Diplomarbeit

Konzeption und Implementierung eines
Neuro-Fuzzy-Datenanalysetools in Java

(Design and Implementation of a
Neuro-Fuzzy Data Analysis Tool in Java)

von

cand. inform. Ulrike Nauck

Technische Universitat Braunschweig
Institut fur Betriebssysteme und Rechnerverbund
Aufgabenstellung und Betreuung:
Prof. Dr. R. Kruse

Braunschweig
03.01.1999

Kurzfassung

In dieser Diplomarbeit wird NEFCLASS-J vorgestellt, eine Implementierung des
NEFCLASS-Modells. NEFCLASS ist ein Neuro-Fuzzy-Ansatz zur Klassifikation von
Daten. NEFCLASS-J wurde in der Programmiersprache Java entwickelt, die auf objekt-
orientierten Konzepten beruht und die Unabhangigkeit von einer bestimmten Plattform
garantiert. Das Neuro-Fuzzy-Modell NEFCLASS umfalt Lernverfahren zur Bestimmung
der Struktur (Regelbasis) und der Parameter (Fuzzy-Mengen) eines Fuzzy-Klassifikators
auf der Grundlage von Daten. Das Ziel des Ansatzes besteht darin, interpretierbare Klassi-
fikatoren zu erzeugen. Daher werden die Lernverfahren mittels Constraints eingeschrankt,
die je nach den Bedurfnissen der in Betracht gezogenen Anwendung ausgewahlt werden
konnen. NEFCLASS-J ist eine Erweiterung vorangegangener Implementierungen des
NEFCLASS-Modells fir MS-DOS PC bzw. Unix-Workstations. Die neuen Funktionen
des Softwarewerkzeuges umfassen Batch Learning, automatische Kreuzvalidierung, auto-
matische Bestimmung des Umfangs der Regelbasis, Behandlung fehlender Werte und au-
tomatische Reduktion (pruning) des Klassifikators, um seine Interpretierbarkeit zu
erhohen. Weiterhin wurde eine vollstdndig neue Bedienoberflache entwickelt, die sich in
Aussehen und Bedienung an Standardsoftware anlehnt.

Abstract

In this thesis NEFCLASS-J, a new implementation of NEFCLASS - a neuro fuzzy
approach for classification of data, is presented. NEFCLASS-J is written in Java, a
platform-independent object-oriented programming language.The neuro-fuzzy
classification model NEFCLASS offers learning algorithms to create the structure (rule
base) and the parameters (fuzzy sets) of a fuzzy classifier from data. The aim of the
NEFCLASS approach is to create interpretable classifiers. Therefore the learning
algorithms use contraints which can be selected according to the requirements of the
application of interest. NEFCLASS-J extends previous implementations of the
NEFCLASS model for MS-DOS PC or Unix workstations. The new features offered by
the new tool are batch learning, automatic cross validation, automatic determination of the
rule base size, handling of missing values, and automatic pruning of a classifer to reduce
its size and to increase its interpretability. In addition a complete new graphical user
interface was developed that provides a look and feel of standard software applications.

Contents

INtrodUCLION 1

1 NeUro-FUzZzy SYStemS. e e 3

1.1 Classification with Fuzzy Systems 4
1.1.1 FUZZY SetS. . .. e 5
1.1.2 Fuzzy RUIES. . . . 7

1.2 Neural Networks e 8
1.2.1 A Generic Model of Neural Networks. 9
1.2.2 The Multilayer Perceptron. 12
1.2.3 The Backpropagation Algorithm 14

1.3 Neuro-FUzzy SYStemsS i 17

2 The NEFCLASS Model e 22
2.1 The Structure of the NEFCLASS Model 22
2.2 Learning a Rule Base - The Algorithm 24
2.3 Training Fuzzy Sets - The Algorithm, 27
24 Pruningthe RuleBase iy 31

3 Javafor NEFCLASS 33
3.1 The NEFCLASS-TOOI e 33
3.2 TheJdavalanguaget 34

4 Experiments With NEFCLASS-J e 36
4.1 The Wisconsin Brest Cancer (WBC)DataSet 37

4.2 The EXperiment 39
4.2.1 Automatically Create a Classifier and then Prunelt 39
4.2.2 Use a Certain Number of Rules to Create the Classifier. 43
4.2.3 Cross Validation of the Classifier. 47

4.3 Comparison of Different Approaches 49
A4 CONCIUSION . .. 51

\Y Contents
5 Howto Use NEFCLASS-J e 52
5.1 TheTrainingData Set 52
5.2 Guided Tour through NEFCLASS-J 53
5.2.1 The Philosophy e 57
5.22 Create a Project 59
5.2.4 Use PriorKnowledge i e 81
525 Pruningthe RuleBase. i 83
5.3 Strategiesto Createa Classifier 84
54 TheMain MeNnUEe e e e 84
5.5 TheFilesof a NEFCLASS Project i, 89
551 TheDataFile........ e 89
5.5.2 The Parameter File. 91
55.3 The Network File. i 91
5.5.4 The Training Protocol File. oL, 91
555 TheResultFile 92
6 The Structure of NEFCLASS-J e 93
6.1 The Graphical UseriInterface 93
6.2 The Data Structure of the NEFCLASS Model 96
6.3 Training Datat 99
6.4 Utility Classes. 99
7 CONCIUSION . .o 100

REferenCeSs. o 102

Introduction

In a time of world wide computerisation and data collection not only computer scientists
have the problem to handle data bases. Simultaneously the variety of problems in data
analysis increase. The traditional statistical methods are powerfull, but they are often based
on assumptions that do not hold for the real world data and the results can be hard to
interpret. They come up with a high precision which may not be necessary in any case but
can cost a lot. Furthermore there is need for fundamental mathematical knowledge to use
these approaches. There are many questions in the scientific and economical world that are
wished to be answered with low costs and sufficient precision.

The kind of questions this thesis deals with are classification problems. Classification of
customer data, for instance, is an important data analysis problem for modern companies.
It is, for example, necessary to know if a customer may be interested in a certain mailing,
if certain services should be offered to him, or if there is a danger that he might cancel the
contract. The task is to develop a classifier out of a data file. The development-tool should
be easy to understand and to use, the development of the classifier should not cost too
much effort and the validation of the classifier should be possible. Furthermore the
classifier should be interpretable, because it is not only the question to which class a
pattern belongs, but also why it belongs to it.

There aresoft computingnethods which take these demands into consideration. The term
soft computing was coined by Lotfi A. Zadeh, the founder of fuzzy logic. Soft computing
includes approaches to human reasoning that try to make use of the human tolerance for
incompleteness, uncertainty, imprecision and fuzziness in decision making processes
[NAUCK ET AL 97].

The model used here is theuro-fuzzy systemhese systems combine the learning ability

of neural networks and the ability of fuzzy systems to handle linguistic rules. These are
gualities needed to develop a tool which is able to create a classifier out of data by
learning, and on the other hand is able to ensure a certain interpretability with the help of
linguistic rules. Furthermore, prior knowledge can be inserted in form of linguistic rules.
The neuro-fuzzy approach is described in the first chapter.

The resulting development-tool is NEFCLASS-J, which is short for NEuro Fuzzy
CLASSIfication programmed in Java. There are previous tools like NEFCLASS-X
[HOFERICHTER96 / BoDE 97], a tool for Unix systems and NEFCLASS-PC AUk 97],

a system developed in Pascal convenient for MS-DOS/Windows PC. NEFCLASS-J can be
seen as an extension of NEFCLASS-PC, but there are some completely new features and
the graphical interface changed completely. It is adapted now to the graphic interfaces of
Windows and Unix X-Terminals. In Chapter 2 the NEFCLASS model is described on
which this tool is based.

2 Introduction

In order to get a platform independent NEFCLASS-Tool Java was chosen as the
programing language. In Chapter 3 the existing NEFCLASS-Tools are compared to
NEFCLASS-J and the benefits of the Java language and the development kit are depicted.

In Chapter 4 some experiments to test the performance of the NEFCLASS-J algorithms are
described. For the experiments the ‘Wisconsin brest cancer’ (WBC) data set is used. A
classifier is created where the size of the rule base is determined automatically. This
results in a rule base that covers all patterns of the data set. However, this rule base
consists of a large number of rules. To reduce the size of the rule base in order to get a
more interpretable classifier, an automatic pruning procedure is used. After a promising

rule base is found the cross validation procedure allows statements about the quality of the
classifier. The results of these experiments are compared to the results of other classifiers.

In Chapter 5 NEFCLASS-J is described in detail. In some instance the philosophy of the
tool differs from that of NEFCLASS-PC so that some features may not be recognized by
users of the former tool. So references to NEFCLASS-PC are given when necessary. The
features are introduced in form of a tutorial. In a guided tour it can be learned that
NEFCLASS-J is very easy to use for beginners, because suitable default values are set.
After developing a feeling for the data and the tool, changing parameters, editing and
pruning the rule base is trained. Furthermore the files created by the NEFCLASS tool are
described.

