.

Neuro-Fuzzy Systems 17

Then a new approach from another direction takes place which leads to the same result,
and so on. In this case the learning procedure also fails because it will forever iterate.

These problems are tried to solve with help of the learning rate . The value indicates� �
the step width used for following the gradient. The multidimensional error surface may
contain a lot of local minima and sudden strong changes in direction that have to be
followed in order to reach a minimum. If the value chosen for is too large, the error of�
the network can suddenly rise again. The reason might be for instance that while
descending into a narrow gap of the “error mountains” the algorithm is continously
jumping back and forth the walls of the gap [NAUCK ET AL. 97].

Figure 1.9: The backpropagation procedure can be trapped in local minima (left),
or oscillate because the learning rate is too large (right)

As just explained a continously differntiable activation function is needed. A linear
function is not used because the propagation through the network is equivalent to a
multiplication of a tuple with a matrix which would unter mathematical consideration lead
to a onelayered network. Thus a sigmoid function is used. The formal definition of the
backpropagation algorithm is given in [NAUCK ET AL. 97].

1.3 Neuro-Fuzzy Systems

We just discussed the problem of defining and tunig a fuzzy system and found out that it
would be fine to have learning opportunities for this. Neural networks offer this learning
opportunity but on the other hand the are very successful in classification problems. So
why should there fuzzyness be integrated? Why not only use neural networks? Let us go
into it further with an overview of advantages and disadvantages of fuzzy systems and
neural networks [NAUCK ET AL. 97].

18 Neuro-Fuzzy Systems

neural network fuzzy system

advantages

� no mathematical process model
required

� no rule-based knowledge required
� different learning algorithms available

� no mathematical process model
required

� prior (rule-based) knowledge can be
used

� simple interpretation and
implementation

disadvantages

� black box
� rules cannot be extracted (usually)
� determine heuristic parameters
� adaption to modified environment can

be difficult and relearning may be
necessary

� prior knowledge cannot be used
(learning from scratch)

� no guarantee that learning converges

� rules must be available
� cannot learn
� no formal methods for tuning
� semantical problems in interpreting

tuned system
� adaption to modified environment can

be difficult
� tuning may be not successful

Table 1: Comparing neural networks and fuzzy systems

Neuro-fuzzy systems are created to overcome the disadvantages of neural networks and
fuzzy systems. The term is usually used for every kind of combination of neural networks
and fuzzy systems. One approach is to combine both in such a way that learning
algotithms are used to determine parameters of fuzzy systems. This means that the main
intention of a neuro-fuzzy approach is to create or improve a fuzzy system automatically
by means of neural network methods. An even more important aspect is that the system
should always be interpretable in terms of fuzzy if-then rules, because it is based on a
fuzzy system reflecting vague knowledge. In a word: the task is to overcome the
disadvantages without loosing the advantages.

On the other hand a fuzzy neural network is a neural network that uses fuzzy methods to
learn faster or perform better. In this case the improvement of the neural network is the
main intention. An interpretation in terms of fuzzy rules is neither important nor possible
here, because the system is based on a neural network with black box characteristics. In
[NAUCK ET AL. 97] the following taxonomie to describe the different combinations of
neural networks and fuzzy systems is used:

Neuro-Fuzzy Systems 19

Fuzzy neural networks
Fuzzy methods are used to enhance the learning capabilities or the performance of a neural
network. This kind of approaches is not to be confused with neuro-fuzzy approaches.

Concurrent “neural/fuzzy systems”
A neural network, and a fuzzy system are working together on the same task, but without
influencing each other, i.e. neither system is used to determine the parameters of the other.
Usually the neural network processes the input to, or postprocesses the outputs from the
fuzzy system.These kinds of models are strictly speaking neither neuro-fuzzy approaches
nor fuzzy neural networks.

Cooperative neuro-fuzzy models
A neural network is used to determine the parameters (rule, rule weights and / or fuzzy
sets) of a fuzzy system. After the learning phase, the fuzzy system works without the
neural network. These are simple forms of neuro-fuzzy systems, and the simplest form -
determining rule weights by neural learning algorithms - is widely used in commercial
fuzzy development tools, even though semantical problems can arise.

Hybrid neuro-fuzzy models
Modern neuro-fuzzy approaches are of this form. A neural network and a fuzzy system are
combined into one homogeneous architecture. The system may be interpreted either as a
special neural network with fuzzy parameters, or as a fuzzy system implemented in a
parallel distributed form. There a lot of different models described in [NAUCK ET AL. 97].
Some of these approaches are reinforcement learning types that are especially suited for
control tasks and others are multi-purpose models, which use supervised learning, and can
be used for data analysis, like the NEFCLASS approach.

As we are here only interested in hybrid neuro-fuzzy systems, in the further descriptions
we restrict ourselves to informations needed as a basis for this approach. In the following.
[NAUCK/KRUSE 98] a definition is given that shall be used here to specify what neuro-
fuzzy system means in this thesis:

1. A neuro-fuzzy system is a fuzzy system trained by a (heuristical) learning algorithm
(usually) derived from neural networks.

2. A neuro-fuzzy system can be represented by a feed-forward neural network
architecture. However, this is not a prerequisite to training, it is merely a convenience
to visualise the structure and the flow of data.

3. A neuro-fuzzy system can always be interpreted in terms of fuzzy if-then rules.
4. A neuro-fuzzy system‘s training procedure takes the semantics of the underlaying fuzzy

model into account to preserve the linguistic interpretability of the model.
5. A neuro-fuzzy systems performs (special cases of) function approximation. It has

nothing to do with fuzzy logic in the narrow sense. i.e. generalized logical rules [KRUSE

ET AL. 94].

20 Neuro-Fuzzy Systems

input values xi ��IR

ou=Ou(au)=au

au = Au (exu) = ex(u)

exu

au = netu

ou= au

W(u'12 , u21)

au = netu

ou= au

au = netu

ou= au

W(u'11 , u21)

W(u'11 , u22)

W(u'11 , u23)

W(u'12 , u22)

W(u'12 , u23)

ou=Ou(au)=au

au = Au (exu) = ex(u)

exu

If and If and If and

t-norm
e.g. min

rule 1 rule 2 rule 3

1 1 1

ou=Ou(au)=au

au = Au (exu) = ex(u)

exu

ou=Ou(au)=au

au = Au (exu) = ex(u)

exu

netu:

au = netu

ou= au

netu:

au = netu

ou= au

netu:

au = netu

ou= au

maximum of the incoming
degrees of
fulfilment

netu:netu:netu:

maximum of the incoming
degrees of
fulfilment

t-norm
e.g. min

t-norm
e.g. min

The second list item tells us something about the viewpoints that can be taken. The hybrid
approach is to interpret the rule base of the fuzzy system in terms of a neural network. The
fuzzy sets can be seen as weights and the input and output variables and the rules can be
interpreted as neurons. This way a fuzzy system can be interpreted as a special neural
network. The learning algorithm works by modifying the structure and/or the parameters
that means the inclusion or deletion of neurons or adaption of the weights.

Figure 1.10: A neural network view of a neuro-fuzzy classifier

Neuro-Fuzzy Systems 21

It is an important aspect that the changes caused by the learning process can be interpreted
in terms of neural networks as well as in terms of fuzzy systems. The black box behavior
of neural networks is avoided and a successful learning process can be seen as an increase
of explicit knowledge which is represented in the rule base.

The task is now to think about how to create such a neuro-fuzzy system, in which way the
rules base is built, and what kind of learning algorithm is used for that. It should be
possible that the rules can be learned from sratch based on training data. In [NAUCK ET AL.
97] three possibilities of creating a rule base are considered.

� The system starts without rules, and creates new rules until the learning problem is
solved. Creation of a new rule is triggered by a training pattern which is not sufficiently
covered by the current rulebase [BERENJI / KHEDKAR 93, NAUCK / KRUSE 95,
TSCHICHOLD GÜRMAN 95]. This approach can lead to large rule bases if the
membership functions are not appropriately chosen.

� The system starts with all rules that can be created due to the partitioning of the
variables, and deletes insufficient rules from the rule base [NAUCK / KRUSE 93]. For this
procedure an evaluation of the performance of individual rules is needed. This approach
encounters complexitiy problems when applied to problems with a large number of
variables. Inconsistent rule bases are avoided, because a consistency test is part of the
evaluation. It is possible to obtain rule bases with too few rules by this procedure.

� The system starts with a (possibly randomly chosen) rule base with a fixed number of
rules. During learning rules are replaced [SULZBERGER ET AL.93], while the consistency
of the rule base has to be checked at each step. The drawback is the fixed number of
rules. Additionally an evaluation scheme for rule deletion, and a data analysis
procedure for acquiring new rules, must be implemented. If this is not done, then the
learning is equivalent to stochastic search. In the event of degration in performance,
replacements may possibly have to be cancelled [SULZBERGER ET AL.93].

Another problem to think about is the application of the learning algorithm to the system.
While using the neural network view the fourth point of the definition is easily forgotten
which requires that the neuro-fuzzy system‘s training procedure takes the semantics of the
underlaying fuzzy model into account to preserve the linguistic interpretbility of the
model.

We also just described that learning algorithms are usually gradient descent methods. But
they cannot be applied directly to a fuzzy system, because the functions used to realize the
inference process are usually not differentiable. There are two solutions for this problem
[NAUCK/KRUSE 98b]:
� replace the functions used in the fuzzy system (like min, max and membership

functions) by differentiable functions, or:
� do not use a gradient-based neural learning algorithm but a better suited procedure.

The problem with the first solution is that the interpretability may be reduced. The
NEFCLASS model uses the second possibility, a special learning algorithm which will be
introduced in the next chapter.

2

The NEFCLASS Model

In this chapter the neuro-fuzzy method NEFCLASS is discussed. This method is an
linguistic approach to construct fuzzy systems from data by applying a heuristic data-
driven learning algorithm that computes local parameter modifications. There are several
other methods which are able to do this but the focus of the NEFCLASS model lies in the
interpretability of the developed classifier. The constraints of the learning algorithm allow
the user to interactively influence the training process.

So the main goal of NEFCLASS is to create a readable classifier that also provides an
acceptable accuracy. However, the user has to be aware, that readability and accuracy do
not go together. An interpretable fuzzy system should display the following features:
� few meaningful rules with few variables in their antecedents,
� few meaningful sets for each variable,
� there are no rule weights,
� identical linguistic terms are represented by identical fuzzy sets,
� only normal fuzzy sets are used, or even better fuzzy numbers or fuzzy intervals.

These features pose a lot of restrictions on the way how a fuzzy system can be created
from training data. If high performance of a fuzzy system is the main goal, then it is
necessary to fit the system to the data very accurately. This approach, however, usually
yields fuzzy systems that do not display the above-mentionend features and are in fact
black-box models. A user has therefore to decide, what is more important - accuracy or
readability. NEFCLASS provides means to ensure the readability of the solution by giving
the user complete control over the learning process. It should also be stressed that
interpretable solutions can usually not be obtained without the user‘s cooperation. The
user must decide whether the solution‘s readability is sufficient or not, and must ready to
influence the learning process when necessary. NEFCLASS must be seen as a tool that
supports users in finding readable fuzzy classifiers. It is not an automatic classifier creator
where data is fed in and a solution pops out. It is necessary that the user works with this
tool (with work being the operative word) [NAUCK/KRUSE 98]. For this reason only fast
learning strategies are used to give the user the possibility to interact with the tool.

2.1 The Structure of the NEFCLASS-Model

As just mentioned in the last chapter it is possible to view a neuro-fuzzy system as a
special three layered feedforward neural network where

The NEFCLASS Model 23

A
1
(1)

A
2
(1)

A
3
(1) A

1
(2)

A
2
(2) A

3
(2)

c1 c2

R1 R3
R4 R5R2

x1 x2

1 1 1 1 1

� the first layer represents the input variables that means the pattern tuples,
� the hidden layer represents fuzzy rules,
� the third layer represents the output variables that means one unit for every class,
� the units use t-norms and t-conorms as activation functions,
� the fuzzy sets are encoded as (fuzzy) connection weights.

Figure 1.10 and Figure 2.1 show this neural network structure which is often used to
demonstrate the parallel structure and the data flow through the model, both for learning
(backward path) and classification (forward path). Furthermore it is more easy to compare
NEFCLASS to other fuzzy classication approaches if this representation is chosen. But it
also should be remembered again that this is only one possible visualisation. This system
is not a neural network. It is a hybrid neuro-fuzzy system which is an integrated system. If
only the neural network view is considered the advantages of the fuzzy view are lost and
these are the features NEFCLASS focuses on.

Figure 2.1: The architecture of the NEFCLASS model

A more simple version of Figure 1.10 is Figure 2.1. The Rk represent the rules and isAj
(i)

the weight W(xi Rk) where index j selects the fuzzy sets of the partition. NEFCLASS uses
shared weights on some of the connections (in Figure 2.1 this is shown by elipses drawn
around the connections). This way it is made sure that for each linguistic value (e.g. “x1 is
positive big”) there is only one representation as a fuzzy set. It cannot happen that two
fuzzy sets that are identical at the beginning of the learning process develop differently,
and so the semantics of the rule base encoded in the structure of the network is not

24 The NEFCLASS Model

affected [NAUCK / KRUSE 98]. Connections that share a weight always come from the same
input unit because a label (e.g. “positive big”) should have the same meaning whenever it
is used for a certain variable but need not to have the same meaning for all variables.

W(Rk, cm) is the connection from the rule Rk to the output unit cm. For semantical reasons,
i.e. to avoid weighted rules these connections are fixed at either 0 (connection does not
exist) or 1 (connection exists). Each rule unit is connected to exactly one output unit
[NAUCK / KRUSE 98b]. The output activation is computed by a maximum operation instead
of a weighted sum.

We have to take care now that we do not get confused with the term “learning”. On one
hand we talk of “learning a network from data” or “from scratch” what means that the rule
base is learned, and - it depends on the view - a fuzzy system or a neural network is built.

On the other hand there is the learning process which is also named the “training of the
network”. This is the real learning process where the weights are changed such that in the
end a classifier is created.

So in the first learning step the structure of the classifier is created that fits the database as
good as possible, and already has some qualities the user requires (few number of rules
and fuzzy sets). In the second learning step the classifier is completed by determining the
parameters of the system in an iterative training process to improve the accuracy without
loosing the interpretability. These two steps will be described now in the next subsections.

2.2 Learning a Rule Base - The Algorithm

A NEFCLASS system can be built from partial knowledge about the patterns, and can be
refined by learning, or it can begin with an empty rule base that is filled by creating rules
from the training data. For each input variable the user must decide how many fuzzy sets
are to be used to partition the domain of the respective variable. By this the granularity for
each variable and the linguistic terms that can be used by the classifier are given. For some
variable the user might prefer to distinguish just between small and large, for some other
variables a finer partition may be useful. The user must also specify a value of kmax, i.e. the
maximum number of rule nodes that may be created in the hidden layer. For each class
there must be at least one rule. It is also possible to let NEFCLASS find a suitable value
for kmax by itself [NAUCK / KRUSE 98b].

In the following it is assumed that triangular membership functions described by three
parameters are used:

The NEFCLASS Model 25

µ : IRn
� µ(x)

x	a
b	a

if x� [a,b),

c	x
c	b

if x� [b,c],

0 otherwise.

In addition, the left and the right-most membership functions for each variable can be
shouldered, i.e. the triangle becomes a half trapezoid.

Consider a NEFCLASS system with:
� n input units x1, ..., xn,
� k � kmax initial rule units R1, ..., Rk (prior knowledge, k = 0 what means no prior

knowledge is given),
� m output units c1, ..., cm,
� a learning set = of s patterns, each consisting of an input pattern/

a (p1, t1), ..., (ps, t s)

p � , and a target pattern t � {0, 1}m.IRn

Assume that NEFCLASS is initialized with k � kmax fuzzy rules. The rule base of
NEFCLASS is completed by finding for each pattern p a combination of fuzzy sets that
yields the highest degree of membership for each value pi. This combination of fuzzy sets
is the antecedent of a prospective rule. If such an antecedent does not already exist, it is
stored in a list. A suitable consequent for each antecedent is determined by adding up the
degrees of fulfilment for all patterns separately for each class. The consequent is set to that
class label that obtains the largest sum. After each training pattern was processed once, we
obtain a rule base of k� rules. If k� > kmax, only the best kmax rules (‘best’ rule learning) or the
best kmax/m rules for each class (‘best per class’rule learning) are kept, all other rules are
deleted from the rule base. The best rules are determined by computing performance
values for each rule. If a rule correctly classifies a pattern, its degree of fulfilment is added
to its performance value, if not, the degree of fulfilment is subtracted. The performance
values can be computed on the fly, such that rule learning is completed after a single
sweep through the training set. In Figure 2.2 the rule learning algorithm is given in pseudo
code.