The program structure of NEFCLASS-J is described in Chapter 6. The classes of the
graphical user interface, the NEFCLASS model, the training data and utility classes are
described and the hierarchy of classes is visualized.

The thesis is completed with the conclusion in Chapter 7.
NEFCLASS-J can be obtained

® by anonymous ftp at fuzzy.cs.uni-magdeburg.de in /pub/nefclass
e via World Wide Web at http://fuzzy.cs.uni-magdeburg.de/nefclass

1

Neuro-Fuzzy Systems

Neuro-fuzzy systenase a combiniation afeural networksandfuzzy system3hese two

models have at first their place in independent areas. The connections to each other are
merely marginal but we will see that a combination of both brings benefit for the solution

of many problems.

It was the theory of fuzzy sets with which Lotfi A. Zadeh founded 1965 a computational
approach to human thinking and behaviorpEH 65]. Terms like big, small or
approximately are namédzzy They are sufficient for communication in daily life but not

for processing with a machine. It is the model of fuzzy systems which offers a
computational representation of these terms. First these systems were successfull in
solving control problems. Up to now fuzzy systems are not only used for control problems
but also used in many other areas. In this thesis they are used for classification.

Experts can do their job without calculating a mathematical model. They normally get the
experience by solving problems. The idea of fuzzy systems is to let the expert specify his
actions in form of linguistic rules. These rules are translated into a framework of fuzzy set
theory providing a calculus which can simulate the behavior of the expert. The translation
into fuzzy set theory is not formalized and arbitrary choices concerning, for example, the
shape of membership functions can be made. These uncertainties in the process of building
a fuzzy system mostly result in a heuristic tuning process to overcome the initial design
errors [NaUCK ET AL 97].

Neural networks are systems that try to make use of some of the known or expected
organizing principles of the human brain. They consist of a number of independent, simple
processors - the neurons. These neurons communicate with each other via connected
weights - the synaptic weights. At first , research in this area was driven bei
neurobiological interest but here we will restrict ourselves to the problem of information
processing , and do not consider biological aspects. Neural networks can solve difficult
problems by using a learning procedure that depends on the neural model and the given
problem, but they are black boxes. It is not possible to determine how the solution was
found. Furthermore it is not possible to insert prior knowledge to a neural network
[NAUCK ET AL 97].

The combination of the learning ability of neural networks and the linguistic rule handling
of fuzzy systems results in a self-tuning neuro-fuzzy system which is interpretable and in
which prior knowledge can be inserted.

4 Neuro-Fuzzy Systems

1.1 Classification with Fuzzy Systems

The process of creating a model for the behavior of a human experts iscoglteive
analysis[KRUSE ET AL 95]. As just mentioned a method of modelling the behavior of an
expert is to compile his knowledge in linguistic rules. As an example the classification of
iris flowers is used. There are three classes of iris flowers (Setosa, Virginica, Versicolor).
They can be identified with the help of the different length an width of the petal and sepal.
So there are four independant variables that form the antecedent of the rule, and three
dependent variables that form the consequent of the rule. So the rules are of the form:

if petal lengthissmall and
petal widthis medium and
sepal lengths small and
sepal lenghts small then class isSetosa

The problem now is to describe what small or medium means. Two experts discussing
about iris flowers would intuitively know it, but for a computational model these terms
must be defined precisely, however, if possible without loosing the vague nature of the
terms.

Before we show how this can be done with the help of the fuzzy set concept it should be
stressed that fuzzy classifiers are not a replacement for methods like statistics or other
forms of machine learning and it does not yield better results. Fuzzy classification offers
a different way to achieve the same goal. If a decision is made for a fuzzy classifier usually
the following advantages are considered:

® vague knowledge can be used,

® the classifier is interpretable in form of linguistic rules,

e from an applicational point of view the classifier is easy to implement, to use and
understand.

But it should also be remembered that fuzzy classifiers that use rules like the one given
above are only useful, if direct dependencies of features to class informations are to be
modeled. It is implicitly assumed that the features itself are independent from each other.
If more complex domains must be modeled, where dependencies or conditional
dependencies between all variables of a given problem have to be explicitly represented,
then graphical models (dependency networks) like, for instance, Bayesian networks
[KRUSE ET AL 91] or possibilistic networks [RUSE ET AL 94] should be preferred. Fuzzy
classifiers can be viewed as an alternative to neural networks, regression models, or
nearest neighbour classifiers, i the abover-mentioned advantages are of interest
[NAUCK/KRUSE98].

Neuro-Fuzzy Systems S

1.1.1 Fuzzy Sets

Fuzzy sets can be used to model terms of every-day language. To define that a person is
grey-haired if there are 10.000 grey hairs can not mean that a person with 9.999 grey hairs
has his natural color.

grey-haired grey-haired
A
yes —_ 1+
no-) | > 0 | >
0 5.000 10.000 0 5.000 10.000
No. of hairs No. of hairs

Figure 1.1 In the left figure the crisp and in the right figure the vague modeling of
the termgrey-hairedcan be seen

In the fuzzy set theory those terms are modeled through vague sets. The whole domain that
differs from natural color to grey-haired has to be partitioned into fuzzy sets which can
even overlap. An object in the crisp definition is a member of a class or it is not. In the
fuzzy set theory it has a membership degree where 1 means full membership and 0 means
no membership. A fuzzy set is given bsneambership functiop: R~ [0, 1Jwhich can be

seen as a generalization of the characteristic function of a normal (crisp) set.

N . .
1 natural color greying grey-haired

0,5+

0 N
0 5.000 10,000

Figure 1.2 A possible fuzzy-partition of the domain ‘greying’

There are three kind of functions that are commonly used to represent fuzzy sets, because
they are defined by only a few parameters and they have useful features like convexity and
normality [Kruse et al. 94]. These are triangular, trapezoidal and bell-shaped functions.

6 Neuro-Fuzzy Systems

Membership Degree

A nearly 2 between 6 and 8, approximately 13
or so

Figure 1.3 Types of fuzzy sets

The next task is to find operators for the intersection and union of fuzzy sets. Functions
that fulfil minimum requirements for the intersection operator are calteims The
t-conormis the dual of the t-norm and t-conorms are the basis for the definition of union
operators [RUSE ET AL94]. For the NEFCLASS-model the minimum is used:

Tmin(@ b) = min {a, b}.

> X
Figure 1.4 Intersection and union of two fuzzy sets
With help of the fuzzy sets as depicted above it is now possible to create fuzzy rules which

can be used as a basic construct to model expert knowledge. The intersection operator is
used to model thand connective and the union operator modelsotheonnective.

Neuro-Fuzzy Systems 7

1.1.2 Fuzzy Rules
Fuzzy rules for solving classification problems hagve the following general form:
R: If x is A‘-(ll) and ... andx is A‘-(:) then (x;, X, .., Xx)eC, .

Where Aj(ll), Aj(:) are linguistic terms, which are represented by the fuzzy sets

u(jll), QT C < R" is a pattern subset and represents the cl@kg patterns are input
tuplesx = (X;, X, ,..., X)) € R" . It is assumed that they can be devided into disjunct

classes, so that every pattern can be related to aGldSeery valuex, of the input tuple

Is to be partitioned by fuzzy setsp(il), ﬂ"q) . The classification is defined by a rule base

with k fuzzy rulesR,, ..., R, .

In the beginning of this chapter the example of the iris flower was given. The data set
consists of patterns with four input paramete&rsx, X, X,) given by length and width of

the petal and sepal. The domain of every parameterepresented by three fuzzy sets
(small = sm, medium = md, large = |g). There are three possible classes (Setosa, Virginica,
Versicolor). Of course, different definitions are possible but this depends on the view of
the expert. The example from the beginning is now:

if x,issm andx,ismd andx;issm andx,issm then Setosa

Figure 1.5 shows a graphical representation of a rule basekwiites ann input
parameters.

In contrast to fuzzy control rules where the consequent of a rule is a fuzzy set, a fuzzy
classification rule results in a crisp value which is assigned to a class. This value is
computed by the t-norm,,, while the classification result processed over all rules is
given by the t-conorm,,,,.

This all seems to be very easy and clear but it should be remembered that for every task a
representation has to be found which is not obvious. The choice of the membership
functions and the partitioning of the domain are only two problems. The fuzzy sets need
not to be symmetric or regularly distributed over the domain.

And there is always an optimisation problem. The more fuzzy sets are used to partition the
domains of the variables, the more fuzzy rules can be constructed. Thus the classification
can be made arbitrarily exact. On the other hand a fuzzy system with a large rule base is a
slow and confusing system. A small number of rules can be leveled out with non-
symmetric fuzzy sets. But this reduces the interpretability of the system. So there is the
dual problem of performance and interpretability.

8 Neuro-Fuzzy Systems

If 1 and 1 _
min
rule 1 ee \
If 1 and 1
rule 2 e min
/
[] ®
[] ®
* []
If 1 and 1
rule k e o
min
X, X Y max
class |

Figure 1.5 Fuzzy rule base and evaluation with minimum and maximum
operator

The NEFCLASS-Model adresses these problems. The fuzzy rule base is directly learned
from the data. It is possible but not necessary to insert prior knowledge in form of fuzzy
rules. Afterwards the fuzzy sets are learned. This cannot solve the described optimization
problem completely but it can ease it. Depending on the data constraints given by the user
of the system are considered. He has to decide if the classifier should be tuned to a near
zero error result or if the priority is on the interpretability of the system and a certain error
can be accepted.

1.2 Neural Networks

Research on artificial neural networks started around 1940 and was inspired by interest in
the neurophysiological fundamentals of the human brain. It was known that the brain
consists of interconnected nerve cells - the neurons - that influence each other by electrical
signals. A neuron conducts its signals via its axon that projects from its cell body (soma)
[NAUCK ET AL 97]. It receives signals from other neurons over its dentrites which scan the
axons of these neurons for signals. The joints of dendrites and axon are named synapses.
This is a very little gap where chemical transmitters are activated if the signal of the axon

Neuro-Fuzzy Systems 9

Is strong enough. That means that the collection of incomming signals into the neuron
reach a certain value. Some synapses inhibit the signal others pass the signal through. This
Is the way of filtering signals.

It cannot be the task to develop an artificial brain. On one hand there is too little biological
knowledge to create a successful model and on the other hand the computer recources are
to small to compute only a fraction of the millions and millions of a brain’s neurons. So
we will restrict ourselves to the problem of information processing, and do not consider
biological aspects.

Now a generic model is introduced which lays the foundation of all models for neural
networks [MuckK ET AL. 97]. After this the model used for the NEFCLASS system is
depicted, the multilayer perceptron.

1.2.1 A Generic Model of Neural Networks

As depicted in [Muck ET AL. 97] an artificial neural network can be generally seen as a
formal structure that can be easily described by a set and a few mappings.

Definition 1.1 A neural network is a tupl@J, W, A, Q NET, ex),where:

(i) U is afinite set of processing units (neurons),

(i) W, the network structure, is a mapping from the cartesian product to the set of real
valuesW:U x U - R,

(i) Ais a mapping that assigns an activation functigm R*® - R to eachu € U ,
(iv) Ois a mapping that assigns an output funct@n R - R toeachu € U ,

(v) NET is a mapping that assigns a network input function NER x R) - R
to eachu € U , and

(vi)y exis an internal input functiorex: U - R, that assigns to eacli € U an
external input in the form of a real valex, = ex() € R.

This definition describes the static features of a neural network in such a general way that
it is a basis for all kind of neural network models. In the following a detailed explanation
of the components and parameters is given accordingodNET AL. 97].

The Processing Units

Theprocessing uniter neuronsof a neural network can be viewed as simple processors.
Depending on their current state and their current input - both given by real values - they
produce an output value and assume a new state. The units process their input values in
parallel and independenly of each other. In most neural network models there is one input

10 Neuro-Fuzzy Systems

layer, one or more hidden layers and one output layer. The units of the input and output
layers are used to communicate with the environment of the network. The state of the
hidden units cannot be directly influenced or observed from the environment.

Unitu
a,=A, (8,9, net,, ex,)
W~
\(\Q\i\:‘?’,
W(uy, u) W(u,, u)
[) [] []
Oul Oun

Figure 1.6 A processing uniti of a neural network

The Network Structure

The mappingVis usually called thaetwork structurelt can be displayed as a weighted
directed graph, where the nodes represent network units, and the weighted edges are
weighted communication links. The network structure is the basis of the communication
of the processing units. The output of one unit becomes the input of other units.The
weighted connections enable each unit to consider the output values of the other units to
a large or small extend, or to disregard them alltogether. We say:

the connection between u’ and u
does not exist iW(u’, u) =0,
is called excitatory i#Mu’, u) >0,
is called inhibitory ifWu’, u) <O0.

W determines the structure of the neural network. By setting certain weights to zero we can
obtain a layered network where units are not connected to each other, if they lay in the
same layer or in layers that are not adjacent to each other. An importent type of neural
network is the multilayer perceptron which is also the basis for the NEFCLASS-Model
(see figure 1.8).

Neuro-Fuzzy Systems 11

The mapping/V can be modified in a so-calléshrning modeDuring this phase one tries
to determin&Vwith help of a learning rule in such a way that the neural network produces
certain output patterns in the presence of certain input patterns.

Output Functions

Each processing unit may posess its own output fun€ignwhich transforms the
activation into an output value. In most neural network models the activation and the
output values of a unit are identical. So each unit uses the identity as an output function.

Propagation Functions

The mapping NET assigns to each undgf the neural network a network input function
NET,, which is also called propagation function or transfer function. Also in this case
generally only one kind of function is used. It is the weighted sum of the output of all
network units.

External Input Functions

An external input function ex provides the connection to the external environment for a
neural network. It creates an external input for the network, which reacts by changing the
activation of its units to produce an output. Usually only a subset of the network units can
receive input values, i.e. ex is only defined for this subset of input units. In the multilayer
perceptron these units build a layer that means they are not connectd. As activation
function the identity is chosen, so the activation only depends frpm ex

Activation Functions

The mappindA makes it possible to assign to each unit of the network its own activation
function. However, all units normally use the same function. An activation fungtion
calculates the current activatiapof a unitu € U . In order to model a kind of "memory"

or to simulate a process of "slowly forgetting" the activation function may depend on the
former activation. Moreover it can depend on the network input and the external input. In
most neural network models one of the activation functions shown in figure 1.7 is used.

For the multilayer perceptron the activation function of the input layer is the identity. For
the hidden layers and the output layer the sigmoid function is used because the learning
algorithm needs a continuously differentiable function.

12 Neuro-Fuzzy Systems

AN AA
14 14
N N
Ve Ve
net, net,
Linear threshold function Semi-linear function
AA A
1 1-
> >
net, net,
Linear function Sigmoid function

Figure 1.7: Activation functions

It was just mentioned that there exist many different neural network models. The most
important is the multilayer perceptron which is also used for the NEFCLASS model. The
following chapter shows the structure of this network as well as the learning process is
described.

1.2.2 The Multilayer Perceptron

The multilayer perceptron is an extension of the simple perceptron introduced by Frank
Rosenblatt in 1958 [BSENBLATT 58]. A detailed description can be read im{[¢K ET

AL. 97]. The multilayer perceptron is a neural network that consists of an input layer, one
or more hidden layers and an output layer. The units of the input layer do not perform any
computation, they just pass on their input values. The output layer can consist of more than
one unit. In classification tasks one for each class is needed. Figure 1.8 shows a multilayer
perceptron using the description of a unit given in Figure 1.6.

The formal definition of a multilayer perceptron reads iayNK ET AL. 97] as follows:

Neuro-Fuzzy Systems 13

Definition 1.2 A multilayer perceptron is a neural network
MLP = (U, W, A, ONET, e, that has the following properties:

(M U=U,U..UuU, is a set of processing units (neurons) where3 is
assumed. Furthermord); # o forall i € {1, ..., n} andU; N U; = o for

i #j. U, is called the input layer and Whe output layer. The,With 1 <i <n are
called hidden layers

(i) The network structure is given by the functidh: U x U - R. There only
exist connections between consecutive layers.
Thus,(u’ € U, AWu’, u) » 0) = ue U forallice {1, .. n-1}.

(i) A assigns an activation functio® : R - [0, 1] to each unite U to
calculate the activation awith

a, = A (exu)) = ex()

forall u ¢ U, and

a, = A net) = f(net)

forallue U,i € {2, ..., n}, where all units use the same non-linear function
f: R~ [0, 1].

(iv) O assigns an output functidd, : R - [0, 1] to each unit U to calculate
the output g witho, = O (a,) = a,forallue U.

(v) NET assingns a network input (propagation) function
NET, : (R x R)U“’l) - R to each ue U,, (2<i<n) to compute the network
input net, with

net, = Y. Wu’ u)-o, + 6,
u'e U,
0, € R is the bias of the unit u.
(vi) ex :U, -~ [0, 1] assigns an external inpuex, = ex(u) to each input unit
ue U,.

A multilayer perceptron uses real-valued units and therefore, a continous activation
function is necessary. The learning algorithm for the multilayer perceptron requires the
activation function to be diffentiable.