From the two described ways to create a rule base for a NEFCLASS system the ‘best per
class’ option should be selected, when one supposes that the patterns are distributed in an
equal number of clusters per class. This strategy is especially suitable, if there are classes
with much less patterns than other classes, because it guarantees that each class is covered
with rules independently from the distribution of patterns. ‘Best’ rule learning is suitable,
when there are classes, which have to be represented by a larger number of rules than other
classes [NAUCK / KRUSE 98b].

26 The NEFCLASS Model

Figure 2.2: The rule learning algorithm in pseudo code

For each pattern (p, t) of do/
a

begin
For each input feature do

find such that µ(i)
ji µ(i)

ji (pi)
 max
j�{1,...,qi}

{µ (i)
j (pi)};

Create antecedent A = (µ(1)
ji ,...,µ(n)

jn);

If A is not in list of antecedents
then add antecedent A to list of antecedents;

end ;
For each pattern (p, t) of do/

a

For each antecedent Aj do
begin

c = class index of p given by t;
Cj(c) = Cj(c) + Aj(p) (* add degree of fulfilment *)

end ;
For each antecedent Aj do

begin
c = ;argmax

i�{1,...,m}
Cj (i)

create rule Rj with antecedent Aj and consequent c;
add Rj to the list of rule base candidates;
performancej = Cj (c) 	 M

i�{1,...,m}, igc

Cj (i)
end ;

If “best” rule learning
then For i = 1 to kmax do

begin
R = argmax

Rj

{ performancej}

add R to rule base;
delete R from list of rule candidates;

end
else If “best per class” rule learning

then For each class c do

For i = 1 to do
kmax

m

begin
R = argmax

Rj ,consequentj
c
{ performancej}

add R to rule base;
delete R from list of rule candidates;

end ;

The NEFCLASS Model 27

x

y

a

a'

b

b'

c

d

e

c' d' e'

1

2

The learning algorithm can be visualized in a grid structure. Figure 2.3 shows how rules
are selected from a grid structure in feature space that is given by the fuzzy sets of the
individual variables. In this case the system is allowed to create three rules, therefore there
are unclassified patterns.

Figure 2.3: Classification after rule learning with NEFCLASS

One can see that the classification result is not bad, but improvements are desired. Pattern
1 and pattern 2 are misclassified and three patterns are not classified. To shift and modify
the fuzzy sets would help:
� Pattern 1 is correctly classified if

� fuzzy set b is a bit smaller from the top,
� fuzzy set d is a bit wider to the bottom,
� fuzzy set c’ is a bit wider to the left.

� Pattern 2 is correctly classified if
� fuzzy set c’ is a bit smaller from the right,
� fuzzy set e’ is a bit wider to the left.

� The unclassified patterns are correctly classified if
� fuzzy set b’ is a bit wider to the right.

2.3 Training Fuzzy Sets - The Algorithm

The supervised learning algorithm of NEFCLASS to adapt its fuzzy sets runs cyclically
through the learning set until a given end criterion is met, e.g. if a number of/

a

admissible misclassifications is reached, or if the error cannot be decreased further, etc.

28 The NEFCLASS Model

After a pattern is propagated, the error is determined for each output unit. Based on this
error, for each active rule unit it is decided whether its degree of fulfilment should be
larger or smaller. The membership function that is responsible for the degree of fulfilment
is identified and only this fuzzy set is adapted accordingly. A fuzzy set is only modified,
if this does not violate the constraints specified by the user. Typical constraints are for
example:
� fuzzy sets must overlap to a fixed degree,
� fuzzy sets must not pass each other (i.e. exchange their relative positions),
� fuzzy sets must stay symmetrical,
� membership degrees must add upto 1.0,
� etc.

Users can select one or more constraints depending on their needs. Constraints like these
help to obtain an interpretable rule base, but may cause al loss of performance in
classification [NAUCK / KRUSE 98b]. In figure 2.4 the learning algorithm is given in
pseudocode. Here only the algorithm for triangular membership functions is given. The
necessary changes for triangular or bell shaped functions are straight forward and can be
found in the source code of the implementation.

Figure 2.4: The fuzzy set learning algorithm in pseudo code [NAUCK / KRUSE 98b]

repeat
propagate the next pattern (p, t);
for each output unit ci do

eci = ti - activation(ci);
for each rule unit R with activation(R) > 0 do

begin
eR = activation(R) # (1 	 activation(R)) # M

ci

W(R,c) # eci

j
 argmin
i�{1,...,n}

W(xi ,R) (pi)

µ
 W(xj ,R)

(* are the parameters of the fuzzy set µ *)aµ, bµ and cµ

;
b
) # eR # (cµ 	 aµ) # sgn(pi 	 bµ)

;
a
) # eR # (cµ 	 aµ) �
b

;
c
) # eR (cµ 	 aµ) �
b

modify µ with without violating the constraints for µ;
a,
b,
c,

end ;
until end criterion;

The NEFCLASS Model 29

The learning procedure for the fuzzy sets is a simple heuristics. It results in shifting the
membership functions and in making their supports larger or smaller (see Figure 2.5). By
changing only the fuzzy set that delivered the smallest membership degree for the current
pattern, the changes are kept as small as possible.

The sum in the computation of eR (line 7 in Figure 2.4) is not really necessary, because
each rule unit is connected to only one output unit (i.e. there is just one W(R, c)g0). But it
makes the model more flexible, because it would be possible to also use adaptive rule
weights. Although the implementation of the NEFCLASS model allows to use rule
weights, it is recommended not to use them in order to keep the semantics of a
NEFCLASS system. It is not clear what a weighted fuzzy rule is supposed to mean. Rule
weights are often superfluous, because they can be represented as changes in the
membership functions [NAUCK/KRUSE 98c]. In [NAUCK ET AL. 97] it is reported that rule
weights are not necessary to obtain good classification results. However, without rule
weights a NEFCLASS system usually cannot produce exact output values of 0 or 1 due to
the mathematics involved. For the same reason the learning procedure cannot reach an
error value of zero, and therefore the change in error is usually used as a stop criterion for
the learnig algorithm.

Figure 2.5: Adaption of fuzzy sets

The adaption of the fuzzy sets is carried out by simply changing the parameters of its
membership function in a way that the membership degree for the current feature value is
increased or decreased respectively.

Figure 2.6 displays the situation after the learning algorithm for the membership functions
was applied to improve the classification result. Here no constraints were used to restrict
the learning process. As can be seen the resulting fuzzy partitions are no longer nicely
interpretable. Such a result is an indication to repeat the learning process with other
parameters. In this case it would have been better to allow the system to create four rules
and to use constraints for training the membership functions. This example is to illustrate

30 The NEFCLASS Model

x

y

b

d

e

b' c' e'

1

2

that it is important for the user to work interactively with approaches like NEFCLASS to
obtain readable solutions [NAUCK / KRUSE 98].

Figure 2.6: Classification after learning fuzzy sets

Compared to neural networks, NEFCLASS uses a much simpler learning strategy. There
is no vector quantisation involved to find rules (clusters), and the membership functions
are not trained by gradient descent. Fuzzy rule creation can be seen as a selection from an
initially given virtual rule base, specified by a fuzzy partition of the input domain.

From the viewpoint of the NEFCLASS architecture and the flow of data, the fuzzy sets are
trained by a backpropagation-like algorithm. We use the term backpropagation to denote
the idea of a learning procedure, not a special implementation in form of an algorithm.
Backpropagation means to compute an output error and to propagate it backwards through
the architecture from the output units towards the input units. This error signal is used to
locally change parameters. Neural networks often implement backpropagation by gradient
descent. NEFCLASS does not compute any gradient information. It uses a much simpler
heuristic instead. In addition, the adaptivity of a NEFCLASS system is restricted compared
to neural networks. This restriction is due to the initially given fuzzy partitions, which
define the form and maximal number of clusters, and by the constraints that do not admit
certain changes in the fuzzy sets [NAUCK / KRUSE 98].

The NEFCLASS Model 31

2.4 Prunining the Rule Base

The learning algorithm of the NEFCLASS-Model provides good results for many
classification problems. However, a good interpretation of the learning result cannot
always be guaranteed, especially for high-dimensional problems. Because interpretation is
one reason for using a fuzzy classifier in the first place, there is a need to enhance the
learning algorithms of a neuro-fuzzy system with techniques for simplifying the obtained
result [NAUCK/KRUSE 97]. Four pruning strategies are used to improve the interpretability
of the classifier.

� Delete linguisitc terms from the antecedent of a rule under certain ascpects:

� A variable is not important for the classification.

The task is to find out if there is an input variable that is not necessary for the
classification. For this the correlations of the input variables with the class
information is used. Variables that have a low correlation are tested whether they
can be deleted from the antecedet or not. Under a statistical view it is dubious to use
the correlation, but it is only used to find out a sequence of testing the variables and
is not used to delete a variable.

The variable with the lowest correlation is the first to be tested. It is deleted from the
antecedents of all rules, a consistency check of the rule base follows and the fuzzy
sets are trained. If this improves the classification result this classifier is taken as the
current one and the next variable with the lowest correlation is tested. If a test fails
and no improvement was reached the last classifier that improved the classification
result is the outcome of this pruning method.

� A variable is not important for the degree of fulfilment of a rule.

For each rule the linguistic term is identified whose membership degree is identical
to the degree of fulfilment of the rule in the least number of cases. The rule with the
smallest number is selected and the identified term is removed from its antecedent,
and a consistency check is done. After this the fuzzy sets are trained and if the
classifer can be improved it is kept and this pruning step is repeated. If the classifier
cannot be improved the previous one is restored. The last classifier that improved
the classification result is the outcome of this pruning method.

� A term uses fuzzy set with a very large support

If a variable is partitioned by more than two fuzzy sets, sometimes the support for
one or more of them can become quite large during learning. This can be seen as
evidence, that such a fuzzy set is superfluous.

The fuzzy sets of every variable are sorted by their width. The term with the widest
fuzzy set of all is deleted from all rules. Only in rules where it is the last term of the
antecedent it is not deleted. A consistency check of the rule base follows and the
fuzzy sets are trained. If this improves the classification result this classifier is taken
as the current one and the fuzzy set with the next biggest width is examined. This

32 The NEFCLASS Model

process stops when the classification result is not improved anymore. The last
classifier that improved the classification result is the outcome of this pruning
method.

� Delete rules that never or very rarely provide the maximum degree of fulfilment for the
class given by their consequent.

All patterns are presented to the rules. For every rule it is counted how often the
classification is correct and it produces the maximum degree of fulfilment for the
correct class. The rule with the smallest number is deleted and the fuzzy sets are
trained. If this improves the classification result this classifier is taken as the current
one and the rule with the next lowest number is deleted. This process stops when a test
fails and no improvement was reached or if no rule can be deleted because there is only
one for each class. The last improved classifier is the result of this pruning method.

3

Java for NEFCLASS

Up to now there existed two NEFCLASS implementations which are named NEFCLASS-
PC and NEFCLASS-X. To explain why a third implementation is developed now in Java
both tools are described very shortly now. In a second subsection the advantages of the
Java language are described.

3.1 The NEFCLASS Tools

In [UNauck 97] NEFCLASS-PC is desribed as an interactive simulation software to
develop, train and test a neuro-fuzzy system for classification. It is written in Turbo-
Pascal. NEFCLASS-PC 2.04 is the fifth released version of the neuro-fuzzy classification
software for MS-DOS PC using an 80286 processor or better. This description shows that
the implementation is a bit “old fashioned”. The interface has nothing of a todays standard
that for example the Windows interface offers. But this version was very successful. There
were about 5.000 downloads from the Internet. For this reason the wish for a UNIX
version and some more features arose.

The UNIX version NEFCLASS-X was developed in 1996. It consists of a C++ program
that implements the NEFCLASS approach and a separate user interface written in
TCL/TK. The software was written for UNIX environments, but it is possible to run it
under Windows since TCL/TK is available for these platforms. Additional to the features
of NEFCLASS-PC it implements pruning strategies for reducing the rule base which have
to be supervised by the user.

It was the problem to update two implementations and to take care that both versions are
equivalent. With the upcoming of Java which promises a platform independent develop-
ment of software tools it was decided to create a third implementation. This is
NEFCLASS-J. NEFCLASS-J is developed under “Visual Cafe for Java” an application
development tool of Symantec Ltd.

Some new features of NEFCLASS-J the other implementations do not have are:

� Batch learning instead of online learning.
With online learning the weight changes are executed after propagation of each pattern.
So in dependency of how the patterns are listed in the data file the learning algorithm
will go different ways in the error surface to find a minimum. This need not to be bad

34 Java for NEFCLASS

because this randomly can lead to a ‘good’ minimum. However, the wish is to create a
classifier which is not influenced by random events during the training process.
Therefore the aim is to reach independency from the data. This is the reason for batch
learning. The changes are accumulated and after all patterns are propagated the
execution of the weight changes takes place. The result is not necessarily better but it is
made sure that the quality of the classifier is not only high because the data were
presented in a suitable condition by chance.

� Automaticaly determination of the number of rules.
This feature is explicitly described in the fifth chapter.

� Cross validation of the classifier.
This feature is explicitly described in the fifth chapter.

� Handling of missing values.
The membership degree is set to ‘one’ for all fuzzy sets of a variable if a value is
missing in the data.

3.2 The Java Language

Java developed by Sun Microsystems, was designed for creating applets and applications
for Internets, intranets, and any other heterogeneous, distributed network. This language
offers the following powerful features, as described in the Java white papers published by
Sun [SYMANTEC 97]:

� Simple. Java is similar to C and C++, which many programmers are already familiar
with. Some of the more difficult features of C++, including operator overloading,
pointers and pointer arithmetic, multiple inheritance, and extensive automatic
coercions, were omitted to make programming with java eadier. The Java automatic
garbage collection feature reduces bugs by automatically freeing unused memory.

� Small. The Java virtual machine is relatively small in size, so it can be downloaded
over the Internet and run on computers with little available memory. Many operating
systems will include Java in the future.

� Object-oriented. Java mimics the object orientation of C++ and includes extensions
from Objective C for dynamic method resolution. Some advantages of object-oriented
programming include the following:

� Code is encapsulated in objects, which have a public interface and a private
implementation, so one can rapidly develop prototypes and group code into
manageable chunks - even for very complex systems.

� Objects can inherit the characteristics of other objects and override inherited
characteristics, so one can easily reuse code, make code more compact, and fix or
update code in one place, which saves time and reduces bugs.

Java for NEFCLASS 35

� Network-ready. Creating network connections is easier in Java for C or C++ because
Java has built-in routines for dealing with TCP/IP, including HTTP and FTP. These
routines make it as easy to open and access objects over the network through URLs as
it is to access a local file system.

� Robust. Java eliminates problems early by requiring declarations, using static typing,
having the compiler perform type check, and not supporting pointers, which can result
in overwriting memory or corrupting data.

� Secure.Because there are no pointers, Java applications cannot access data structures or
private data that they do not have access to. This prevents most viruses from taking
hold. Applets, when run within a Web browser on a local computer, cannot read or
write the disk, execute programs on this computer, or connect to any other computers
except the server they were downloaded from.

� Architecture-neutral and portable. The Java compiler generates an architecture-
neutral object file format and bytecode instructions, so Java can run on any computer
that has a Java runtime system. Bytecodes are instructions that are similar to machine
code, but are not platform specific. During execution, the Java virtual machine either
interprets the bytecode or converts them to machine code. Creating sepatate
applications for different computer platforms is no longer and issue.