14 Neuro-Fuzzy Systems

Output layer

netui‘E W(u',u)@,+6,

W(u, V

WU, by V WU, b,)

W(uy,, Uy;)

netuzz w(u',u)ld,+6,
u'eU,

Hidden layer

)
W, W,) WU, , Uy,
Input layer a, = A, (ex,) =exu) a,= A, (ex,) = ex(u) cee
7\ Input values x cee

Figure 1.8 A multilayer perceptron

1.2.3 The Backpropagation Algorithm

Up to now only the structure of neural networks was considered. A very important part of
neural networks are the algorithms that allow to change the w¥igfitse goal of the so-

called learning algorithms is to determi¥iéin such a way that the network produces
certain output values when certain input values are given. The network should react in a
reasonable way, when new, unknown values are presented. To achieve this goal the
provided known input patterns are propagated through the network. The determined
outputs are then are compared to the target output patterns\Wriseshanged in a way

that the network comes closer to the target output, when the same pattern is propagated
again [NaucK ET AL. 97].

Neuro-Fuzzy Systems 15

In every step of processing, the input patterns that means the data influence the output
values. Data with unknown results determine a free learning problem. The task is to
receive similar output values for similar input values. If the result of the data is known the
learning problem is called fixed. To express whether two inputs or outputs are similar or
close to each other we need to define a similarity or error measure. This measure depends
on the type of network and learning algorithm. Im{ldk ET AL. 97] a learning algorithm

is defined as:

Definition 1.3 A learning algorithm is a procedure that changes the structure W of a
neural network using a learning problem. The learning algorithm is successful, if the
network solves the learning problem after the application of this procedure, or if the error
of the network is less than a given error bound. Otherwise the learning algorithm has
failed. A learning algorithm that uses a free learning problem is called an unsupervised
learning algorithm. If a fixed learning problem is used, the procedure is called a
supervised learning algorithm.

For the NEFCLASS-Model a fixed learning problem is used so a supervised learning
algorithm has to be defined. There are two problems to be solved for the definition of a
learning algorithm for multilayer perceptrons. At first an output error for every unit of the
hidden layer has to be calculated. Remember that these units cannot be observed from the
environment. Second it has to be fixed in which way the changing of the weights should
happen.

In 1986 Rumelhart, Hinton andiliams introduced in [RMELHART/MCCLELLAND 86] an
algorithm which achieves to do this. This method is nab@et#tpropagatiorbecause the
output error is propagated back through the network.

This is the way to solve the first problem and it needs four steps. In the first step the input
values are propagated through the network till the output values are calculated. The second
step is to calculate an error with help of an error function. To distribute this error value
backwards through the network is the third step. The error values are weighted in the same
way as the input values in the first step. These weighted errors reach the units and are
accumulated in step four. As a result every unit gets the partial amount of the total error
that it caused.

The error measure that has to be minimized for each input/output pair is defined in
[NAUCK ET AL. 97].

16 Neuro-Fuzzy Systems

Definition 1.4 Let L be a fixed learning problem, and:| I a pair of patterns that
have to be learned.

(i) An error measure for a supervised learning algorithm is a mapping

+

e: R°x R™ - R,
such that for all a, & R0
e(@,b)=0=a=>b

holds. The error &, that is caused by a neural network when processing the pair
of patterns k I is given by & = e(t?, o), whereo® is the output (vector) of the
network to the input pattern®, andt ¢ is the target pattern given by the learning
problem.

(i) The error eﬂ) of an output unit & U, when processing the input pattera I is
the differnce between the output vathqbdetrmined by the learning problem and
the output value)Lf'):

| | |
& = - o)

With the definition of the error measure some questions have to be considered. To prohibit
that negative and positive deviations neutralize each other the square of the Euclidean
distance is used:

| |
e = 3ty - o)

ueUq

If instead of the square the absolute value is used, then another possible error measure is
obtained which does not overrate large and underrate small deviations.

The second problem in defining a learning algorithm is to determine a method for
changing the weights in a manner that the error can be minimized. The common
supervised learning algorithms approximate a gradient descéhamal try to reduce the

global error to zero this way. However, such a learning procedure cannot allways
guarantee convergence, becauce it is equivalent to a local heuristic search procedure. The
algorithm follows the gradient in the error surface definetpstarting at a point given

by the initialization ofW and the learning problend’ . The algorithm stops when it
reaches a local minimum. If this local minimum is not also the global minimum, i.e. the
error limit € is not reached, then the learning process failed.

If the gradient decent is not matched closeipiwggh, then the learning algorithm can
oscillate. In such a situation the procedure aproches a minimum, but overshoots the mark.

Neuro-Fuzzy Systems 17

Then a new approach from another direction takes place which leads to the same result,
and so on. In this case the learning procedure also fails because it will forever iterate.

These problems are tried to solve with help of the learningyate . Theryalue indicates
the step width used for following the gradient. The multidimensional erracgurhay
contain a lot of local minima and sudden strong changes in direction that have to be
followed in order to reach a minimum. If the value chosemfor s too large, the error of
the network can suddenly rise again. The reason might be for instance that while
descending into a narrow gap of the “error mountains” the algorithm is continously
jumping back and forth the walls of the gaprid¢K ET AL. 97].

Ny, Ny,
~ el

Figure 1.9 The backpropagation procedure can be trapped in local minima (left),
or oscillate because the learning rate is too large (right)

As just explained a continously differntiable activation function is needed. A linear
function is not used because the propagation through the network is equivalent to a
multiplication of a tuple with a matrix which would unter mathematical consideration lead
to a onelayered network. Thus a sigmoid function is used. The formal definition of the
backpropagation algorithm is given inANckK ET AL. 97].

1.3 Neuro-Fuzzy Systems

We just discussed the problem of defining and tunig a fuzzy system and found out that it
would be fine to have learning opportunities for this. Neural networks offer this learning
opportunity but on the other hand the are very successful in classification problems. So
why should there fuzzyness be integrated? Why not only use neural networks? Let us go
into it further with an overview of advantages and disadvantages of fuzzy systems and
neural networks [WUCK ET AL. 97].

18 Neuro-Fuzzy Systems

neural network fuzzy system
advantages
® no mathematical process model ® no mathematical process model
required required

® no rule-based knowledge required | ® prior (rule-based) knowledge can be

e different learning algorithms available used

® simple interpretation and
implementation

disadvantages

® Dblack box ® rules must be available
® rules cannot be extracted (usually) | ® cannot learn
® determine heuristic parameters e no formal methods for tuning
e adaption to modified environment cane® semantical problems in interpreting
be difficult and relearning may be tuned system
necessary ® adaption to modified environment can
® prior knowledge cannot be used be difficult
(learning from scratch) ® tuning may be not successful

® no guarantee that learning converges

Table I Comparing neural networks and fuzzy systems

Neuro-fuzzy systems are created to overcome the disadvantages of neural networks and
fuzzy systems. The term is usually used for every kind of combination of neural networks
and fuzzy systems. One approach is to combine both in such a way that learning
algotithms are used to determine parameters of fuzzy systems. This means that the main
intention of a neuro-fuzzy approach is to create or improve a fuzzy system automatically
by means of neural network methods. An even more important aspect is that the system
should always be interpretable in terms of fuzzy if-then rules, because it is based on a
fuzzy system reflecting vague knowledge. In a word: the task is to overcome the
disadvantages without loosing the advantages.

On the other hand a fuzzy neural network is a neural network that uses fuzzy methods to
learn faster or perform better. In this case the improvement of the neural network is the
main intention. An interpretation in terms of fuzzy rules is neither important nor possible
here, because the system is based on a neural network with black box characteristics. In
[NAUCK ET AL. 97] the following taxonomie to describe the different combinations of
neural networks and fuzzy systems is used:

Neuro-Fuzzy Systems 19

Fuzzy neural networks
Fuzzy methods are used to enhance the learning capabilities or the performance of a neural
network. This kind of approaches is not to be confused with neuro-fuzzy approaches.

Concurrent “neural/fuzzy systems”

A neural network, and a fuzzy system are working together on the same task, but without

influencing each other, i.e. neither system is used to determine the parameters of the other.
Usually the neural network processes the input to, or postprocesses the outputs from the
fuzzy system.These kinds of models are strictly speaking neither neuro-fuzzy approaches
nor fuzzy neural networks.

Cooperative neuro-fuzzy models

A neural network is used to determine the parameters (rule, rule weights and / or fuzzy
sets) of a fuzzy system. After the learning phase, the fuzzy system works without the
neural network. These are simple forms of neuro-fuzzy systems, and the simplest form -
determining rule weights by neural learning algorithms - is widely used in commercial
fuzzy development tools, even though semantical problems can arise.

Hybrid neuro-fuzzy models

Modern neuro-fuzzy approaches are of this form. A neural network and a fuzzy system are
combined into one homogeneous architecture. The system may be interpreted either as a
special neural network with fuzzy parameters, or as a fuzzy system implemented in a
parallel distributed form. There a lot of different models describedAn@M ET AL. 97].

Some of these approaches are reinforcement learning types that are especially suited for
control tasks and others are multi-purpose models, which use supervised learning, and can
be used for data analysis, like the NEFCLASS approach.

As we are here only interested in hybrid neuro-fuzzy systems, in the further descriptions
we restrict ourselves to informations needed as a basis for this approach. In the following.
[NAUCK/KRUSE98] a definition is given that shall be used here to specify what neuro-
fuzzy system means in this thesis:

1. A neuro-fuzzy system is a fuzzy system trained by a (heuristical) learning algorithm
(usually) derived from neural networks.

2. A neuro-fuzzy system can be represented by a feed-forward neural network
architecture. However, this is not a prerequisite to training, it is merely a convenience
to visualise the structure and the flow of data.

. A neuro-fuzzy system can always be interpreted in terms of fuzzy if-then rules.

. A neuro-fuzzy system's training procedure takes the semantics of the underlaying fuzzy
model into account to preserve the linguistic interpretability of the model.

5. A neuro-fuzzy systems performs (special cases of) function approximation. It has

nothing to do with fuzzy logic in the narrow sense. i.e. generalized logical riResgK
ET AL. 94].

B~ W

20 Neuro-Fuzzy Systems

The second list item tells us something about the viewpoints that can be taken. The hybrid
approach is to interpret the rule base of the fuzzy system in terms of a neural network. The
fuzzy sets can be seen as weights and the input and output variables and the rules can be
interpreted as neurons. This way a fuzzy system can be interpreted as a special neural
network. The learning algorithm works by modifying the structure and/or the parameters
that means the inclusion or deletion of neurons or adaption of the weights.

A A

net;
maximum of the incoming

degrees of
fulfilment

net;:

maximum of the incominp
degrees of
fulfilment

W(UY;, Wy) W(U},, by)

W(UY, ,) W(U,, by)

input values x R

Figure 1.1Q A neural network view of a neuro-fuzzy classifier

Neuro-Fuzzy Systems 21

It is an important aspect that the changes caused by the learning process can be interpreted
in terms of neural networks as well as in terms of fuzzy systems. The black box behavior

of neural networks is avoided and a successful learning process can be seen as an increase
of explicit knowledge which is represented in the rule base.

The task is now to think about how to create such a neuro-fuzzy system, in which way the
rules base is built, and what kind of learning algorithm is used for that. It should be
possible that the rules can be learned from sratch based on training dasadr EYAL.

97] three possibilities of creating a rule base are considered.

® The system starts without rules, and creates new rules until the learning problem is
solved. Creation of a new rule is triggered by a training pattern which is not sufficiently
covered by the current rulebaseefENJl / KHEDKAR 93, NAUCK / KRUSE 95,
TscHicHOLD GURMAN 95]. This approach can lead to large rule bases if the
membership functions are not appropriately chosen.

® The system starts with all rules that can be created due to the partitioning of the
variables, and deletes insufficient rules from the rule basedk/ KRuse93]. For this
procedure an evaluation of the performance of individual rules is needed. This approach
encounters complexitiy problems when applied to problems with a large number of
variables. Inconsistent rule bases are avoided, because a consistency test is part of the
evaluation. It is possible to obtain rule bases with too few rules by this procedure.

® The system starts with a (possibly randomly chosen) rule base with a fixed number of
rules. During learning rules are replaced&ERGER ET AL93], while the consistency
of the rule base has to be checked at each step. The drawback is the fixed number of
rules. Additionally an evaluation scheme for rule deletion, and a data analysis
procedure for acquiring new rules, must be implemented. If this is not done, then the
learning is equivalent to stochastic search. In the event of degration in performance,
replacements may possibly have to be cancelledzEERGER ET AL93].

Another problem to think about is the application of the learning algorithm to the system.
While using the neural network view the fourth point of the definition is easily forgotten
which requires that the neuro-fuzzy system's training procedure takes the semantics of the
underlaying fuzzy model into account to preserve the linguistic interpretbility of the
model.

We also just described that learning algorithms are usually gradient descent methods. But

they cannot be applied directly to a fuzzy system, because the functions used to realize the

inference process are usually not differentiable. There are two solutions for this problem

[NAUCK/KRUSE98Db]:

® replace the functions used in the fuzzy system (like min, max and membership
functions) by differentiable functions, or:

® do not use a gradient-based neural learning algorithm but a better suited procedure.

The problem with the first solution is that the interpretability may be reduced. The
NEFCLASS model uses the second possibility, a special learning algorithm which will be
introduced in the next chapter.

2

The NEFCLASS Model

In this chapter the neuro-fuzzy method NEFCLASS is discussed. This method is an
linguistic approach to construct fuzzy systems from data by applying a heuristic data-
driven learning algorithm that computes local parameter modifications. There are several
other methods which are able to do this but the focus of the NEFCLASS model lies in the
interpretability of the developed classifier. The constraints of the learning algorithm allow
the user to interactively influence the training process.

So the main goal of NEFCLASS is to create a readable classifier that also provides an
acceptable accuracy. However, the user has to be aware, that readability and accuracy do
not go together. An interpretable fuzzy system should display the following features:

e few meaningful rules with few variables in their antecedents,

e few meaningful sets for each variable,

® there are no rule weights,

e identical linguistic terms are represented by identical fuzzy sets,

e only normal fuzzy sets are used, or even better fuzzy numbers or fuzzy intervals.
These features pose a lot of restrictions on the way how a fuzzy system can be created
from training data. If high performance of a fuzzy system is the main goal, then it is
necessary to fit the system to the data very accurately. This approach, however, usually
yields fuzzy systems that do not display the above-mentionend features and are in fact
black-box models. A user has therefore to decide, what is more important - accuracy or
readability. NEFCLASS provides means to ensure the readability of the solution by giving
the user complete control over the learning process. It should also be stressed that
interpretable solutions can usually not be obtained without the user‘'s cooperation. The
user must decide whether the solution’s readabilispfficientor not, and must ready to
influence the learning process when necessary. NEFCLASS must be seen as a tool that
supports users in finding readable fuzzy classifiersnibisin automatic classifier creator
where data is fed in and a solution pops out. It is necessary that tiveoukswith this

tool (with work being the operative word) BNCK/KRUSE98]. For this reason only fast
learning strategies are used to give the user the possibility to interact with the tool.

2.1 The Structure of the NEFCLASS-Model

As just mentioned in the last chapter it is possible to view a neuro-fuzzy system as a
special three layered feedforward neural network where

The NEFCLASS Model 23

® the first layer represents the input variables that means the pattern tuples,

e the hidden layer represents fuzzy rules,

e the third layer represents the output variables that means one unit for every class,
® the units use t-norms and t-conorms as activation functions,

® the fuzzy sets are encoded as (fuzzy) connection weights.

Figure 1.10 and Figure 2.1 show this neural network structure which is often used to
demonstrate the parallel structure and the data flow through the model, both for learning
(backward path) and classification (forward path). Furthermore it is more easy to compare
NEFCLASS to other fuzzy classication approaches if this representation is chosen. But it
also should be remembered again that this is only one possible visualisation. This system
Is nota neural network. It is a hybrid neuro-fuzzy system which is an integrated system. If
only the neural network view is considered the advantages of the fuzzy view are lost and
these are the features NEFCLASS focuses on.

Laaes

Figure 2.1 The architecture of the NEFCLASS model

A more simple version of Figure 1.10 is Figure 2.1. Rheepresent the rules aif® is

the weightW(x R) where index selects the fuzzy sets of the partition. NEFCLASS uses
shared weights on some of the connections (in Figure 2.1 this is shown by elipses drawn
around the connections). This way it is made sure that for each linguistic value,(is.g. “
positive big) there is only one representation as a fuzzy set. It cannot happen that two
fuzzy sets that are identical at the beginning of the learning process develop differently,
and so the semantics of the rule base encoded in the structure of the network is not

24 The NEFCLASS Model

affected [Muck / KRUSE98]. Connections that share a weight always come from the same
input unit because a label (e.g. “positive big”) should have the same meaning whenever it
Is used for a certain variable but need not to have the same meaning for all variables.

W(R, ¢,) is the connection from the rui to the output unit,. For semantical reasons,

I.e. to avoid weighted rules these connections are fixed at either O (connection does not
exist) or 1 (connection exists). Each rule unit is connected to exactly one output unit
[NAuUcK / KRUSE98D]. The output activation is computed by a maximum operation instead
of a weighted sum.