� High-performance. Java bytecodes can be translated on the fly to native machine
instructions - for example , by a Java-enabled browser. Linking is faster than for C or
C++. Once the Java bytecodes are converted to machine code by a Just-In-Time
compiler in a Java virtual machine, the performance is comparable to that of C or C++.

� Multithreaded . Java code can deal with multiple things happening at once with
sophisticated synchronization primitives that are integrated into the language, which
makes them easier to use and more robust. Multithreading improves interactive
responsiveness and real-time behavior, so is critical to high-performance Java applets
because applet execution must continue while various image and binary files are being
retrieved from the Web servers. In addition, the ability to control the execution of
multiple concurrent threads is crucial for deploying real-world Web-applications.

� Dynamic. New module plug-ins can be added to a Java application with minimal
overhead. Java can look up a class definition at runtime from its name.

For the development of the NEFCLASS implementation Symantec “Visual Cafe
Professional Development Edition” was used. It is an integrated development tool.
Interfaces can be designed graphically by mouseclicks and the code is generated auto-
matically. This code is descripted with comments what helps to integrate the underlying
algorithms such that the visual tool and the Java code always match. The author found it
comfortable to use and it supported to learn the Java language. The handling is
comfortable and intuitive. With help of an Interaction Wizard it is possible to create
component connections very easily. The appropriate method is created automatically
which can be changed afterwards. This way one is very easily enabled to create a complex
application where all features are designed and then improve it step by step.

4

Experiments with NEFCLASS-J

In this chapter some experiments to test the performance of the NEFCLASS-J algorithms
are described. The results of these experiments are compared to the results of other
classifiers. For the experiments the ‘Wisconsin brest cancer’ (WBC) data set is used.

In comparison to NEFCLASS-X the use of the pruning methods changed. There the user
has to select a pruning method, and then has to initiate every pruning step the by himself.
He has to determine the control parameters for a method and to edit the rule base. The user
has the total control of the pruning process but it is uncomfortable because it needs time
and the user needs some knowledge about the pruning methods. With NEFCLASS-J the
pruning process happens automatically if the user decides to start the process. There is no
need to know anything about the methods but on the other hand the process cannot be
controlled. After every pruning step the fuzzy sets are trained and every method
implements an automatic restore if a pruning step is not successful. All four pruning
methods are automatically used one after the other.

� The first method is to find out variables that are not important for the classification
result and can be deleted from the antecedents of all rules.

� With the second method rules are deleted that never or rarely provide the maximum
degree of fulfilment for the class given by their consequent.

� The third method looks for variables that are not important for the computation of the
degree of fulfilment of a rule.

� The fourth method deletes terms with fuzzy sets with a very large support.

The philosophy of implementing the pruning feature differs from ‘total control’ in
NEFCLASS-X to ‘absolutely no control’ in NFCLASS-J. For an update version of
NEFCLASS-J it is planned to give back some control to the user. Then the methods will
be offered to the user so that he can select how often a certain method should be used.

After that the parameter settings for a classifier are found it is time to think about the
reliability and the validity of this classifier. The reliability for the classifier is given
because the process of classification is deterministic. So the same data will always produce
the same result.

The classifier is automatically created from the data set, with the task that this classifier
should be able to classify any data of this certain type. Only a limited number of patterns
can be used to create the classifier and the quality of the classification result will always

Experiments with NEFCLASS-J 37

depend on these patterns used for creation. If these training patterns do not represent the
set of patterns that can occur in reality the classifier will never be able to classify all
possible patterns. The same problem occurs, of course, if the data of different classes
overlap such that there are ambigous patterns. This is the problem of modeling real word
problems and finding the right features to describe the patterns.

So let us assume that we created a good pattern set. The next problem is that only a part of
it can be used for creating the classifier. The other part has to be used as unseen data
containing class information to verify the classification result. Here we also have to take
care that the selected part of the patterns represents the whole set. As this is a tedious task,
this partitioning of the pattern set should happen automatically. A method where the whole
pattern set is used to create the classifier, and where several validation steps are done
before, in order to find out a measure for the quality of the resulting classifier, is called
cross validation.

For cross validation the pattern set is randomly devided into a number of stratified
samples. The first part is taken to create the classifier and the rest of the pattern set is used
to test the classifier. The result of this test is an error value. Then the next part is taken to
create the classifier and the rest is used for testing, and so on. In every run the whole
pattern set is used, but the mixture of training and test data always changes. We get as
many error values as there are partitions of the pattern set. From this a mean error value
and a confidence interval is calculated which are an estimation of the error of the classifier
created from the whole data set.

4.1 The Wisconsin Brest Cancer (WBC) Data Set

The WBC data set is available from the machine learning repository at
ftp://ftp.ics.uci.edu./pub/machine-learning-databases. It is a database that was provided by
W.H. Wolberg from the University of Wisconsin Hospitals, Madison. The data set
contains 683 cases. In the following some informations and statistics about the WBC data
set are described.

Number of input features 9

Names of input features clumb_thickness
uniformity_of _cell_size
uniformity_of_cell_shape
marginal_adhesion
single_epithelial_cell_size
bare_nuclei
bland_chromatin
normal_nucleoli
mitoses

Minimum value 1.00

38 Experiments with NEFCLASS-J

Maximum value 10.00

Defined minimum value 0.00

Defined maximum value 11.00

Number of classes: 2

Names of classes malign
benign

Number of cases: 683

No. Features Mean Std. Deviation

1
2
3
4
5
6
7
8
9

clumb_thickness
uniformity_of _cell_size
uniformity_of_cell_shape
marginal_adhesion
single_epithelial_cell_size
bare_nuclei
bland_chromatin
normal_nucleoli
mitoses

4.44
3.15
3.22
2.83
3.23
3.54
3.45
2.87
1.60

2.82
3.07
2.99
2.86
2.22
3.64
2.45
3.05
1.73

malign: 239 cases (encoded as class 0)
benign: 444 cases (encoded as class 1)

Correlation Table

1 2 3 4 5 6 7 8 9 class

1 1.00 0.64 0.65 0.49 0.52 0.59 0.55 0.53 0.35 -0.71

2 1.00 0.91 0.71 0.75 0.69 0.76 0.72 0.46 -0.82

3 1.00 0.69 0.72 0.71 0.74 0.72 0.44 -0.82

4 1.00 0.59 0.67 0.67 0.60 0.42 -0.71

5 1.00 0.59 0.62 0.63 0.48 -0.69

6 1.00 0.68 0.58 0.34 -0.82

7 1.00 0.67 0.35 -0.76

8 1.00 0.43 -0.72

9 1.00 -0.42

Experiments with NEFCLASS-J 39

4.2 The Experiment

The goal of this experiment is to test the pruning process and to do a cross validation in
order to get some information about the validity of the classifier the classifier that can be
compared with other methods that are discussed in [NAUCK/KRUSE 98b]. The experiment
is devided into three parts.

4.2.1 Automatically Create a Classifier and then Prune It

The classifier is created with the ‘automatically determine the rule base’ option in order to
find a rulebase that covers the whole data set. After training the classifier the pruning
feature automatically performs four pruning methods one after the other.

The Parameter Settings

Training data file wbc.dat

Number of fuzzy sets 2

Type of fuzzy sets triangular

Aggregation function maximum

Size of the rule base automatically determined

Rule learning procedure best per class

Fuzzy set constraints - keep relative order
- always overlap

Rule weights not used

Learning rate 1

Validation no validation

Stop control - Maximum number of epochs = 500
- Minimum number of epochs = 0
- Number of epoches after optimum = 100
- Admissible classification errors = 0

40 Experiments with NEFCLASS-J

Create the Classifier

The main menu entry ‘Classifier|Create Classifier’ is used. The following box shows an
excerpt of the log file.

% NEFCLASS log file file created by NEFCLASS-J 1.0 (c) Ulrike Nauck, Braunschweig, 1999
% This file was created at January 1, 1999 10:04:58 PM GMT+00:00

Training data: C:\VisualCafePDE\projects\VC_NEFCLASS\wbc.dat
Training for at most 500 cycles and for at least 0 cycles.
Continue for 100 cycles after a local optimum was found.
Learning will stop at 0 misclassifications.
There is no validation.
Parameter: LearningRate = 1.0, Fuzzy set constraints:
keep order, must overlap,
rule weights are not used.
The number of rules will be determined automatically.
Each variable uses 2 TRIANGULAR fuzzy sets.
Fuzzy sets will be trained.

Starting the training process using 100.0% of all cases.
Searching for rules in the training data...
Performance on training data (100.0% of all cases):
...
135 possible rules found. Now determine the optimal consequents.
...
Performances of Rule Candidates per Class
...
Selection of consequents is complete.
135 rules found in the data:
...
This rule base covers all patterns.
Training Fuzzy Sets.

Current Result Best Result
Cycle wrong error cycle wrong error
1 27 118.371901 1 27

118.371901
...

...

Training fuzzy sets stopped after epoch 128
Best classifier was found in cycle 27 (30 misclassfications, error = 62.112250)
Restoring best solution.

Performance on training data (100.0% of all cases):
683 patterns, 30 misclassifications (error = 62.453891)

Experiments with NEFCLASS-J 41

� After rule learning the rule base ends up with

� 55 rules of the kind:
if clumb_thickness is small and

uniformity_of _cell_size is small and
uniformity_of_cell_shape is small and
marginal_adhesion is small and
single_epithelial_cell_size is small and
bare_nuclei is small and
bland_chromatin is small and
normal_nucleoli is small and
mitoses is small then benign

� After fuzzy set training the classification result is:
� 30 misclassifications
� error = 62.453891

Prune the Rule Base of the Classifier

A classifier is considered to be “better” than another classifier if the number of
misclassifications or the error value are smaller. The number of misclassifications
determine the classification performance, and the error (sum of squared differences
between targets and outputs) measures the ambiguity of the classifications. The pruning
process reduces the number of rules to five. The number of misclassifications are the same
(30). The following box shows an excerpt of the log file.

Rule learning will not be invoked.
Each variable uses 2 TRIANGULAR fuzzy sets.
Fuzzy sets will be trained.
This is an automatic pruning cycle.

Starting to prune the classifier with 55 rules.
Performance on training data (683 patterns) before pruning:
30 misclassifications (error = 62.453891)
...
Prune variables by correlation...
Prune rules by classification frequency...
Prune linguistic terms by minimum frequency...
Prune linguistic terms by fuzzy set support.
Further pruning cannot improve the classfier.
Final pruning result:
The rule base contains 5 rules.
Performance on training data (683 patterns):
32 misclassifications (error = 53.190468).

42 Experiments with NEFCLASS-J

� After pruning the rule base ends up with 5 rules as follows:
� if uniformity_of _cell_size is small and uniformity_of_cell_shape is small and

bare_nuclei is small and then benign
� if uniformity_of _cell_size is large and uniformity_of_cell_shape is small and

bare_nuclei is large and then malign
� if uniformity_of _cell_size is small and uniformity_of_cell_shape is small and

bare_nuclei is large and then malign
� if uniformity_of _cell_size is large and uniformity_of_cell_shape is large and

bare_nuclei is small and then malign
� if uniformity_of _cell_size is large and uniformity_of_cell_shape is large and

bare_nuclei is large and then malign

� The classification result is:
� 32 misclassifications
� error = 53.190468

Performance on Training Data

Predicted Class

0 1 n.c. sum

0 224 32.80% 15 2.20% 0 0.00% 239 34.99%

1 17 2.49% 427 62.52% 0 0.00% 444 65.01%

sum 241 35.29% 442 64.71% 0 0.00% 683 100.00%

0: malign
1: benign
n.c.: not classified

Correct:
Misclassified:

651
32

(95.31%)
(4.69%)

Conclusion

The pruning methods reduced the number of rules and not all variables are used now. So
the rules became shorter. The error value was lowered from 62.45 to 53.19. On the other
hand the number of misclassifications increased. But now the rule base can be interpreted
well. So with a next experiment it is tried to improve this result.

Experiments with NEFCLASS-J 43

4.2.2 Use a Certain Number of Rules to Create the Classifier

We learned from the last experiment that the rulebase can be reduced to 5. We will
therefore try to create a classifier that is limited in its number of rules. We use the ‘best per
class’ option so that the number of rules should be 6. This experiment is devided into two
parts because the pruning methods do not reset the fuzzy sets after each step. So in the first
step we create and the prune the classifier and in a second step we reset the fuzzy sets,
train them and then prune the rule base again in order to reduce the influence of the fuzzy
set training on the pruning process.

The Parameter Settings

The same as in experiment 4.2.1

Size of the rule base 6

The same as in experiment 4.2.1

Create the Classifier

The main menu entry ‘Classifier|Create Classifier’ is used. The following box shows an
excerpt of the log file.

Training data: C:\VisualCafePDE\projects\VC_NEFCLASS\wbc.dat
Training for at most 500 cycles and for at least 0 cycles.
Continue for 100 cycles after a local optimum was found.
Learning will stop at 0 misclassifications.
There is no validation.
Parameter: LearningRate = 1.0, Fuzzy set constraints:
keep order, must overlap,
rule weights are not used.
The rule base will consist of 6 rules using the best 3 rules for each class.
Each variable uses 2 TRIANGULAR fuzzy sets.
Fuzzy sets will be trained.
...
WARNING: This rule base covers only 81% of all training patterns,
but this may improve during fuzzy set learning.
Training Fuzzy Sets.

Current Result Best Result
Cycle wrong error cycle wrong error
1 148 226.057851 1 148 22

6 .
05
78
51

...
...

Training fuzzy sets stopped after epoch 500
Best classifier was found in cycle 499 (27 misclassfications, error = 108.876753)
Restoring best solution.

44 Experiments with NEFCLASS-J

� After rule learnig the rule base ends up with 6 rules
� After fuzzy set training the classification result is:

� 27 misclassfications
� error = 108.876753

Prune the Rule Base of the Classifier

The main menu entry ‘Classifier|Prune Classifier’ is used. The pruning process recudces
the number of rules to two. The following box shows an excerpt of the log file

� After pruning the rule base ends up with two rules:
� if clumb_thickness is large and uniformity_of _cell_size is small and

uniformity_of_cell_shape is small and bare_nuclei is small and bland_chromatin
is small and mitoses is small and then benign

� if clumb_thickness is large and uniformity_of _cell_size is large and
uniformity_of_cell_shape is large and bare_nuclei is large and bland_chromatin
is large and mitoses is large and then malign

� The classification result is
� 25 misclassifications
� error = 146.242560

Conclusion
The number of rules and the number of misclassifications is really good but the error value
increased a lot. This means that the classification became less crisp. Furthermore it would
be desirable to get shorter rules. So this experiment is continued with a reset of the fuzzy
sets and training and pruning again.

Fuzzy sets will be trained.
This is an automatic pruning cycle.

Starting to prune the classifier with 6 rules.
Performance on training data (683 patterns) before pruning:
27 misclassifications (error = 108.876753)
...
Prune variables by correlation...
Prune rules by classification frequency...
Prune linguistic terms by minimum frequency
Pruning could not improve the classifier.
The previous version is restored.
Prune linguistic terms by fuzzy set support.
Further pruning cannot improve the classfier.

Final pruning result:
The rule base contains 2 rules.

Performance on training data (683 patterns):
25 misclassifications (error = 146.242560).

Experiments with NEFCLASS-J 45

Reset and Train the Fuzzy Sets

The main menu entry ‘Classifier|Reset Fuzzy Sets’ and ‘Classifier|Train fuzzy Sets Only’
are used. The following box shows an excerpt of the log file.

� After fuzzy set training the classification result is:
� 25 misclassifications
� error = 165.652780

Prune the Rule Base of the Classifier

The main menu entry ‘Classifier|Prune Classifier’ is used. The pruning process recudces
the number of variables to two in the first rule and to three in the second rule. The
following box shows an excerpt of the log file

Training data: C:\VisualCafePDE\projects\VC_NEFCLASS\wbc.dat
Training for at most 500 cycles and for at least 0 cycles.
Continue for 100 cycles after a local optimum was found.
Learning will stop at 0 misclassifications.
There is no validation.
Parameter: LearningRate = 1.0, Fuzzy set constraints:
keep order, must overlap,
rule weights are not used.
There are 2 initial rules:
...
Rule learning will not be invoked.
Each variable uses 2 TRIANGULAR fuzzy sets.
Fuzzy sets will be trained.