We have to take care now that we do not get confused with the term “learning”. On one
hand we talk of “learning a network from data” or “from scratch” what means that the rule
base is learned, and - it depends on the view - a fuzzy system or a neural network is built.

On the other hand there is the learning process which is also named the “training of the
network”. This is the real learning process where the weights are changed such that in the
end a classifier is created.

So in the first learning step te&uctureof the classifier is created that fits the database as
good as possible, and already has some qualities the user requires (few number of rules
and fuzzy sets). In the second learning stepgldwsifieris completed by determining the
parameters of the system in an iterative training process to improve the accuracy without
loosing the interpretability. These two steps will be described now in the next subsections.

2.2 Learning a Rule Base - The Algorithm

A NEFCLASS system can be built from partial knowledge about the patterns, and can be
refined by learning, or it can begin with an empty rule base that is filled by creating rules
from the training data. For each input variable the user must decide how many fuzzy sets
are to be used to partition the domain of the respective variable. By this the granularity for
each variable and the linguistic terms that can be used by the classifier are given. For some
variable the user might prefer to distinguish just between small and large, for some other
variables a finer partition may be useful. The user must also specify a va&lyg ioé. the
maximum number of rule nodes that may be created in the hidden layer. For each class
there must be at least one rule. It is also possible to let NEFCLASS find a suitable value
for k.., by itself [Nauck / KRUSE 98b].

In the following it is assumed that triangular membership functions described by three
parameters are used:

The NEFCLASS Model 25

0
@

—— if xe[a,b),

O T
\
X o

RIR™ = i) =

if xe[b,c],

|
O

c
0 otherwise.

In addition, the left and the right-most membership function®éah variable can be
shouldered, i.e. the triangle becomes a half trapezoid.

Consider a NEFCLASS system with:

® ninput units X, ..., X,

® k < k., initial rule unitsR,, ..., R, (prior knowledge, k = 0 what means no prior
knowledge is given),

® moutput unitc,, ...,C.,

e alearning sef’ :{(pl, t), - (Py ts)} of s patterns, each consisting of an input pattern
pe R", and a target pattetrz {0, 1}™

Assume that NEFCLASS is initialized witk < k... fuzzy rules. The rule base of
NEFCLASS is completed by finding for each pattpra combination of fuzzy sets that
yields the highest degree of membership for each yalti@is combination of fuzzy sets

Is the antecedent of a prospective rule. If such an antecedent does not already exist, it is
stored in a list. A suitable consequent for each antecedent is determined by adding up the
degrees of fulfilment for all patterns separately for each class. The consequent is set to that
class label that obtains the largest sum. After each training pattern was processed once, we
obtain a rule base @frules. Ifk >k,.,, only the besk. ., rules (‘best’ rule learning) or the
bestk.,/mrules for each class (‘best per class’rule learning) are kept, all other rules are
deleted from the rule base. The best rules are determined by computing performance
values for each rule. If a rule correctly classifies a pattern, its degree of fulfilment is added
to its performance value, if not, the degree of fulfilment is subtracted. The performance
values can be computed on the fly, such that rule learning is completed after a single
sweep through the training set. In Figure 2.2 the rule learning algorithm is given in pseudo
code.

From the two described ways to create a rule base for a NEFCLASS system the ‘best per
class’ option should be selected, when one supposes that the patterns are distributed in an
equal number of clusters per class. This strategy is especially suitable, if there are classes
with much less patterns than other classes, because it guarantees that each class is covered
with rules independently from the distribution of patterns. ‘Best’ rule learning is suitable,
when there are classes, which have to be represented by a larger number of rules than other
classes [Muck / KRUSE98D].

26 The NEFCLASS Model

For each patternp(t) of I do
begin
For each input featurdo

find p’ such thap{ (p) - _ {Tax}{uj(i)(pi)};
JE 1111 qi

Create antecedeAt= (uj(il),..., pj(rr]'));
If Ais notin list of antecedents
then add antecedent A to list of antecedents;
end;
For each patterng(t) of I do
For each antecedeA do
begin
¢ = class index op given byt;
Ci(c) =C(c) + A(p) (* add degree of fulfilment *)
end;
For each antecedeA do
begin

create ruleR with antecedend, and consequeiat
addR to the list of rule base candidates;
performance=C;(c) - Y C(i)
end; ie{1,...m}, i#c
If “best” rule learning
then For i =1to k,,do
begin
R = argmax performancg
R
addRto rule base;

deleteR from list of rule candidates;
end

else If “best per class” rule learning
then For each class do

K

For i=1to ™ do
m
begin
R= argmax {performancg
Rj ,consequerjl'ﬁ Cc
addR to rule base;
deleteR from list of rule candidates;
end;

Figure 2.2 The rule learning algorithm in pseudo code

The NEFCLASS Model 27

The learning algorithm can be visualized in a grid structure. Figure 2.3 shows how rules
are selected from a grid structure in feature space that is given by the fuzzy sets of the
individual variables. In this case the system is allowed to create three rules, therefore there
are unclassified patterns.

yA
e
d
c
r 4
P d
be”
~
a N
\ —>>
\ / : X
\ , L] [
\, 'Il.
v .
a b c d €

Figure 2.3 Classification after rule learning with NEFCLASS

One can see that the classification result is not bad, but improvements are desired. Pattern
1 and pattern 2 are misclassified and three patterns are not classified. To shift and modify
the fuzzy sets would help:
® Pattern 1 is correctly classified if

o fuzzy setb is a bit smaller from the top,

o fuzzy setd is a bit wider to the bottom,

o fuzzy setc’ is a bit wider to the left.
® Pattern 2 is correctly classified if

o fuzzy setc’ is a bit smaller from the right,

o fuzzy sete’ is a bit wider to the left.
® The unclassified patterns are correctly classified if

o fuzzy setd’ is a bit wider to the right.

2.3 Training Fuzzy Sets - The Algorithm
The supervised learning algorithm of NEFCLASS to adapt its fuzzy sets runs cyclically

through the learning sef’ until a given end criterion is met, e.g. if a number of
admissible misclassifications is reached, or if the error cannot be decreased further, etc.

28 The NEFCLASS Model

After a pattern is propagated, the error is determined for each output unit. Based on this
error, for each active rule unit it is decided whether its degree dfrfafit srould be

larger or smaller. The membership function that is responsible for the degree of fulfilment
Is identified and only this fuzzy set is adapted accordingly. A fuzzy set is only modified,
if this does not violate the constraints specified by the user. Typical constraints are for
example:

fuzzy sets must overlap to a fixed degree,

fuzzy sets must not pass each other (i.e. exchange their relative positions),

fuzzy sets must stay symmetrical,

membership degrees must add upto 1.0,

etc.

Users can select one or more constraints depending on their needs. Constraints like these
help to obtain an interpretable rule base, but may cause al loss of performance in
classification [Muck / KRUSE 98b]. In figure 2.4 the learning algorithm is given in
pseudocode. Here only the algorithm for triangular membership functions is given. The
necessary changes for triangular or bell shaped functions are straight forward and can be
found in the source code of the implementation.

repeat
propagate the next patteqm ¢);
for each output unit, do
eg = t - activation¢);
for each rule uniR with activationR) > 0do
begin
e = activation(R) - (1 - activation(R)) - Z(\N(R,c) : eq)
Ci

j = gg_r__r}iy{w(xi,R) (P)}
h = W(xj,R)

(* a, bu and c,are the parameters of the fuzzy set u *)

o, =0 ey (cu - au) ©sgnp, - bu);

o, = fo-eR-(cufau) + 98,

6C=o-eR(cu—au) + 8,

modify p with d,, 8,, 8., without violating the constraints for ;

end;
until end criterion;

Figure 2.4: The fuzzy set learning algorithm in pseudo codeysk / KRUSE 98b]

The NEFCLASS Model 29

The learning procedure for the fuzzy sets is a simple heuristics. It results in shifting the

membership functions and in making their supports larger or smaller (see Figure 2.5). By

changing only the fuzzy set that delivered the smallest membership degree for the current
pattern, the changes are kept as small as possible.

The sum in the computation ef (line 7 in Figure 2.4) is not really necessary, because
each rule unit is connected to only one output unit (i.e. there is jug¥(@&)e&) =0). But it

makes the model more flexible, because it would be possible to also use adaptive rule
weights. Although the implementation of the NEFCLASS model allows to use rule
weights, it is recommended not to use them in order to keep the semantics of a
NEFCLASS system. It is not clear what a weighted fuzzy rule is supposed to mean. Rule
weights are often superfluous, because they can be represented as changes in the
membership functions [NUCK/KRUSE98c]. In [NaUCK ET AL. 97] it is reported that rule
weights are not necessary to obtain good classification results. However, without rule
weights a NEFCLASS system usually cannot produce exact output values of O or 1 due to
the mathematics involved. For the same reason the learning procedure cannot reach an
error value of zero, and therefore the change in error is usually used as a stop criterion for
the learnig algorithm.

A

Initial situation

————=--—"=- Increase situation

........ Decrease situation

Figure 2.5 Adaption of fuzzy sets

The adaption of the fuzzy sets is carried out by simply changing the parameters of its
membership function in a way that the membership degree for the current feature value is
increased or decreased respectively.

Figure 2.6 displays the situation after the learning algorithm for the membership functions
was applied to improve the classification result. Here no constraints were used to restrict
the learning process. As can be seen the resulting fuzzy partitions are no longer nicely
interpretable. Such a result is an indication to repeat the learning process with other
parameters. In this case it would have been better to allow the system to create four rules
and to use constraints for training the membership functions. This example is to illustrate

30 The NEFCLASS Model

that it is important for the user to work interactively with approaches like NEFCLASS to
obtain readable solutions fiNck / KRUSE 98].

Figure 2.6 Classification after learning fuzzy sets

Compared to neural networks, NEFCLASS uses a much simpler learning strategy. There
IS no vector quantisation involved to find rules (clusters), and the membership functions
are not trained by gradient descent. Fuzzy rule creation can be seen as a selection from an
initially given virtual rule base, specified by a fuzzy partition of the input domain.

From the viewpoint of the NEFCLASS architecture and the flow of data, the fuzzy sets are
trained by a backpropagation-like algorithm. We use the term backpropagation to denote
the idea of a learning procedure, not a special implementation in form of an algorithm.
Backpropagation means to compute an output error and to propagate it backwards through
the architecture from the output units towards the input units. This error signal is used to
locally change parameters. Neural networks often implement backpropagation by gradient
descent. NEFCLASS does not compute any gradient information. It uses a much simpler
heuristic instead. In addition, the adaptivity of a NEFCLASS system is restricted compared
to neural networks. This restriction is due to the initially given fuzzy partitions, which
define the form and maximal number of clusters, and by the constraints that do not admit
certain changes in the fuzzy seta\(k / KRUSE98].

The NEFCLASS Model 31

2.4 Prunining the Rule Base

The learning algorithm of the NEFCLASS-Model provides good results for many
classification problems. However, a good interpretation of the learning result cannot
always be guaranteed, especially for high-dimensional problems. Because interpretation is
one reason for using a fuzzy classifier in the first place, there is a need to enhance the
learning algorithms of a neuro-fuzzy system with techniques for simplifying the obtained
result [Nauck/KRUSE97]. Four pruning strategies are used to improve the interpretability

of the classifier.

® Delete linguisitc terms from the antecedent of a rule under certain ascpects:
o A variable is not important for the classification.

The task is to find out if there is an input variable that is not necessary for the
classification. For this the correlations of the input variables with the class
information is used. Variables that have a low correlation are tested whether they
can be deleted from the antecedet or not. Under a statistical view it is dubious to use
the correlation, but it is only used to find out a sequence of testing the variables and
is not used to delete a variable.

The variable with the lowest correlation is the first to be tested. It is deleted from the
antecedents of all rules, a consistency check of the rule base follows and the fuzzy
sets are trained. If this improves the classification result this classifier is taken as the
current one and the next variable with the lowest correlation is tested. If a test fails
and no improvement was reached the last classifier that improved the classification
result is the outcome of this pruning method.

o A variable is not important for the degree of fulfilment of a rule.

For each rule the linguistic term is identified whose membership degree is identical
to the degree of fulfilment of the rule in the least number of cases. The rule with the
smallest number is selected and the identified term is removed from its antecedent,
and a consistency check is done. After this the fuzzy sets are trained and if the
classifer can be improved it is kept and this pruning step is repeated. If the classifier
cannot be improved the previous one is restored. The last classifier that improved
the classification result is the outcome of this pruning method.

o Aterm uses fuzzy set with a very large support

If a variable is partitioned by more than two fuzzy sets, sometimes the support for
one or more of them can become quite large during learning. This can be seen as
evidence, that such a fuzzy set is superfluous.

The fuzzy sets of every variable are sorted by their width. The term with the widest
fuzzy set of all is deleted from all rules. Only in rules where it is the last term of the

antecedent it is not deleted. A consistency check of the rule base follows and the
fuzzy sets are trained. If this improves the classification result this classifier is taken
as the current one and the fuzzy set with the next biggest width is examined. This

32 The NEFCLASS Model

process stops when the classification result is not improved anymore. The last
classifier that improved the classification result is the outcome of this pruning
method.

® Delete rules that never or very rarely provide the maximum degree of fulfilment for the
class given by their consequent.

All patterns are presented to the rules. For every rule it is counted how often the
classification is correct and it produces the maximum degree of fulfilment for the
correct class. The rule with the smallest number is deleted and the fuzzy sets are
trained. If this improves the classification result this classifier is taken as the current
one and the rule with the next lowest number is deleted. This process stops when a test
fails and no improvement was reached or if no rule can be deleted because there is only
one for each class. The last improved classifier is the result of this pruning method.

3

Java for NEFCLASS

Up to now there existed two NEFCLASS implementations which are named NEFCLASS-
PC and NEFCLASS-X. To explain why a third implementation is developed now in Java
both tools are described very shortly now. In a second subsection the advantages of the
Java language are described.

3.1 The NEFCLASS Tools

In [UNauck 97] NEFCLASS-PC is desribed as an interactive simulation software to
develop, train and test a neuro-fuzzy system for classification. It is written in Turbo-
Pascal. NEFCLASS-PC 2.04 is the fifth released version of the neuro-fuzzy classification
software for MS-DOS PC using an 80286 processor or better. This description shows that
the implementation is a bit “old fashioned”. The interface has nothing of a todays standard
that for example the Windows interface offers. But this version was very successful. There
were about 5.000 downloads from the Internet. For this reason the wish for a UNIX
version and some more features arose.

The UNIX version NEFCLASS-X was developed in 1996. It consists of a C++ program
that implements the NEFCLASS approach and a separate user interface written in
TCL/TK. The software was written for UNIX environments, but it is possible to run it
under Windows since TCL/TK is available for these platforms. Additional to the features
of NEFCLASS-PC it implements pruning strategies for reducing the rule base which have
to be supervised by the user.

It was the problem to update two implementations and to take care that both versions are
equivalent. With the upcoming of Java which promises a platform independent develop-
ment of software tools it was decided to create a third implementation. This is
NEFCLASS-J. NEFCLASS-J is developed under “Visual Cafe for Java” an application
development tool of Symantec Ltd.

Some new features of NEFCLASS-J the other implementations do not have are:

® Batch learning instead of online learning.
With online learning the weight changes are executed after propagation of each pattern.
So in dependency of how the patterns are listed in the data file the learning algorithm
will go different ways in the error surface to find a minimum. This need not to be bad

34 Java for NEFCLASS

because this randomly can lead to a ‘good’ minimum. However, the wish is to create a
classifier which is not influenced by random events during the training process.
Therefore the aim is to reach independency from the data. This is the reason for batch
learning. The changes are accumulated and after all patterns are propagated the
execution of the weight changes takes place. The result is not necessarily better but it is
made sure that the quality of the classifier is not only high because the data were
presented in a suitable condition by chance.

e Automaticaly determination of the number of rules.
This feature is explicitly described in the fifth chapter.

® Cross validation of the classifier.
This feature is explicitly described in the fifth chapter.

e Handling of missing values.
The membership degree is set to ‘one’ for all fuzzy sets of a variable if a value is
missing in the data.

3.2 The Java Language

Java developed by Sun Microsystems, was designed for creating applets and applications
for Internets, intranets, and any other heterogeneous, distributed network. This language
offers the following powerful features, as described in the Java white papers published by

Sun [SYMANTEC 97]:

e Simple. Java is similar to C and C++, which many programmers are already familiar
with. Some of the more difficult features of C++, including operator overloading,
pointers and pointer arithmetic, multiple inheritance, and extensive automatic
coercions, were omitted to make programming with java eadier. The Java automatic
garbage collection feature reduces bugs by automatically freeing unused memory.

e Small. The Java virtual machine is relatively small in size, so it can be downloaded
over the Internet and run on computers with little available memory. Many operating
systems will include Java in the future.

e Object-oriented. Java mimics the object orientation of C++ and includes extensions
from Objective C for dynamic method resolution. Some advantages of object-oriented
programming include the following:

o Code is encapsulated in objects, which have a public interface and a private
implementation, so one can rapidly develop prototypes and group code into
manageable chunks - even for very complex systems.

o0 Objects can inherit the characteristics of other objects and override inherited
characteristics, so one can easily reuse code, make code more compact, and fix or
update code in one place, which saves time and reduces bugs.