Starting the training process using 100.0% of all cases.
Training Fuzzy Sets.

Current Result Best Result
Cycle wrong error cycle wrong error
1 431 566.603306 1 431 56

6 .
60
33
06

...
...

Training fuzzy sets stopped after epoch 500
Performance on training data (100.0% of all cases):
683 patterns, 25 misclassifications (error = 165.652780)

46 Experiments with NEFCLASS-J

� After the pruning process the rule base ends up with 2 rules:
� if uniformity_of_cell_size is small and bare_nuclei is small and then benign
� if uniformity_of_cell_size is large and uniformity_of_cell_shape is large and

bare_nuclei is large and then malign

� The classification result is:
� 24 misclassifications
� error = 64.956353

Performance on Training Data

Predicted Class

0 1 n.c. sum

0 226 33.09% 13 1.90% 0 0.00% 239 34.99%

1 11 1.61% 433 63.40% 0 0.00% 444 65.01%

sum 237 34.70% 446 65.30% 0 0.00% 683 100.00%

0: malign
1: benign
n.c.: not classified

Correct:
Misclassified:

659
24

(96.49%)
(3.51%)

Fuzzy sets will be trained.
This is an automatic pruning cycle.

Starting to prune the classifier with 2 rules.
Performance on training data (683 patterns) before pruning:
25 misclassifications (error = 165.652780)
...
Prune variables by correlation...
Prune linguistic terms by minimum frequency...
Prune linguistic terms by fuzzy set support.
Further pruning cannot improve the classfier.

Final pruning result:
The rule base contains 2 rules.
...
Performance on training data (683 patterns):
24 misclassifications (error = 64.956353).

Experiments with NEFCLASS-J 47

Conclusion

This parameter setting offers a good performance. But up to now the classifier is created
with the whole data set and the performance is tested by using the same data. So there is
a need for a validation procedure in order to find out an error probability for the classifier.

4.2.3 Cross Validation of the Classifier

A 10-fold cross validation is used. We are interested in the validation of the fuzzy set
learning. We do not validate the structure learning process because we think that we found
a promising rule base during the last two experiments, i.e. we want to know how well a
classifier with this rule base will perform.

The Parameter Settings

Training data file wbc.dat

Number of fuzzy sets 2

Type of fuzzy sets triangular

Aggregation function maximum

Size of the rule base 6 (irrelevant, because rule base is fixed)

Rule learning procedure best per class (not used)

Fuzzy set constraints - keep relative order
- always overlap

Rule weights not used

Learning rate 1

Validation 10-fold cross validation

Stop control - Maximum number of epochs = 500
- Minimum number of epochs = 0
- Number of epoches after optimum = 100
- Admissible classification errors = 0

Train the Fuzzy Sets with Cross Validation

For the validation the fuzzy sets must be reset and the ‘Train Fuzzy Sets Only’ command
of the ‘Classifier’ menu has to be used. An excerpt of the log file is given below.

48 Experiments with NEFCLASS-J

Training data: C:\VisualCafePDE\projects\VC_NEFCLASS\wbc.dat
Validation mode is 10-fold cross validation.
Parameter: LearningRate = 1.0, Fuzzy set constraints:
keep order, must overlap,
rule weights are not used.
There are 2 initial rules: ...
Rule learning will not be invoked.
Each variable uses 2 TRIANGULAR fuzzy sets.
Fuzzy sets will be trained.
Starting the training process using 10-fold cross validation.
Validation cycle 1 of 10
Training Fuzzy Sets.

Current Result Best Result
Cycle wrong error cycle wrong error
1 13 19.985655 1 13

19.985655
...

...
Training fuzzy sets stopped after epoch 336
Best classifier was found in cycle 235 (3 misclassfications, error = 9.516956)
Restoring best solution.

Result of validaton cycle 1:
Training data: 614 patterns, 22 misclassifications (error = 54.433769)
Validation data: 69 patterns, 3 misclassifications (error = 9.516956)
Result of validaton cycle 2:
Training data: 614 patterns, 26 misclassifications (error = 59.920585)
Validation data: 69 patterns, 1 misclassifications (error = 4.312431)
Result of validaton cycle 3:
Training data: 614 patterns, 23 misclassifications (error = 56.715695)
Validation data: 69 patterns, 2 misclassifications (error = 7.237653)
Result of validaton cycle 4:
Training data: 615 patterns, 28 misclassifications (error = 64.975795)
Validation data: 68 patterns, 1 misclassifications (error = 4.463641)
Result of validaton cycle 5:
Training data: 615 patterns, 24 misclassifications (error = 57.010478)
Validation data: 68 patterns, 3 misclassifications (error = 7.427357)
Result of validaton cycle 6:
Training data: 615 patterns, 27 misclassifications (error = 63.789943)
Validation data: 68 patterns, 3 misclassifications (error = 5.379538)
Result of validaton cycle 7:
Training data: 615 patterns, 23 misclassifications (error = 57.333187)
Validation data: 68 patterns, 4 misclassifications (error = 7.028670)
Result of validaton cycle 8:
Training data: 615 patterns, 26 misclassifications (error = 63.663097)
Validation data: 68 patterns, 2 misclassifications (error = 5.015220)
Result of validaton cycle 9:
Training data: 615 patterns, 25 misclassifications (error = 61.532933)
Validation data: 68 patterns, 2 misclassifications (error = 7.874834)
Result of validaton cycle 10:
Training data: 615 patterns, 21 misclassifications (error = 57.834692)
Validation data: 68 patterns, 4 misclassifications (error = 5.605990)

Experiments with NEFCLASS-J 49

� After the final cycle of the validaton process where the whole data set is used the result
is:

� 25 misclassfications
� error = 64.150063

Performance on Training Data

Predicted Class

0 1 n.c sum

0 225 32.94% 14 2.05% 0 0.00% 239 34.99%

1 11 1.61% 433 63.40% 0 0.00% 444 65.01%

sum 236 34.55% 447 65.45% 0 0.00% 683 100.00%

0: malign
1: benign
n.c.: not classified

Correct:
Misclassified:

658
25

(96.34%)
(3.66%)

Result of the Cross Validation

Number of patterns 683

Estimated number of misclassifications per
pattern for unseen data:

mean = 0.036637
standard deviation = 0.015091
n = 10

99% confidence interval for the error estimation: 0.036637 ± 0.012979

Estimated error value 3,7% ± 1,3%

4.3 Discussion of the Result and Comparison to other Approaches

The classifier resulting from the creation process described in the experiments produces
classification results wich can be interpreted very well because the rule base consists of
only two short rules. Under this constraint an estimated error value of 3,7% ± 1,3% is a
really good classification result.

50 Experiments with NEFCLASS-J

1.0

0.0

0.0 2.0 4.0 11.0

Var 6

smlg1.0

0.0

0.0 2.0 4.0 11.0

Var 3

sm lg1.0

0.0

0.0 2.0 4.0 11.0

Var 2

sm lg1.0

0.0

0.0 2.0 4.0 11.0

Var 2

sm lg

1.0

0.0

0.0 2.0 4.0 11.0

Var 3

sm lg

1.0

0.0

0.0 2.0 4.0 11.0

Var 6

smlg

The Rules

if uniformity_of_cell_size is small and
bare_nuclei is small then benign

if uniformity_of_cell_size is large and
uniformity_of_cell_shape is large and
bare_nuclei is large then malign

The Fuzzy Sets

Var 2: uniformity_of_cell_size
sm: small
lg: large

Var 3: uniformity_of_cell_shape
sm: small
lg: large

Var 6: bare_nuclei
sm: small
lg: large

Experiments with NEFCLASS-J 51

The following table [NAUCK/KRUSE 98b] compares NEFCLASS-J to results obtained with
other approaches. The classification performance on unseen data is comparable and the
classifier is very compact. The error estimates given in the table are either obtained from
1-leave out cross validation, 10 fold cross validation as used in the experiments described
above, or from testing the solution once by holding out 50% of the data for a test set.

Model Tool Remarks Error (%) Validation

Discriminant analysis SPSS Linear Model 9 variables 3.95 1-leave-out

Multilayer Perceptron SNNS Four hidden units, Rprop 5.18 50% test set

Decision tree C4.5 31 nodes pruned 4.9 10-fold

Rules from decision
tree

C45. rules 8 rules using 1-3 variables 4.6 10-fold

NEFCLASS NEFCLASS-X 2 rules using 5-6 variables 4.94 10-fold

NEFCLASS NEFCLASS-J 2 rules using 2-3 variables 3.7 10-fold

4.4 Conclusion

For applying a neuro-fuzzy strategy one important aspect should be considered: for
whatever reason a fuzzy system to solve a problem is chosen, it cannot be because an exact
solution is needed. Fuzzy systems are used to exploit the tolerance for imprecise solutions.
Fuzzy systems should be used because they are easy to implement, easy to handle and easy
to understand. A learning algorithm to create a fuzzy system from data also should have
these features. Under this view the learning and pruning strategies of NEFCLASS are
simple and fast heuristics.

The new NEFCLASS tool was presented using the well-known Wisconsin Brest Cancer
data set. The new philosophy in pruning the rule base automatically was successfull, so
users who have no experience with pruning methods can create a compact interpretable
classifier.

The validation option that offers cross validation as well as single test enables the user to
compare the quality of the classification results very easily to other approaches. No further
computation with statistic tools is needed.

It is also shown that NEFCLASS-J is not a tool for automatic creation of a fuzzy classifer.
It supports the user, but it cannot do all the work because a precise and interpretable fuzzy
classifier can hardly be found by an automatic learning process. There will always be the
trade-off between readability and precision.

5

How to use NEFCLASS-J

In this chapter a ‘guided tour’ through the program is given. The data set used for this is
the ‘Iris’ data set. The interface and all of the parameters will be explained. A classifier
can be developed, trained and validated without any changes of parameters. But as
depicted in the fourth chapter, the user should work with the program. With help of the
parameters the system is constrained so that a classifier can be developed that fits the
problem. But nevertheless the hardcopy pictures of the interface show the default values
for the parameters. Some tests how the changing of parameters influences the system are
made in Chapter 4.

This chapter of the thesis is not only a description of the GUI of NEFCLASS-J but shall
also function as a tutorial which will be released on the Internet. Therefore the reader is
adressed directly in the following and quite some effort was made to write a text that can
be understood by non-experts, too. The following pages also make use of color.
NEFCLASS-J uses distinct colors to help the user to recognize the different dialogs and
frames more easily. This chapter uses this color code to stress the relationship to certain
parts of the tool.

In addition to the guided tour where the parameters are introduced by an example there is
a picture of the main menu of the program. There the page numbers are given where the
respective menu item is explained. For information about the installation of NEFCLASS-J
please refer to the file readme.txt which is distributed together with the program.

5.1 The Trainig Data Set

The training set is the same as used in the manual of NEFCLASS-PC. So for users of this
implementation it might be easier to follow the new outfit of NEFCLASS-J. Also the
guided tour will look very much like the descriptions in this manual [UNauck 97].

NEFCLASS-J learns from training data, which must be provided in a pattern file. This
manual uses the Iris data which is also distributed in combination with NEFCLASS-J as
a concrete example for the explanations. Iris data is perhaps the best known database to be
found in the pattern recognition literature. Fisher’s paper [FISHER 36] is a classic in the
field and is referenced frequently to this day [DUDA&HART 73]. The three types of Iris
flowers can be classified by the length and width of their sepals and petals. So the attribute
information is:

How to use NEFCLASS-J 53

� sepal length in cm
� sepal width in cm
� petal length in cm
� petal width in cm
� class:

� Iris Setosa
� Iris Versicolour
� Iris Virginica

The data set contains 3 classes of 50 instances each, where each class refers to a type of
Iris plant. These are 150 cases of 4 numeric predictive attributes and the class coded as a
binary vector of 3 components. One class is linearly separable from the other 2; the latter
are NOT linearly separable from each other. Here some statistics on the data set are given:

Min Max Mean SD Class Correlation

sepal length 43 79 584 83 0.7826

sepal width 20 44 305 43 -0.4194

petal length 10 69 376 176 0.9490 (high!)

petal width 1 25 120 76 0.9565 (high!)

No missing attribute values

Table 5.1: Statisic information about the ‘iris’ data set

In the NEFCLASS-PC implementation there was need to devide the data file into two
files, one for training and one for testing. This is not necessary anymore. The new
validation feature offers an automatic random division of the file.

5.2 Guided Tour through NEFCLASS-J

Normally a user has a certain problem if he decides to use a program like NEFCLASS. In
most cases there is data base, other classification are just tried out and now the question
arises if there are other solutions which are faster, better (in accuracy or interpretability) or
even easier to handle. So let us specify these tasks.

54 How to use NEFCLASS-J

The Problem

� There is data to be classified.
� For some reason you decided to do a classification with a neuro-fuzzy system.
� You want to know how successful the classifier is, so you want to know the

performance of the neuro-fuzzy system.
� You want to modify the classifier in order to find out if the performance can be

improved.
� In the case you have prior knowledge about the data, you want to use it for the creation

of the classifier

The Needs

� A data base consisting of patterns with class information,

� A software tool like NEFCLASS-J
� to create, train, and validate the classifier,
� to give you graphical and textual displays for interpreting the results,
� to do some statistics to get prior knowledge about the data.
�

The following figue shows the structure of the NEFCLASS main menu. In there the page
numbers for the descriptions of the features are written next to each menu entry. This is a
kind of index for the case that you are looking for some special descriptions.

The tutorial is devided into five parts that deal with the following topics:

1 The Philosophy

2 Create a Project

� Open the project specification dialog
� Open a data file for training
� Edit the labels
� View some statistics
� Create the rule base
� View the rule base
� Learn the fuzzy sets and view the error
� View the fuzzy sets
� Save and close the project

How to use NEFCLASS-J 55

3 Try to Improve the Classifier by Changing the Parameters

� Open a project
� Change the number and type of fuzzy sets
� Change the aggregation function
� Select the interpretation of classification result
� Determine the size of the rule base
� Change the rule learning procedure
� Relearn the rule base
� Determine the constraints for fuzzy sets
� Determine constraints for rule weights
� Determine a learning rate
� Determine the validation procedure
� Determine the parameters for the stop-learning control

4 Use Prior Knowledge

� The rule editor

5 Pruning the Rule Base

� Manual pruning
� Automatic pruning
� Semi-automatic pruning

56
H

o
w

 to
 u

se
 N

E
F

C
L

A
S

S
-J

Help Topics...

 p. 88

About ...

 p. 88

Hide All

Show All

Create Classifier

 pp. 68, p. 82, 85

Create Rule Base Only

 p. 63, 85

Train Fuzzy Sets Only

 p. 65, 85

Load Training Data

 p. 61, 85

Load Application Data

 p. 57, 85

NEFCLASS-J
Project Classifier View Rules Help

New Project Ctrl+N

 pp. 57, p. 59, 84

Open Project Ctrl+O

 p. 67, 84

Edit Project Ctrl+E

 pp. 57, p. 84

Save Ctrl+S

 p. 67, 84

Save As Ctrl+Shift+S

 p. 85

Close Project Ctrl.+Shift+C

 p. 67, 85

Exit NEFCLASS

Edit

 p. 64, 82, 88

Restore Rule Base

 p. 88

Export

 p. 88

Error

 p. 88

Fuzzy Sets

 p. 66, 88

Statistics Training Data

 p. 62-63, 88

Statistics Appl. Data

 p. 88

Classify Training Data

 p. 87

Classify Appl. Data

 p. 87

Stop Training Process

 p. 87

Prune Classifier

 p. 83, 85

Create Classifier and Prune It

 p. 85

Create Pruned Classifer

 p. 85

Restore Fuzzy Sets

 p. 87

Reset Fuzzy Sets

 p. 82, 87

How to use NEFCLASS-J 57

5.2.1 The Philosophy

The handling of the created NEFCLASS-System is organized in projects. Whenever a
stage of development is reached that should be saved, this can be done as a project. For the
creation of a classifier the following steps have to be done:
� Parameters to define and constrain the classifiers have to be set. Some of them (e.g.

learning rate, aggregation function, stop control, learning procedure) can be set without
a data file to be opened. Others like number and type of fuzzy sets depend on the
patterns. So the next step is to

� open a data file for training. After the definition of all parameters (default values are
set) the

� training of the classifier can be started
� in two single steps, first the rule learning and in a second step the training of

fuzzy sets or
� in one step.

In every state it is possible to save the project. If a data file is loaded the file name is saved
in the project so that it will be loaded automatically when the project is opened again. So
be careful with moving your data files. If the classifier is just created additional to the
project file a classifier file is saved. The project file is supposed to have the extension
‘.prj’. It contains the parameter definitions used to create the classifier. The classifier file
is supposed to have the extension ‘.cls’. It contains the rule base and all other informations
to describe the classifier. The user only needs to save the project and the files will be
created automatically. These files are in ASCII code and can be viewed with any editor. It
is possible to handle one project at a time only. So a project has to be closed before
another one can be opened.

Furthermore it is possible to load a second data file which can used for testing the network
or even classifying unknown data. It can be loaded by ‘Project|Open Application Data’.
Although it is sortet into the Project menu it is not neatly connected to it. Another project
can be loaded to classifiy this data. It is not saved with any project as it is done with the
training data.

The data files cannot be closed explicitely. They are simply replaced when a new file is
loaded. NEFCLASS will do a consistency check if the new data file fits the classifier. If
not a message is given that the project must be closed and a new one has to be created.
With closing the project the data files are also closed.

The handling of a project is controlled by a dialog which is opend when in the main menu
‘Project|New Project’, ‘Project|Edit Project’, or ‘Project|Open Project’ is selected. In this
dialog all parameters can be set.

58 How to use NEFCLASS-J

The six tabs of the dialog have different colours. If further dialogs are opened concerening
the matter of a tab the same colour for this dialog is used. This way a connection to the
different steps of creating a classifier is given. The topics of the tabs and the assigned
colours are:

� Project (emerald green)
� features of the tab:
• project name can be set
• project description can be set

� Data (blue)
� features of the tab:
• load data file for training
• invoke dialog for changing variable and class names
• invoke window for statistics
� connected dialogs:
• progress dialog for file loading

� Classifier (yellow)
� features of the tab:
• set the numbers and types of fuzzy sets
• set the aggregation function
• edit the rule base
� connected dialogs:
• view the fuzzy sets

How to use NEFCLASS-J 59

� Rule Creation (orange)
� features of the tab:
• set the size of the rule base
• select the rule learning procedure
• choose if the the rule base need to be relearned
� connected dialogs:
• view the learning process in a progress dialog

� Training FSets (green)
� features of the tab:
• set the constraints for the fuzzy sets
• set the constraints for the rule weights
• set the learning rate
� connected dialogs:
• view the training progress, errors are drawn in a graph

� Training Control (pink)
� features of the tab:
• set the validation procedure
• set the and the stop control parameters

The project specification dialog has to be closed before other dialogs or the main menu is
enabled again (except the dialogs invoked from one of the tabs). This may sometimes be
uncomfortable but it helps to do a consistency check of the parameters. If some settings are
not valid the dialog cannot be closed and the user has to look for the problem. This way
inconsistent projects are avoided.

In the following tutorial you will be guided through the process of creating and improving
a classifier. The description of the exercises is written in boxes. For these boxes the same
code of colours is used as for the windows, dialogs and tabs in the program. E.g. if an
exercise deals with the handling of training data the describing boxes are blue.

5.2.2 Create a Project

In this part of the guided tour a classifier using default values is created. The only change
that will be trained here is the renaming of the variable and class labels.

� Open the ‘Project Specification’ Dialog

In this dialog every parameter of the classifier can be set. When creating a new project
this dialog is opened automatically.

� Use ‘Project|New Project’ in the main menu to invoke the ‘Project Specification’
dialog.

� In the Project tab insert as a title “Project1” and
� if you want you can write a description.

60 How to use NEFCLASS-J

� Open a Data File for Training

� choose the Data tab

� select the ‘Open’ button
� select the file ‘iris.dat’ from the directory to where you stored it.

File Name for Training Data

If the chosen file is not formatted in NEFCLASS style a message box opens with
this information. The file name cannot be written in the text field in the left of
the button, it is only meant for display. The progress of opening the file is shown
in a message box where also some informations about the data are displayed.

How to use NEFCLASS-J 61

� Edit the Labels

� Choose the ‘Edit Labels’ button.

Another possibility to load a data file is to choose ‘Project|Load Training Data’.
An open dialog will also be invoked. But this is only possible when the project
specification dialog is closed. After the file is opended the filename and if
existing a description will be inserted into the Data tab of the ‘Project
Specification’ dialog when opened the next time.

Dialog for Changing Variable and Class Names

Another dialog will be invoked where the names of the variables and the classes
can be changed. These new names are saved in the data file and used from now
on. If a data file has no labels yet default names are used.

62 How to use NEFCLASS-J

� So click the first line of the list (Var 1) and change it to ‘sepal length’. You can
do more if you want to. The data is described in section 5.2 of this chapter.

� Leave the dialog with ‘OK’.

� View Some Statistics

� Click the ‘Statistics’ button of the Data tab.

In the text area on the left a description of the data file (the name is displayed in
the first line) can be given. On the right a list of names appear. First the variable
names are listed and then the class names. In the example default names had
been given and the first name (sepal length) was just changed. With clicking on
the next name to be changed it appears in the line above the list. There the
changes can be written. A click on the ‘enter’ button next to this line will insert
the new name into the list. While you do not leave this dialog with ok, you can
reset the changes. The ‘save as’ button gives you the chance to create a new data
file if you do not want the original data to be changed.

How to use NEFCLASS-J 63

� Create the Rule Base

� Close the project specification dialog with ‘OK’.
� Select the ‘Classifier|Create Rule Base Only’ item of the main menu.

View Statistics

A new window opens and some descriptive statistics and correlations are
displayed. As you can see the changes you did with the labels are transferred.
The text can be edited in this window and also be saved in an ASCII file. The
extension ‘.txt’ will be suggested for the file name you give in the save dialog.

This is only one possibility to view statistics. If a data file is loaded the statistics
window can also be invoked by ‘View|Statistics Training Data’.

Learn the Rule Base

An orange window opens (orange concerning rules) where classification results
are displayed.

64 How to use NEFCLASS-J

� Close the window now or minimize it. It is possible to keep it open but you will
not recognize much when more windows are opened.

� View the Rule Base.

� Select ‘Rules|Edit’ from the main menu.

The text field gives information about the creation of rules, the trimming of the
rule base, the rule learning procedure used for this, number of patterns,
misclassifications and so on.
Furthermore three bars display the progress of
� searching for antecedents,
� searching for consequent and
� selecting rules

View the Rule Base

A yellow dialog is invoked.Here the color yellow (classifier) is chosen instead of
orange (rules) because the dialog is normally used to edit the rule base and insert
prior knowledge in form of rules. So it is for defining the classifier before the
learning process. But for to edit a rule base it has to be displayed and so we can
use this dialog for a glance on the rules.

Rule numbers precede the rules. The rules are followed by:
� rule weights written in brackets if used (should not be done normally) and
� the performance of the rule.

The default number of rules specified in the project was ‘10’, but we also
selected ‘best per class’ as rule learning procedure. So the number is rounded up
to 12 rules.

This dialog has to be closed before anything else can be done.

How to use NEFCLASS-J 65

� Learn the Fuzzy Sets and the View the Error

� Select the ‘Project|Train Fuzzy Sets Only’ menu item

� close or minimize the window.

Learn the Fuzzy Sets and View the Progress

A green window (concerning fuzzy set learning) is openend while the fuzzy sets
are learned.

In the upper part the error and the misclassifications are displayed. The buttons
in the left and under the display can be used for changing the the scale of the
graph. The text field shows information about the learning process,
misclassifications and the error.

66 How to use NEFCLASS-J

� View the Fuzzy Sets.

� select ‘View|Fuzzy Sets’ from the main menu.

� If you are only interested in some variables you can select them from the list on
the right

� The graphs shown on the left can be printed (3 graphs per page).

View the Fuzzy Sets

The fuzzy sets can be viewed now. This is a yellow vindow again because the
fuzzy sets define the classifier. The fuzzy sets can be viewed once a data file for
training is loaded. There are default values of the project which define the fuzzy
partitions so that a graphical display can be created.

As we will see in the next subsection the default value for the number of fuzzy
sets is ‘3’ and the default type is ‘triangular’. So we can view in this window one
graph for every variable where the domain is devided into 3 triangular fuzzy
sets. Because of the learning process they are not symmetric and evenly
distributed anymore.

How to use NEFCLASS-J 67

� Save and Close the Project.

� select ‘Project|Save’
� select ‘Project|Close Project’

5.2.3 Try to Improve the Classifier by Changing the Parameters

In the following all parameters which can be set in the ‘project specification’ dialog are
described but only some parameters will be changed.

� Open a Project

� select ‘Project|Open Project’ from the main menu.
� select ‘Project1’.prj

� select the Data tab
� view the file name and description given there.

� if no file name is given please open a training data file now.

Save and Close the Project.

A project can be saved by the ‘Project|Save’ or ‘Project|Save As’ menu option.
If an unnamed project should be saved by the option Project|Save the ‘project
title’ given in the Project tab of this dialog is taken as the file name for the
project. The project and the class file (if existing) are automatically created with
extensions ‘.prj’ and ‘.cls’. If no title is given a ‘save as’ dialog will be opended
so that a project name can be given.
These files are ASCII files and can be viewd with any editor.

Open a Project

The ‘project specification’ dialog is invoked: The training data file that was
loaded during the first part of this tutorial is just loaded.

If there is no file name given something went wrong in the first section of the
tutorial.

68 How to use NEFCLASS-J

� select the Classifier tab

� Change the Number and Type of Fuzzy Sets

� select individually
� click the specify button

Number and Type of Fuzzy Sets

For each variable a number of fuzzy sets (a fuzzy partitioning) has to be defined.
By default three fuzzy sets are defined which automatically get names The
membership functions are equally distributed on the domain of the respective
input feature. There are three types that can be selected (triangular, trapezoidal
and bell-shaped). As default the triangular membership function is used where
the leftmost and rightmost functions are shouldered. You have the following
options:
� same for all variables
� individualy for each variable

If no data file is loaded this option cannot be selected. So if you have problems
one day, remember to check the Data tab for a data file

A dialog opens where the variables and their fuzzy set types and numbers are
listed. Here the number and type of fuzzy set for each variable can be set.

How to use NEFCLASS-J 69

� set all variables to ‘5 fuzzy sets’ and ‘bell-shaped’
� set the first variable to triangular
� leave the dialog with ‘OK’
� select ‘same for all variables’ in the Classifier tab

� set the number of fuzzy sets to ‘5 for all variables’
� the triangular type is ok.

For making it easy all variables can be initialized with the values most common
for that there is only need to make some changes. You can do this in the two
lines on the bottom of the yellow area. Write the number and/or select the type.
If you click the ‘Set’ button of the specified feature the list above will be
updated.

The values set there are not transmitted to the Classifier tab of the project
specification dialog. When the ‘set all’ option in this dialog was used and then
you decide not to define them individually and therefore select the ‘all the same’
option in the Classifier tab you might have different values.

As you can see there the old values are set. The individual definition does not
influence the ‘same for all option’. But imagine that you perhaps want to define
hundred variables individually. 92 have to be set to ‘5 fuzzy sets’ and only seven
of them to ‘8 fuzzy sets’. You would be very angry to set them one by the other.
So it is necessary to have a possibility to initalize all and then only change some.

70 How to use NEFCLASS-J

� Change the Aggregation Function

� the selection of ‘maximum’ is ok.

� Select the Interpretation of Classification Result

The Aggregation Function

Let us use the network view of the classifer for this explanation. Many rule units
(hidden layer) can be connected to one class unit (output layer), i.e. many rules
can have the same class in their consequent. The output of a rule unit is a degree
of fulfilment. The rule units send their outputs to the class units. The aggregation
function of a class unit (netu) calculates a value from the output values of the
rule units that will be the output of the class unit .

� ‘Weighted Sum’
A weighted sum of the rule unit output values is calculated. If you decide to
use rule weights this will be a weighted mean.

� ‘Maximum’
The maximum of the rule unit output values will be used (eventually
multiplied by an optional rule weight).

Interpretation of Classification Result

The output values of the class units calculated by the aggregation function need
not to give a clear classification decision if the propagated pattern belongs to a
class. A crisp output would be a vector where all components are ‘0’ exept of
one with ‘1’. Normally you will get a vector where all components have real
values from [0,1]. The question is now how this can be interpreted. Up to now
only one interpretation strategy is implemented

� the winner takes all
The highest value is selected to define the class the propagated pattern is
assigned to.

In a next version of NEFCLASS-J additional interpretation strategies will be
implemented.

How to use NEFCLASS-J 71

� select the Rule Creation tab

� Determine the Size of the Rule Base

� select ‘max. number of rules’
� set the value to ‘6’ rules

The Size of the Rule Base

To specify the size of the rule base is an optimization problem. The minimum
number is one rule for every class. So you have to try out the options:
� automatically determine number of rules

This option encreases the accuracy. The best classification results are
received when all patterns of the data set are covered by the rule base but this
might produce a lot of rules.

� max. number of rules
This option increases the interpretability. The interpretability is higher with a
small number of rules but not all patterns might be covered by the rule base.

72 How to use NEFCLASS-J

� Change the Rule Learning Procedure

� use the ‘best per class’ option.

� Relearn the Rule Base

� select this option

The Rule Learning Procedure

Here you can decide which rules are selected during the rule learning process.
� best

selects the best rules of all. Classes represented by weak rules might not be
represented in the rule base.

� best per class
selects under the constraint of the size of the rule base the best rules per class.
So every class is represented by the same number of rules. From this follows
that the maximum number of rules you have specified has to be rounded up
if it cannot be devided through the number of classes.

Relearn the Rule Base

This option is needed if a rule base exists, but nevertheless rule learning should
be done. The existing rule base will be used as prior knowledge and will be
compared against additionally created rules during rule learning. If there is a rule
base and this option is not selected, rule learning will be skipped.

This option is needed when parameters are set, although a rulebase is just
learned. In this section of the tutorial we have opened an existing project and
decided that the results are not good enough to keep the classifier. On the other
hand we just edited the labels. This we would have to do again if we created a
new project. So we can change the parameter we want to and then relearn the
rule base. If we come to the decision that we do not want to overwrite the old
classifier we can save the project with a new name.

How to use NEFCLASS-J 73

� select the Training Fuzzy Sets tab

� Determine the Constraints for the Fuzzy Sets

Constraints for the fuzzy sets

These parameters are used to find an suitable balance between high inter-
pretability and a high accuracy. There are four constraints that can be selected.

� keep relative order - is selected by default
(in NEFCLASS-PC this option was named ‘do not pass neighbours’)

� always overlap - is selected by default
(was not available inNEFCLASS-PC)

� be symmetrical
(in NEFCLASS-PC this option was named ‘learn asymetrically’ but the
meaning is the opposite)

� intersect at 0.5
(in NEFCLASS-PC this option was named the same)

More than one option can be used at a time so every combination is possible. It
is on you to decide whether it makes sense. The options are described in the
following boxes.

74 How to use NEFCLASS-J

1

0

0,5

0

very small smallbig very big

x

1

0

0,5

0

very small small big very big

x
initialised fuzzy sets learned fuzzy sets

Keep Relative Order

It means that during the learning process a fuzzy set must not pass its left or right
neighbors. For triangular membership functions for example this is enforced by
checking that all three parameters of the membership function (left spread,
center, right spread) stay smaller (larger) than the parameters of its right (left)
neighbor.

To unselect this constraint may lead to rules that cannot be interpreted, but
sometimes there are better classification results.

Figure 5.1: Fuzzy sets before (left) and after (right) learning process with
unselected option.

In fact the fuzzy set “big” was passed by all three parameters of the triangular
membership function “small”. But even passing one point violates this
constraint.

1

0

0,5

0

very smallsmall big very big

x

1

0

0,5

0

very small small big very big

x
initialised fuzzy sets learned fuzzy sets

Always Overlap

It means that there are no gaps in the fuzzy partition so that the domain is
covered by fuzzy sets everywhere.

Figure 5.2: Fuzzy sets before (left) and after (right) learning process with
unselected option.

There is a gap between the fuzzy sets big and very big.

How to use NEFCLASS-J 75

� the default selections are ok.

1

0

0,5

0

very small small big very big

x
initialised fuzzy sets learned fuzzy sets

1

0

0,5

0

very small big very bigsmall

Be Symmetrical

It means that that both spreads are equally changed during the learning process.

If this option is selected during the learning process only this side of the
triangular function is changed, where the input is located, i.e. only either the left
spread, or the right spread is changed. It is possible that this constraint cannot be
guarnateed, if other constraints must be met.

Figure 5.3: Fuzzy sets before (left) and after (right) learning process with
unselected option.

The right spread of fuzzy set big is longer than the left.

1

0

0,5

0

very small small big very big

x
initialised fuzzy sets learned fuzzy sets

1

0

0,5

0

very small very bigsmall big

Intersect at 0.5

It means that two adjacent fuzzy sets must always intersect at a membership
value of 0.5, i.e. for each value of the domain the sum of membership values
over all fuzzy sets is always equal to one.

Figure 5.4: Fuzzy sets before (left) and after (right) learning process with
unselected option.

Here the fuzzy sets are learned symmetrically without intersecting at 0.5.

76 How to use NEFCLASS-J

� Determine the Constraints for the Rule Weights

� Determine a Learning Rate

� set the learning rate to 0.1 (later you should also try larger values to get a feeling
how the learning rate can speed up the process without leading to oszillation. As
now batch learnig is used values around 1 are usually acceptable).

Rule Weights

Here can be selected whether rule weights are used for the learning process or
not. The selection is:

� not used (default)
the weights are fixed to 1 for each rule (unweighted rules

� stay within [0, 1]
rule weights are used but restricted to the interval of [0, 1]

� may be arbritray
any value for a rule weight is allowed.

It should be stressed here that only a learning process without using rule weights
can result in a classifier that can be interpreted.

Learning Rate

The learning process is done for minimizing the number of errors of the
classifier. This can be visualized by a multidimensional error surface. Imagine
you get lost in a mountain area and the task is to find the lowest point in this
region. So you will always go downhill and one time reach a valley. But you
cannot be sure that you found the valley nearest to the sea level. Because this
depends on your starting point, and if you are on a plateau the direction you go
first. The same problems have to be solved by the learning algorithm.

Now imagine that you are a giant going with big steps and one step is as big as
the other. You perhaps stamp over a small but deep valley without remarking it.
On the other hand if your steps have always the same size and you enter a small
deep valley getting smaller and smaller you only can step from one wall to the
other but never go deeper because for this you have to do smaller steps.

This width of the steps is the learning rate for the algorithm. Depending on the
error surface (that you do not know) you can be lucky with a high learning rate
and find a minimum very fast. But if the surface is very rugged you better go
with small steps even if it lasts longer.

So if the error increases during the learning process you jumped over a minimum
(what also can be an advantage because it perhaps was not a good local mini-
mum), or if you find an oszillation of error values try to reduce the learning rate.

How to use NEFCLASS-J 77

� select the Training Control Tab

� Determine the Validation Procedure

The Validation Procedure

This is the most important new feature of NEFCLASS-J in comparison to
NEFCLASS-PC. In the former version only a single test could be done, and for
this the user had to devide the data set into two parts by himself. With this you
get just an idea about the quality of the classifier but no suitable statements for
professional use. Furthermore there was the problem that the learning process
should be independant from the data for that the classifier generalizes well. To
divide a data file into two parts which both represent the distribution of patterns
to classes is not easy. Now you have the possibility to select the ‘single test’ or
‘cross validation’ procedure for the learning process where the division of the
data set happens randomly.

There are three options
� no validation
� cross validation
� single test

How to use them depends on the size of the data set and the time you want to put
into the learning process. In the following boxes the options are described in
detail.

78 How to use NEFCLASS-J

The Training Process

During the learning process the patterns are propagated through the classifier, a
total error of these propagations is calculated and with this the weights are
changed hoping that the next propagation of the patterns will cause a smaller
error. This process will be stopped by parameters you can set and which are
described in the next subsection.

No Validation

The whole data set is used for training

� result of the learning process,
the smallest error reached during all propagations through the classifier.

� use if
� you do not have much patterns and do not want to divide them to keep

some for a test process
� you do not know much about the data and want to get a feeling for how

to set the parameters of the NEFCLASS system to create a good
classifier.

Cross Validation

The data set is randomly divided into a number of parts you can set. Let us say
we have 150 patterns and chose ‘10’ parts. So you get 10 parts with 15 patterns.
The first part is taken to test the classifier and the whole rest of the data set
consisting of 135 patterns will be used to train the classifier. You get an error
value from the test process.

This is also done with the remaining 9 parts. So in every run of training and
testing the whole data set is used but the mixture of the training and test set
always changes. In the end you obtain 10 error values which are used to compute
a mean error.

� result of the learning process,
� a mean error
� a confidence interval calculated on the 99% level

For our example let us say there is a mean error of 5% and a confidence
interval of [-1%, +1%]. Then you can assume with a possibility of 99% that
the classification of unseen data will cause an error rate between 4% to 6%.

� use if
you have found good parameters for the classifier. The number of parts you
choose is the number of training processes.

How to use NEFCLASS-J 79

� the selection ‘single test’, 50% is ok.

An additonal training process will be carried out. The real classifier is trained
with the whole data set. The more data is used the better the classifier should be
able to generalize. The patitioning of the data set is only for validation. This
validation process may need a lot of time, so the normal way of creating a
classifier should be:
� Try out the parameters that can be set with the ‘no validation’ option first.

When you think that you are on the right way
� try out the ‘single test’ option and perhaps find parameter setting more

precisely.
� If you think that you found a promising parameter setting for the classifier

then validate your solution with the ‘cross validaton’ option.

A last point mentioned here is for those who used NEFCLASS-PC. If you want
to use your old data sets that you divided yourself you can do the following:
� Load your training data file as depicted
� use ‘no validation’
� train the classifier

You will get the error of the training set. Then
� load the test data file selecting ‘Project|Load Application Data’ from the main

menu
� then classify this file selecting ‘Classifier|Classifiy Applicatin Data’.

This computes the classification results and if data with class information is used
it also calculates the error.

Single Test

The data set is randomly devided into two parts according to the given
percentage value. The smaller part is used for training as depicted above. The
bigger part is used to test the classifier.

� result of the learning process,
� the smallest error caused during all propagations through the classifier.
� the error on the training data of the same cycle.

� use if
� the data set is big enough to be devided
� you do not know much about the data and want to get a feeling for how

to set the parameters of the NEFCLASS system to create a good
classifier.

80 How to use NEFCLASS-J

� Determine the Parameters for the Stop-Learning Control

� set ‘Maximum No. of Epochs’: 500
� set ‘No. of Epochs after Optimum’: 100
� close the dialog with ‘OK’
� relearn the classifier
For this select ‘Classifier|Create Classifier’ from the main menu.

The Parameters for the Stop-Learning Control

As depicted in the section about the learning rate you can never be sure to find
the absolute minimum. So you need another criterion for stopping the learning
process always considering not to stop to early but also to reduce the period of
time the learning process needs. Remember that you perhaps want to do a cross
validation. Then you need this period several times. The stop criterions are:

� Maximum No. of Epochs (default 100)
here you can set how often at most the pattern set should be propagated to
train the classifier

� Minimum No. of Epochs (default 0)
here you can set how often at least the pattern set must be propagated to train
the classifier

� No. of Epochs after Optimum (default 10)
with this value you can set how often the pattern set will be propagated after
the error value increases again. Refering to the example depicted in the
learning rate section: this value is used to ‘climb up the hill’ with the hope to
find another valley which goes deeper.

� Admissible Classification Errors (default 0)
Define the maximum number of admissable misclassifications. If you have -
let us say - 100 patterns, and you want to have a 95% correct classification,
then you could enter 5 for this option. Unfortunately, the learning procedure
is heuristic, and it cannot be guaranteed that the error (or the number of
misclassifications) becomes less than any given value.

Please remember that we just have a rule base and that the fuzzy sets are trained.
We used the ‘relearn rule base’ option and so the existing rules are used as prior
knowledge and the learning process is based on the trained fuzzy sets.
You also have the possibility to reset the fuzzy sets. For this select
‘Classifier|Reset Fuzzy Sets’ from the main menu. To clear the rule base you
have to use the rule editor. This will be explained in the next section.

How to use NEFCLASS-J 81

� save the project with a new name
select ‘Project|Save As’ from the main menu and save under a new name. Perhaps
‘Project1b’ is a good idea because ‘Project1’ is used as basis for the learning process
� view the rule base there are only six rules now
� view the fuzzy sets there are five sets per partition now.

5.2.4 Use Prior Knowledge

Prior knowledge in form of fuzzy rules can be inserted to the system before and after the
learning process. Rules can also be edited after a learning process. With the option ‘relearn
the rule base’ these rules are integrated into to process of selection during the creation of
the rulebase. It can happen that these rules will not appear in the resulting rulebase because
they were not good enough.

� The Rule Editor

� select ‘Rules|Edit’ from the main menu

A yellow window is invoked which is devided into three rows which are derived
from the three parts a rule consists of:
� fuzzy term - e.g. Var 1 is big
� antecedent - many fuzzy terms plus consequent, e.g. class is 2
� many rules
In the right top corner of the window an area with help text is displayed. The
informations depend on the field you have clicked in.

Insert a rule

First you have to create an antecedent. So click the ‘Remove All’ button in the
second row. This will clear the antecedent area. Then build the fuzzy terms by
selecting a variable name and a fuzzy set from the lists in the first row. With
using the ‘Set’ button this term is inserted into the antecedent in the second row.
Do so till the antecedent is complete. Then select a class in the list on the right
side of the second row. Click the ‘Add Rule’ button to insert the rule into the list
of rules in the third row.

Modify a rule

Select the rule to be modified in the list of the third row. The antecedent of this
rule will be displayed in the antecedent field of the second row, and the class
will be marked. Then select the fuzzy term you want to change. The variable
name and the fuzzy set will be marked in the first row. Change it and use the
‘Set’ button and so on. If the rule is ready use the ‘Modify Rule’ button in the
second row, and the changed rule will replace the old one.

82 How to use NEFCLASS-J

� if you had not closed it Project1b is still open if not please open it now
� relearn the classifier.
• select ‘Classifier|Reset Fuzzy Sets’
• select ‘Rules|Edit’
• select the ‘Remove All’ button in the third row to clear the rule base
• close the rule editor with ‘OK’
• select ‘Classifier|Create Classifier’ from the main menu.
� repeat this again and compare the results

� save and close the project.

The results may vary a lot. This is because you have chosen the ‘single test’
option. For every training process the two parts of the data set are selected again.
Here you can see that the development of a classifier depends on the used data
and that it is necessary to reduce this influence to a minimum.

How to use NEFCLASS-J 83

5.2.5 Pruning the Rule Base

Pruning the rule base is used to improve the interpretability of the classifier. Pruning tries
to get the same or a better classification results with a smaller rule base. There are three
options to prune the rule base:

� Manual Pruning

For this open the rule editor. Every line for a rule has a number and the performance of
the rule in the beginning. Use the values for the performance to find out which are the
good rules. Then you have two possibilities:

� use the ‘good rules as prior knowledge’
• erase the rules with the smallest performance values
• set the ‘number of rules’ parameter the same as rules are specified now,
• set the ‘relearn the rulebase’ option and
• create the classifier again.

Think about resetting the fuzzy sets before (this need not to be done but you can
try it).

� create a completely new rule base
• count the ‘good rules’,
• remove all rules,
• set the ‘number of rules’ parameter to the value you counted,
• reset the fuzzy sets,
• create the classifier.

If this process was not successful you can get the old rulebase by using ‘Rules|Restore
Rule Base’. But remember that only the last rule base can be restored. If you do this
manual pruning process several times you have to save the former classifier under a
new project name. Please remember further that you might have changed the fuzzy sets.
The item ‘Classifier|Restore Fuzzy Sets’ of the main menu will restore the state before
the last step.

With this you only can erase rules. Methods which also reduces the number of variables
in a rule are used in the pruning option described next

� Automatic Pruning

Please note that the old rule base can be restored after the pruning process. But just in
case it may be better to save the classifier under a new project name beforestarting to
prune.

There are four methods that are implemented for automatical pruning. These methods
are automatically used one after the other. After a method is used the fuzzy sets are
trained. For this the selected validation mode is used. If the resulting classifier produces
a smaller number of misclassifications or a smaller error value than the former one, this
new one is taken to be improved with the next pruning method. During this process all
parameters you specified, except these concerning the rulebase, are used.

84 How to use NEFCLASS-J

The orange and green windows that you just know from creating a rule base and training
the fuzzy sets are invoked. In the green window for the fuzzy set training process the error
and misclassifications are plotted as known. In the orange window the text area is used to
describe the steps of the pruning process.

� Semi-automatic Pruning

This is not implemented yet. It is planed to offer the four pruning methods to the user.
This way the sequence of using the method is free to select.

5.3 Strategies to Create a Classifier

From the last sections the following can be extracted as strategies to create a classifier.

� Use the ‘no validation’ option in the beginning and try out the parameter settings. For
example use very small and very large values. So you get a feeling for the range of
values which will work.

� For the beginning it can be a good idea only to learn the rule base till you found out
how many rules might be ok and then learn the fuzzy sets. Do not forgett to reset the
fuzzy sets and clear the rule base if you start to create a completely new classifier.

� To find out a good number of rules you also can try the option ‘automatically determine
the number of rules’. This will find a possibly big rule base but it will cover all
patterns. With using the automatic pruning you can find out how small the rule base can
be. Then use this number as a basis for a new creation process and so on.

� If you think you found a good parameter setting use the ‘cross validation’ option to get
a statement about the quality of the classifier.

5.4 The Main Menu

This is a very short overview of the main menu entries. Most of them were just used in the
tutorial.

� Menu Project

� New Project
Invokes the ‘Project Specification Dialog’ with default values.

� Open Project
Invokes the ‘Project Specification Dialog’. All files saved with the project are
opened automatically.

� Edit Project
Invokes the ‘Project Specification Dialog’.

� Save
Saves the project under the given name.

How to use NEFCLASS-J 85

� Save As
Saves the project by invoking a save dialog.

� Close Project
Closes a project and all files concerning it. Furthermore all windows concerning
the project are closed.

� Load Training Data
Loads a data file with patterns to use for training. Training data files can also be
loaded by the Data tab of ‘Project Specification’ dialog.

� Load Application Data
Loads a data file with patterns to use as an application. Please do not mix it up
with the training data. Application data can only be loaded via main menu.

� Exit NEFCLASS

� Menu Classifier

� Create Classifier
Starts the rule learning and the fuzzy set training process. It invokes an orange
window which displays the rule learning progress and it invokes a green window
which displays the fuzzy set training progress.

� Create Rule Base Only
Starts the rule learning process. It invokes an orange window which displays the
rule learning progress. If you use it with a cross validation option and the rule
bases differ a lot you can take this as an indication that the classes of the data set
cannot be separated very easily. So that a good rule base found here might not
generalize good enough. This you will find out with a cross validation for the
fuzzy set training.

� Train Fuzzy Sets Only
Starts the fuzzy set training process. It invokes a green window which displays
the fuzzy set training progress.

� Prune Classifier
Starts the automatic pruning process using the specified parameters. Invokes the
fuzzy set learning window to show the behaviour of the error, and the rule
learning window to display informations of the pruning process. Although rules
are not learned here this window is used because this is a process concerning the
rule base. If the ‘cross validation’ option is selected the a validation of the
parameter learning is performed.

� Create Classifier and Prune It
This item is a service for the user. It concatenates the ‘Create Classifier’ and the
‘Prune Classifier’ feature. So if you use the ‘cross validation’ option the classifier
is created with this option and the resulting classifier is pruned with this option
too. Figure 5.5 shows this process.

� Create Pruned Classifier
If this item is used with the ‘no validation’ or the ‘single test’ option it is the
same as ‘Create Classifier and Prune it’ using ‘no validation’or the ‘single test’.
With selecting ‘cross validation’ everything changes. Creation and pruning are
considered to be a unified whole which is validated. Figure 5.6 shows this
process.

86 How to use NEFCLASS-J

Create Classifier
10 x

Classifier

Learn Rule Base
Train Fuzzy Sets

Validation of structure learning
and parameter learning

Prune Classifier

Pruning Method 1 10 x Validation of parameter learning

Pruning Method 2 10 x Validation of parameter learning

Pruning Method 3 10 x Validation of parameter learning

Pruning Method 4 10 x Validation of parameter learning

Pruned Classifier

Create Classifier

Learn Rule Base

Prune Classifier

Pruning Method 1

Pruning Method 2

Pruning Method 3

Pruning Method 4

Pruned Classifier

Train Fuzzy Sets

10 x Validation of structure learning
and parameter learning

Figure 5.5.: Process of the feature ‘Create a Classifier and Prune it’
using a 10-fold cross validation.

Figure 5.6.: Process of the feature ‘Create a Pruned Classifier’
using a 10 fold cross validation.

How to use NEFCLASS-J 87

� Restore the Fuzzy Sets - Reset the Fuzzy Sets
Reset means to create new initial fuzzy partitions according to the parameters
given in the ‘Project Specification’ dialog. Restore means that the last step that
changed the fuzzy sets can be undone.

� Classify Training Data - Classify Application Data
The training data or the application data can be classified using
’Classifier|Classify Training Data’ and ’Classifier|Classify Training Data’
respectively.

� Stop Training Process
Stops any learning process as soon as possible.

A blue window will be invoked and display a matrix where the columns are
the predicted class and the rows are the actual class. The classification results
per class are displayed as absolute values and as percentage values. An
additional column is for not classified patterns. The sums over all columns
and rows are given as well as the entire classification result.

88 How to use NEFCLASS-J

� Menu View

� Error
Invokes the window which shows the progress of the fuzzy set training process.
This window can be viewed to either time after the training process has ended. In
this window a graph which displays the errors and the misclassifications during
the training process is shown. The error graphs can be printed (one graph per
page).

� Fuzzy Sets
Invokes a window where the fuzzy partitions of all variables are displayed. It is
possible to select only some variables to be shown. The fuzzy partitions can also
be printed (three partitions per page).

� Statistics of the Training Data Set - Statistics of the Application Data Set
In the first part of the tutorial we just mentioned that statistics of the training data
can be viewed using the ‘Statistics’ button of the Data tab. You can also open the
statistics window by the ‘View|Statistics Training Data’ or ‘View|Statistics
Application Data’ entries.

� Hide All - Show All
All windows (except the main window) are closed or opened.

� Menu Rules

� Edit
Invokes a window which displays the rules. The rules can be edited or deleted,
the rule base can be cleared or new rules can be inserted.

� Restore the Rule Base
This means that the last step that changed the rule base can be undone. This last
step can be a learning process, a pruning process or the use of the rule editor.

� Export Rules
The rule base is be written to an ASCII text file.

� Menu Help

� Help Topics
Invokes an HTML browser to show a HTML file. There the help topics are
displayed in alphabetical order. If no browser can be found, a message with
further instructions appears.

� About
Displays information about the NEFCLASS-Tool

How to use NEFCLASS-J 89

5.5 The Files of a NEFCLASS Project

There are some ASCII files NEFCLASS-J uses or creates. It might be necessary to edit or
view them so that they are described in the following.

5.5.1 The Data File

The data file is the only file you must edit. NEFCLASS-J needs some informations to
initialize the classifier. These initial values with the corresponding keywords must be
written on the top of the pattern file. A NEFCLASS data file consists of two to five blocks.
Comments are allowed between the blocks as well as line feeds or any kind of whitespace.
Every line of comment has to begin with %, # or //.

The blocks have the following structure:
� The first line of a block is the keyword, i.e. this word is the only word in this line.

Keyword are written in capital letters.
� The following lines contain the corresponding data.
� Some blocks need a keyword for the end of data

There is a mandatory first block and a mandatory last block. The other blocks are optional
and because of the use of kewords there is no need to stick to a sequence. The blocks are
described now in detail.

Mandatory blocks:

d DIMENSIONS
DIMENSIONS has to be the first block in the file. The next line consists of two integer
values. The first gives the number of independent variables that means input values, the
second gives the number of dependant variables that means the number of classes. If no
class information is given this value must be set to ‘0’.

d PATTERNS
PATTERNS has to be the last block in the file.The line following the keyword consist
of one integer value. This is the number of patterns. In the following lines the patterns
are listed one pattern per line.
- the values can be separated by any whitespace.
- the values for the input variables may be real or integer
- the classes must be coded as a real vector from [0, 1]m (m is the number of classes).

The class of the pattern is determined by the largest value. Usually each pattern
belongs only to one class. Therefore all components except one are set to 0 and the
one indicating the class is set to 1. For example, if there are 4 classes then class 2
will be encoded as 0 1 0 0.

- this block can be finished with the keyword END. This is meant for data files used
by NEFCLASS-PC. So files containing this keyword need not to be changed.

90 How to use NEFCLASS-J

Optional blocks:

d Block for a data file description
- NAME

With using NAME only one line of description can follow in the next line. This
command is used in data files used by NEFCLASS-PC. These files need not to be
changed.

or
- STARTNAME / ENDNAME

The first line of this block is the keyword STARTNAME. The description follows
in the next lines. The block has to be finished with the keyword ENDNAME.

d VARNAMES
In the lines following this keyword the variable names can be set. It might be easier to
use NEFCLASS-J for this. When a data file is loaded default names are given to the
input variables and the classes. If you open the ‘Project Specification’ dialog and select
the Data tab you will find a button ‘Edit Labels’. Using this an editor is invoked where
you can change the names. It has the advantage that you can change only some names.
For the others the default names will be saved. If you write the names directly to the
file, you have to name all variables and classes.

d INRANGES
Here the ranges for each input variable can be specified. The exact ranges are computed
during the patterns are loaded but here you can specify larger ranges for the patterns.

In the blue box the top of the Iris data file is given as an example where only some
keywords are used.

% This is the IRIS data set reformatted for use in NEFCLASS-PC 2.0
% Class 1 0 0 is Iris-setosa, class 0 1 0 is Iris-versicolor, and
% class 0 0 1 is Iris-virginica.
% This file contains the whole data set with 150 cases, 50 for each class
DIMENSIONS
4 3
% Name of the pattern set
NAME
IRIS.DAT: Iris data, sorted, whole set
% Ranges of the 4 input variables
INRANGES
4 8
2 5
1 7
0 3
% This are the 150 patterns,
% first given are the number of patterns, inputs and outputs
PATTERNS
150
5.1 3.5 1.4 0.2 1 0 0

How to use NEFCLASS-J 91

5.5.2 The Parameter File

This file has the extension ‘.prj’ and is an ASCII file that can be viewed but should not be
edited. It consists of the parameters set in the ‘Project Specification’ dialog, and also the
status of the buttons. The lines only contain the values without any description so you will
not be able to find out which line contains which value. You can change these values by
the dialog so that there is no need to edit this file

The first lines of this file show a keyword followed by the directory and name to which the
project is saved , the project description and the data file used.

5.5.3 The Classifier File

This file has the extension ‘.cls’ and is an ASCII file that can be viewed but should not be
edited. This file contains all the values created from NEFCLASS to specify the classifier.
On the top of the file the directory, the filename and the date of creation is shown in a
comment. The various values and parameters that define the classifier are written in blocks
that are marked with keywords on the top. In the yellow box you can see a few lines from
the top of the file.

5.5.4 The Training Protocol File

This file is named ‘nefclass.log’ and it is an ASCII file. The file is a documentation of the
work with a certain project. On the top of the file the used parameters are listed. It is
followed by the documentation of the feature you selected from the main menu. A very
complex feature for example is ‘Create a Pruned Calssifier’ with cross validation. The rule
creation process with the performances of the rules, the fuzzy set learning process with the

% NEFCLASS file created by NEFCLASS-J 1.0
% (c) U. Nauck, Braunschweig, 1999
% Filename: C:\VisualCafePDE\projects\VC_NEFCLASS\Project 1.cls
% This file was created on 11/27/1998 at 13:51

% This are the structure parameters
PARAMETERS

PARAMETERLIST
C:\VisualCafePDE\projects\VC_NEFCLASS\Project 1.prj
Project 1
Project using default values.
*
C:\VisualCafePDE\projects\VC_NEFCLASS\Iris.dat

92 How to use NEFCLASS-J

error values and the process of the four pruning methods with the particular fuzzy set
learning is documented. If you are doing a 10 times cross validation you will find this
documentation 10 times. If you close a project this file is closed and will be overwritten
when another project is opened or a new one is created. If you want to keep it it must be
copied to a file with a different name. The blue box shows the top of a log file listing the
feature mentioned above.

5.5.5 The Result File

For every pattern the classification result is given.

% NEFCLASS log file file created by NEFCLASS-J 1.0 (c) Ulrike Nauck,
Braunschweig, 1999
% This file was created at January 1, 1999 4:55:30 PM GMT+00:00

Training data: C:\VisualCafePDE\projects\VC_NEFCLASS\Iris.dat
Training for at most 100 cycles and for at least 0 cycles.
Continue for 30 cycles after a local optimum was found.
Learning will stop at 0 misclassifications.
Validation mode is 10-fold cross validation.
Parameter: LearningRate = 2.0, Fuzzy set constraints:
keep order, must overlap,
rule weights are not used.
The rule base will consist of 3 rules using the best rule for each class.
Each variable uses 3 TRIANGULAR fuzzy sets.
Fuzzy sets will be trained.
Each created classifier will be pruned.

Classification of data file C:\VisualCafePDE\projects\VC_NEFCLASS\wbc.dat

pattern 1 is class malign, predicted class is malign, error = 0.004 => correct
target: 1.000 0.000
output: 0.939 0.000

pattern 2 is class malign, the pattern was not classified, error = 1.000 => false
target: 1.000 0.000
output: 0.000 0.000

6

The Structure of NEFCLASS-J
The structure of NEFCLASS-J is determined by the graphical user interface (GUI) and
three Java packages nauck.fuzzy , nauck.data and nauck.util . The packages
contain classes that implement the NEFLCASS model and learning algorithms, the data
structure for training data and some utility classes that are used to draw graphs or format
strings. In the following we use the Courier font to denote class, package and file
names.

6.1 The Graphical User Interface

The main object of NEFCLASS-J is found in NEFCLASS.java . The object is an
extension of the Java Frame object. It contains the menu and action handlers for all menu
entries. NEFCLASS-J uses several modal dialogs (they must be closed before the program
resumes its work) and non-modal frames (they can remain open on the desktop) to obtain
user input and to provide information about the current status.The following list gives a
short description of all classes that are used to construct the GUI.

� AboutDialog
Information about the program version.

� DialogClose
A dialog to ask the user if he wants to save the current project before closing it.

� DialogEditLabels
Dialog to edit the names of the variables used in the current project. This dialog is
invoked via the project specification dialog DialogProjectSpecification .

� DialogYesNo
A dialog to ask the user for a yes or no decision.

� DialogMessage
A dialog to display error messages and information about the current state.

� DialogProjectSpecification
The project specification dialog is the most important dialog of NEFCLASS-J. Here all
parameters for the current project and training process are specified.

� DialogRuleEdit
This dialog implements the rule editor that allows to enter or modify fuzzy rules.

94 The Structure of NEFCLASS-J

� DialogSpecifyFP
This dialog is invoked by the project specification dialog. It is used to specify
individual fuzzy partitions for each variable.

� DialogProgress
A simple progress dialog to illustrate the process of reading a data file.

� FrameShowFS
This frame displays the fuzzy sets of the variables.

� FrameStatistics
This frame is used to display statistics of training and application data as well as
classifications results.

� FuzzySetLearningProgressDialog
This is actually a frame that displays the progress of the fuzzy set learning algorithm. It
contains a progress bar, a text area for messages and draws two graphs: one to illustrate
the error, and one to illustrate the number of misclassifications. The frame uses classes
from the nauck.util package to draw the graphs.

� NEFCLASS
The main class of the program. It contains the main frame of the application and
displays the menu and status bar.

� ParameterList
This is a non-graphical class that contains all informations about the current project.
The class is able to write itself to an ASCII file and to read itself from such a project
file. Project files use the extension prj .

� QuitDialog
This dialog is used to ask the user if he really wants to exit the program.

� Resources
This is a non-graphical class that contains strings used for error and information
messages. If the application shall be translated into another language it is sufficient to
translate this class.

� RuleLearningProgressDialog
This is actually a frame that displays the progress of the rule learning algorithm. It
contains three progress bars for the different stages of rule learning and a text area for
messages. This dialog is also used to display general training and pruning information.

Figure 6.1 displays the class hierarchy of the GUI. The classes described above can be
found in the upper right corner of the figure. The other leave nodes of the depicted tree are
classes that are needed to process mouse or window events.

The Structure of NEFCLASS-J 95

java.awt.MenuContainer

java.awt.image.ImageObserver

java.io.Serializable

java.lang.Object

java.util.EventListener

java.awt.Component

java.awt.Frame

java.awt.Container java.awt.Window

java.awt.Dialog

AboutDialog

DialogClose

DialogEditLabels

DialogMessage

DialogProjectSpecification

DialogRuleEdit

DialogSpecifyFP

DialogYesNo

QuitDialog

DialogProgress

FrameShowFS

FrameStatistics

FuzzySetLearningProgressDialog

NEFCLASS

RuleLearningProgressDialog

ParameterList

Resources

AboutDialog.SymAction

DialogClose.SymAction

DialogEditLabels.SymAction

DialogEditLabels.SymItem

DialogMessage.SymAction

DialogProgress.SymAction

DialogProgress.SymPropertyChange

DialogProjectSpecification.SymAction

DialogProjectSpecification.SymItem

DialogRuleEdit.SymAction

DialogRuleEdit.SymItem

DialogSpecifyFP.SymAction

DialogYesNo.SymAction

FrameShowFS.SymAction

FrameStatistics.SymAction

FuzzySetLearningProgressDialog.SymAction

NEFCLASS.SymAction

QuitDialog.SymAction

RuleLearningProgressDialog.SymAction

java.awt.event.FocusAdapter

java.awt.event.WindowAdapter

DialogRuleEdit.SymFocus

AboutDialog.SymWindow

DialogClose.SymWindow

DialogEditLabels.SymWindow

DialogMessage.SymWindow

DialogProgress.SymWindow

DialogProjectSpecification.SymWindow

DialogRuleEdit.SymWindow

DialogSpecifyFP.SymWindow

DialogYesNo.SymWindow

FrameShowFS.SymWindow

FrameStatistics.SymWindow

FuzzySetLearningProgressDialog.SymWindow

NEFCLASS.SymWindow

QuitDialog.SymWindow

RuleLearningProgressDialog.SymWindow

java.awt.event.ActionListener

java.awt.event.FocusListener

java.awt.event.ItemListener

java.awt.event.WindowListener

java.beans.PropertyChangeListener

Figure 6.1: The class hierarchy of the GUI of NEFCLASS-J

96 The Structure of NEFCLASS-J

java.awt.MenuContainer

java.awt.image.ImageObserver

java.io.Serializable

java.lang.Cloneable

java.lang.Object

java.lang.Runnable

java.awt.Component
java.awt.Canvas

java.awt.Container

nauck.fuzzy.FuzzySetPane

java.awt.Panel

nauck.fuzzy.FuzzyPartitionLayout

nauck.fuzzy.SpecifyFPPanel

nauck.fuzzy.SpecifyFuzzyPartition

java.lang.Throwable

java.lang.Exception

nauck.fuzzy.FuzzySetInvalidException

nauck.fuzzy.NefclassInvalidException

nauck.fuzzy.RuleBaseOverflowException

nauck.fuzzy.BellShapedFuzzySet

nauck.fuzzy.FuzzyClassifierRule

nauck.fuzzy.FuzzyPartition

nauck.fuzzy.FuzzyRule

nauck.fuzzy.FuzzySet

nauck.fuzzy.LinguisticExpression

nauck.fuzzy.TrapezoidalFuzzySet

nauck.fuzzy.TriangularFuzzySet

nauck.fuzzy.Variable

nauck.fuzzy.FuzzyDrawContext

nauck.fuzzy.FuzzySystem

nauck.fuzzy.TNorm

nauck.fuzzy.FuzzyClassifier nauck.fuzzy.Nefclass

Figure 6.2: The class hierarchy of the nauck.fuzzy package

6.2 The Data Structures of the NEFCLASS Model

The NEFCLASS model is implemented by the classes of the nauck.fuzzy package.
The class hierarchy of this package is given in Figure 6.2.

The learning algorithms of the NEFCLASS model are implemented in the class
Nefclass . It extends the class FuzzyClassifier which is derived from the abstract
class FuzzySystem . This class defines the main features of a generic fuzzy system and
must be subclassed to implement any kind of fuzzy system, e.g. a fuzzy classifier.
FuzzySystem provides a rule base which is a dynamic array (java.util.Vector)
of objects of type FuzzyRule and methods to propagate a pattern vector through the rule
base. Subclasses of FuzzySystem must add functionality such as to compute outputs.

The class FuzzyClassifier adds this kind of functionality by providing a method to
compute a classificaton result from a rule base of fuzzy classification rules. The class
Nefclass further extends this class by providing learning methods for creating fuzzy
rules, train membership functions, pruning and several methods to compute and to present
classification results. Nefclass implements the interface java.lang.Runnable to

The Structure of NEFCLASS-J 97

trapezoidal: µ(x)

0 if x < left � x > right

1 if x > centerLeft� x < centerRight

centerLeft	x
centerLeft	left

if x � left � x � centerLeft

x	centerRight
right	centerRight

if x � centerRight� x � right

be able to run the learning and pruning algorithms in a separate thread. Thus the user is
able to use the GUI while the classifier is trained. The learning process can be stopped at
any time via a menu entry.

Nefclass uses a rule base consisting of objects of the class FuzzyClassifi-
cationRule . This class extends the abstract class FuzzyRule that provides a generic
framework for fuzzy rules. A generic fuzzy rule contains an array of LinguisticEx-
pression objects which implement the linguistic terms of the antecedent of the rule. A
LinguisticExpression contains a Variable and a FuzzySet . A linguistic term
is therefore given by a pair (variable, fuzzy set). A fuzzy rule uses a TNorm object to
evaluate its antecedent, when it receives an input vector to compute a degree of fulfilment.
A FuzzyRule object cannot compute an output value. This functionality must be
provided by subclasses. The subclass FuzzyClassificationRule implements a
special kind of fuzzy rule that uses a class label as consequent. Its output value is a degree
of membership for an input vector to the class specified by the consequent. This value is
simply the degree of fulfilment of the antecedent.

A Variable describes a variable from a data file that is organized as a single relation,
i.e. as a table with one column for each variable and one row for each pattern or case. A
Variable contains the index (column number) of the variable, its name and some
statistical information like lower and upper bound.

The abstract class FuzzySet implements a generic fuzzy set that defines several abstract
methods for computing degrees of membership and computing parameter updates which
must be implemented in subclasses. The package provides three types of fuzzy sets by the
classes BellShapedFuzzySet , TrapezoidalFuzzySet and Triangular-
FuzzySet . The fuzzy sets are given by parameters and their membership functions are
defined as follows (the parameter names match the class implementations):

bell	shaped: µ(x)
 e
	

overlap # (x	center)
width

2

98 The Structure of NEFCLASS-J

triangular: µ(x)

0 if x < left � x > right

center	x
center	left

if x � left � x � center

x	right
right	center

if x > center� x � right

A “bell-shaped” membership function is alway symmetrical. By default overlap = 1.7 is
used. Thus the parameter width specifies the half width of the �-cut at � = e-2.89 � 0.05.
All three types of fuzzy sets can be “shouldered”. This means, the degree of membership
is one for all values small than the center (centerRight) parameter for the lefmost fuzzy set
of a partiton (“left-shouldered”) or for values greater than center (centerLeft) for the
rightmost fuzzy set of a partition (“rightshouldered”).

In addition to methods for computing the degree of membership each of the three classes
provides methods for updating its parameters under certain constraints. Parameter updates
are only carried out, if they result in a legal form of the membership function. Additional
constraints can be used to make sure, that a fuzzy set does not pass another fuzzy set, that
a fuzzy set overlaps with another fuzzy set, that the membership function stays
symmetrical or that the degrees of membership add up to one for neighboring fuzzy sets.
Fuzzy sets can also draw graphs of their membership functions.

The class FuzzyPartition is used by Nefclass. As described in Chapter 2 the
NEFCLASS model makes sure that each linguistic value is only represented once. Thus it
is necessary that all fuzzy rules use the same fuzzy sets in the linguistic terms of their
antecedents. Nefclass ensures this by providing a fuzzy partition for each variable. The
fuzzy rules use references to the fuzzy sets of those fuzzy partitions. A fuzzy partition
provides methods to inovke the methods of its fuzzy sets that compute the parameter
updates and it can draw the graphs of the complete partition. There are also methods for
setting up intial partitions of equally distributed membership functions. A fuzzy partition
can have an arbitrary number of fuzzy sets, but they must be of the same type. If there is
only one fuzzy set, the respective variable becomes a “don't care” variable, as for each
value the membership degree is one. Nefclass can use for each variable a fuzzy
partition of different numbers and types of fuzzy sets.

The remaining classes of the package provide some special functions and exceptions that
are used to denote errors while using the classes at run time. The classes FuzzySet-
Pane, FuzzyDrawContext and FuzzyPartitonLayout implement the
graphical interface for fuzzy sets and fuzzy partitions. A FuzzySetPane extends
java.awt.Canvas and provides a canvas for a fuzzy partition to draw its fuzzy sets
on. A FuzzyPartitonLayout is a container that can hold several FuzzySetPane
objects to be displayed on screen. Fuzzy sets are displayed by adding a Fuzzy-
PartitonLayout to a java.awt.ScrollPanel of the DialogShowFS class of
the GUI. The classes SpecifyFPPanel and SpecifyFuzzyPartition are used in
DialogSpecifyFP of the GUI to specify individual fuzzy partitions for all variables.

The Structure of NEFCLASS-J 99

java.io.Serializable

java.lang.Object

java.lang.Runnable

java.lang.Throwable java.lang.Exception nauck.data.ParseDataFileException

nauck.data.DataTable

Figure 6.3: The class hierarchy of the package nauck.data

java.awt.MenuContainer

java.awt.image.ImageObserver

java.io.Serializable

java.lang.Object

java.awt.Component
java.awt.Canvas

java.awt.Container

nauck.util.FunctionPane

java.awt.Panel nauck.util.FunctionLayoutPanel

nauck.util.FormatString

nauck.util.FunctionDrawContext

nauck.util.FunctionPane.Point

Figure 6.4: The class hierarchy of the nauck.util package

6.3 Training Data

The package nauck.data (see Figure 6.3) provides the DataTable class that stores
data in from of a table (single relation) with one row for each pattern and one column for
each variable. The class can read itself from an ASCII file that must use a special format
(see Chapter 5.6). If the format of the file is invalid, the class throws a ParseData-
FileException. Reading is done in a separate thread so the execution of the main
program is not blocked

The class is also able to arrange the data in random sequences and to draw stratified
samples either by providing a percentage value or by specifying how many subsets have to
be formed. Thus subsets for training, testing or validation can easily be created. The class
can also compute some statistics of the data like mean, variance, ranges and correlations.

6.4 Utility Classes

The package nauck.util contains some utility classes that are either used throughout all
other packages and classes (like FormatString) or that did not fit into the fuzzy or data
packages. The latter is true for the classes FunctionPane , FunctionDrawContext
and FunctionLayoutPanel which provide the functionality of drawing graphs in a
coordinate system and display them on screen. They are very similar to the correponding
classes of the nauck.fuzzy package for drawing fuzzy partitions.

The class FormatString provides means to format strings and numbers. This class is
by far not as powerful as the formatting classes from the java.text package, but it is
easier to use for creating text output.

7

Conclusions

In this thesis an new implementation of NEFCLASS - a neuro fuzzy approach for
classification of data - was described. Previous versions of NEFCLASS that were either
available for MS-DOS-based personal computers [Nauck et al. 96, UNauck 97] or Unix
workstations [Hoferichter 96, Bode 97, Nauck/Kruse 98b] had several limitations. The
new software tool was written in Java and can therefore be used on any platform for which
an implementaton of the Java Virtual Machine is available.

NEFCLASS-J offers the following new features for creating neuro-fuzzy classifiers based
on the NEFCLASS model:

� batch learning to remove the dependeny of the learning algorithm from the sequence of
data,

� automatic cross validation to determine the validity of a classifier,

� automatic determination of the rule base size,

� handling of missing values,

� automatic pruning of a classifer to reduce its size and to increase its interpretability,

� a complete new GUI with a look and feel of standard applications.

NEFCLASS-J can be used in data analysis or data mining, both important areas of solving
todays industrial problems. In data analysis it is often required to obtain results in a fast
and inexpensive way. Often the precision of the solution is less important than its
applicability and therefore its understandability. As its predecessors, NEFCLASS-J tries
to create interpretable classifiers by applying constraints to the learning algorithm.

The philosophy that NEFCLASS-J follows is not to create a fuzzy classifier automatically
from data, but to support the user in finding an appropriate system by being responsible for
the tedious tasks of data preparation, optimizing the classifier and pruning it. The tool
gives the user a maximum of control over the learning process without burdening him with
petty tasks. The user can concentrate on the creation of a classifier that meets the
requirements of the area of application.

The new implementation has taken almost all requirements into account that have been
mentioned in [UNauck 97] where possible extensions to future NEFCLASS tools were
discussed. Only one item - interconnected NEFCLASS modules - could not be

Conclusions 101

implemented. However, the current research on the model has not yet provided the
foundations for connecting several NEFCLASS modules and how to create such a
sequence from data. So this topic remains for future work.

Other items that should be considered for new versions of NEFCLASS-J are

� give the user some more control over the pruning process,

� include other forms of rule learning, for example methods from machine learning like
induction of decision trees,

� add simplification algorithms to remove superfluous fuzzy sets from partitions,

� provide an algorithm to automatically determine the number of fuzzy sets for each
variable,

� provide other forms of fuzzy sets that are suitable for non-numeric data,

� provide more flexible data handling (selection of variables, filtering, import of standard
formats, etc.),

� provide some more statistics on the training data,

� provide an integrated help function instead of calling an external HTML browser for
displaying help information.

As the current implementation is written in Java, it is expected that it will not be necessary
anymore to create a new implementation from scratch. The Java language seems to have
a lot of potential for future applications, so there should be no need to change the
programming language again. The object-oriented approach makes it very easy to extend
the tool so it should be possible to implement future versions with little effort.

NEFCLASS-J continues the philosophy of its predecessors as it will also be available via
the Internet. Although limited in functionality, the previous MS-DOS version was very
popular and enjoyed over 5000 downloads. It is expected that NEFCLASS-J can continue
this success story.

References

[BERENJI / KHEDKAR 93] H.R. Berenji and P. Khedkar (1993). Clustering in Product
Space for Fuzzy Inference. In Proc. IEEE Int. Conf. on Neural Networks 1993 , pp.
1402-1407. San Francisco.

[BODE 97] J. Bode (1997). Verfahren zur Regel- und Variablenreduktion unter dem
Neuro-Fuzzy-Klassifikationsansatz NEFCLASS. Diplomarbeit, TU Braunschweig.

[HOFERICHTER 96] Th. Hoferichter (1996). Entwurf und Implementierung eines Unix-
basierten Softwaretools zur Realisierung des Neuro-Fuzzy-Klassifikationsansatzes
NEFCLASS. Diplomarbeit, TU Braunschweig.

[KRUSE ET AL. 91] R. Kruse, E. Schwecke and J. Heinsohn (1991). Uncertainty and
Vagueness in Knowledge based Systems. Numerical Methods. Series Artificial
Intelligence, Springer-Verlag, Berlin.

[KRUSE ET AL. 94] R. Kruse, J. Gebhardt and F. Klawonn (1994). Foundations of Fuzzy
Systems. Wiley, Chichester.

[KRUSE ET AL. 95] R. Kruse, J. Gebhardt and F. Klawonn (1995). Fuzzy-Systeme, 2.
erweiterte Auflage. Teubner, Stuttgart.

[NAUCK ET AL 96] D. Nauck, U. Nauck and R. Kruse (1996). Generating Classification
Rules with the Neuro-Fuzzy System NEFCLASS. In Proc. Biennial Conference of the
North American Fuzzy Information Processing Society (NAFIPS'96). Berkeley, CA.

[NAUCK ET AL 97] D. Nauck, F. Klawonn and R. Kruse (1997). Foundations of Neuro-
Fuzzy Systems. Wiley, Chichester.

[NAUCK / KRUSE 93] D. Nauck and R. Kruse (1993). A Fuzzy Neural Approach Learning
Fuzzy Control Rules and Membership Functions by Fuzzy Error Backpropagation. In
Proc. IEEE Int. Conf. on Neural Networks 1993, pp. 1022-1027. San Francisco.

[NAUCK / KRUSE 95] D. Nauck and R. Kruse (1995). NEFCLASS - A Neuro-Fuzzy
Approach for the Classification of Data.In K. George, J.H.Carrol, E. Deaton, D.
Oppenheim and J. Heightower, eds: Applied Computing 1995. Proc. 1995 ACM
Symposium on Applied Computing, Nashvillle, Feb. 26-28, pp. 461-465. ACM Press, New
York.

[NAUCK/KRUSE 97] D. Nauck and R. Kruse (1998). New Learning Strategies for
NEFCLASS. In Proc. of the Seventh International Fuzzy Systems Association World
Congress, IFSA’97, Vol. IV. Prague.

[NAUCK/KRUSE 98] D. Nauck and R. Kruse (1998). NEFCLASS-X: A Soft Computing Tool
to build Readable Fuzzy Classifiers. In BT Technology Journal, Vol. 16, No. 3, July 1998.
Martelsham Heath Ipswich.

References 103

[NAUCK / KRUSE 98b] D. Nauck and R. Kruse (1998). Obtaining Interpretable Fuzzy
Classification Rules From Medical Data. In Artificial Intelligence in Medicine

[NAUCK / KRUSE 98c] D. Nauck and R. Kruse (1998). How the Learning of Rule Weights
Affects the Interpretability of Fuzzy Systems. In Proc. IEEE Int. Conf. Fuzzy Systems
(FUZZIEEE'98). Anchorage, Alaska.

[ROSENBLATT58] F. Rosenblatt (1958). The Perceptron: A Probabilistic Model for
Information Storage and Organisation in the Brain. In Psychological Review, 65:386-408.

[RUMELHARDT/MCCLELLAND 86] D.E. Rumelhart and J.L. MCCLELLAND , eds. (1986).
Parallel Distributed Processing:Explorations in the Microstructures of Cognition.
Foundations, Band 1. MIT Press, Cambridge.

[SULZBERGER ET AL.93] S.M Sulzberger, N.N. Tchichold-Gürman and S.J. Vestli (1993).
FUN: Optimization of Fuzzy Rule Based Systems Using Neural Networks. In Proc. IEEE
Int. Conf. on Neural Networks 1993, pp. 1022-1027. San Francisco.

[SYMANTEC 97] Symantec Corporation (1997). Symantec Visual Cafe for Java (Windows
NT, Windows 95), Getting Started. Cupertino.

[TSCHICHOLD GÜRMAN 95] N. Tschichold-Gürman (1995). Generation and Improvement
of Fuzzy Classifiers with Incremental Learning Using FuzzyRuleNet. In K. George,
J.H.Carrol, E. Deaton, D. Oppenheim and J. Heightower, eds: Applied Computing 1995.
Proc. 1995 ACM Symposium on Applied Computing, Nashvillle, Feb. 26-28, pp. 461-465.
ACM Press, New York.

[UNauck 97] U. Nauck (1997). NEFCLASS-PC: Ein Neuro-Fuzzy Klassifikationstool
unter MS-DOS. Studienarbeit. TU-Braunschweig.

[Zadeh65] L.A. Zadeh (1965). Fuzzy-Sets. Information and Control, 8:338-353.