Java for NEFCLASS 35

® Network-ready. Creating network connections is easier in Java for C or C++ because

Java has built-in routines for dealing with TCP/IP, including HTTP and FTP. These
routines make it as easy to open and access objects over the network through URLSs as
it is to access a local file system.

Robust Java eliminates problems early by requiring declarations, using static typing,
having the compiler perform type check, and not supporting pointers, which can result
in overwriting memory or corrupting data.

SecureBecause there are no pointers, Java applications cannot access data structures or
private data that they do not have access to. This prevents most viruses from taking
hold. Applets, when run within a Web browser on a local computer, cannot read or
write the disk, execute programs on this computer, or connect to any other computers
except the server they were downloaded from.

Architecture-neutral and portable. The Java compiler generates an architecture-
neutral object file format and bytecode instructions, so Java can run on any computer
that has a Java runtime system. Bytecodes are instructions that are similar to machine
code, but are not platform specific. During execution, the Java virtual machine either
interprets the bytecode or converts them to machine code. Creating sepatate
applications for different computer platforms is no longer and issue.

High-performance. Java bytecodes can be translated on the fly to native machine
instructions - for example , by a Java-enabled browser. Linking is faster than for C or
C++. Once the Java bytecodes are converted to machine code by a Just-In-Time
compiler in a Java virtual machine, the performance is comparable to that of C or C++.

Multithreaded . Java code can deal with multiple things happening at once with
sophisticated synchronization primitives that are integrated into the language, which
makes them easier to use and more robust. Multithreading improves interactive
responsiveness and real-time behavior, so is critical to high-performance Java applets
because applet execution must continue while various image and binary files are being
retrieved from the Web servers. In addition, the ability to control the execution of
multiple concurrent threads is crucial for deploying real-world Web-applications.

Dynamic. New module plug-ins can be added to a Java application with minimal
overhead. Java can look up a class definition at runtime from its name.

For the development of the NEFCLASS implementation Symantec “Visual Cafe
Professional Development Edition” was used. It is an integrated development tool.
Interfaces can be designed graphically by mouseclicks and the code is generated auto-
matically. This code is descripted with comments what helps to integrate the underlying
algorithms such that the visual tool and the Java code always match. The author found it
comfortable to use and it supported to learn the Java language. The handling is
comfortable and intuitive. With help of an Interaction Wizard it is possible to create

component connections very easily. The appropriate method is created automatically
which can be changed afterwards. This way one is very easily enabled to create a complex
application where all features are designed and then improve it step by step.

4

Experiments with NEFCLASS-J

In this chapter some experiments to test the performance of the NEFCLASS-J algorithms
are described. The results of these experiments are compared to the results of other
classifiers. For the experiments the ‘Wisconsin brest cancer’ (WBC) data set is used.

In comparison to NEFCLASS-X the use of the pruning methods changed. There the user
has to select a pruning method, and then has to initiate every pruning step the by himself.
He has to determine the control parameters for a method and to edit the rule base. The user
has the total control of the pruning process but it is uncomfortable because it needs time
and the user needs some knowledge about the pruning methods. With NEFCLASS-J the
pruning process happens automatically if the user decides to start the process. There is no
need to know anything about the methods but on the other hand the process cannot be
controlled. After every pruning step the fuzzy sets are trained and every method
implements an automatic restore if a pruning step is not successful. All four pruning
methods are automatically used one after the other.

® The first method is to find out variables that are not important for the classification
result and can be deleted from the antecedents of all rules.

e \WVith the second method rules are deleted that never or rarely provide the maximum
degree of fulfilment for the class given by their consequent.

® The third method looks for variables that are not important for the computation of the
degree of fulfilment of a rule.

e The fourth method deletes terms with fuzzy sets with a very large support.

The philosophy of implementing the pruning feature differs from ‘total control’ in
NEFCLASS-X to ‘absolutely no control’ in NFCLASS-J. For an update version of
NEFCLASS-] it is planned to give back some control to the user. Then the methods will
be offered to the user so that he can select how often a certain method should be used.

After that the parameter settings for a classifier are found it is time to think about the
reliability and the validity of this classifier. The reliability for the classifier is given
because the process of classification is deterministic. So the sameliddt@ays poduce

the same result.

The classifier is automatically created from the data set, with the task that this classifier
should be able to classify any data of this certain type. Only a limited number of patterns
can be used to create the classifier and the quality of the classification result will always

Experiments with NEFCLASS-J 37

depend on these patterns used for creation. If these training patterns do not represent the
set of patterns that can occur in reality the classifier will never be able to classify all
possible patterns. The same problem occurs, of course, if the data of different classes
overlap such that there are ambigous patterns. This is the problem of modeling real word
problems and finding the right features to describe the patterns.

So let us assume that we created a good pattern set. The next problem is that only a part of
it can be used for creating the classifier. The other part has to be used as unseen data
containing class information to verify the classification result. Here we also have to take
care that the selected part of the patterns represents the whole set. As this is a tedious task,
this partitioning of the pattern set should happen automatically. Rochethere the whole

pattern set is used to create the classifier, and where several validation steps are done
before, in order to find out a measure for the quality of the resulting classifier, is called
cross validation

For cross validation the pattern set is randomly devided into a number of stratified
samples. The first part is taken to create the classifier and the rest of the pattern set is used
to test the classifier. The result of this test is an error value. Then the next part is taken to
create the classifier and the rest is used for testing, and so on. In every run the whole
pattern set is used, but the mixture of training and test data always changes. We get as
many error values as there are partitions of the pattern set. From this a mean error value
and a confidence interval is calculated which are an estimation of the error of the classifier
created from the whole data set.

4.1 The Wisconsin Brest Cancer (WBC) Data Set

The WBC data set is available from the machine learning repository at
ftp://ftp.ics.uci.edu./pub/machine-learning-databases. It is a database that was provided by
W.H. Wolberg from the University of Wisconsin Hospitals, Madison. The data set
contains 683 cases. In the following some informations and statistics about the WBC data
set are described.

Number of input features 9

Names of input features clumb_thickness
uniformity_of _cell_size
uniformity_of cell_shape
marginal_adhesion
single_epithelial_cell_size
bare_nuclei
bland_chromatin
normal_nucleoli

mitoses

Minimum value 1.00

38 Experiments with NEFCLASS-J
Maximum value 10.00
Defined minimum value 0.00
Defined maximum value 11.00
Number of classes: 2
Names of classes malign
benign
Number of cases: 683
No. Features Mean Std. Deviation
1 clumb_thickness 4.44 2.82
2 uniformity_of _cell_size 3.15 3.07
3 uniformity_of cell_shape 3.22 2.99
4 marginal_adhesion 2.83 2.86
5 single_epithelial_cell_size 3.23 2.22
6 bare_nuclei 3.54 3.64
7 bland_chromatin 3.45 2.45
8 normal_nucleoli 2.87 3.05
9 mitoses 1.60 1.73
malign: 239 cases (encoded as class 0)
benign: 444 cases (encoded as class 1)
Correlation Table
1 2 3 4 5 6 7 8 9 class
1 1.00| 064, 065/ 049 052 059 055 053 0B5 -0/71
2 1.00 091, 0.71) 075 069 076 072 046 -0.82
3 1.00| 069 0.72/ 0.714 0.74 0.72 044 -0.82
4 1.00| 0.59| 0.67/ 0.67 0.60 0.4p -0.71
5 1.00| 059 0.62 0.63 0.48 -0.69
6 1.00 0.68| 0.58 0.34 -0.82
7 1.00 | 0.67| 0.35| -0.76
8 1.00 | 0.43] -0.72
9 1.00 | -0.42

Experiments with NEFCLASS-J 39

4.2 The Experiment

The goal of this experiment is to test the pruning process and to do a cross validation in
order to get some information about the validity of the classifier the classifier that can be
compared with other methods that are discussedAn¢k/KRUSE98b]. The experiment

Is devided into three parts.

4.2.1 Automatically Create a Classifier and then Prune It
The classifier is created with the ‘automatically determine the rule base’ option in order to

find a rulebase that covers the whole data set. After training the classifier the pruning
feature automatically performs four pruning methods one after the other.

The Parameter Settings

Training data file whbc.dat

Number of fuzzy sets 2

Type of fuzzy sets triangular

Aggregation function maximum

Size of the rule base automatically determined

Rule learning procedure| best per class

Fuzzy set constraints - keep relative order
- always overlap
Rule weights not used
Learning rate 1
Validation no validation
Stop control - Maximum number of epochs = 500

- Minimum number of epochs =0
- Number of epoches after optimum = 100
- Admissible classification errors = 0

40 Experiments with NEFCLASS-J

Create the Classifier

The main menu entry ‘Classifier|Create Classifier’ is used. The following box shows an
excerpt of the log file.

% NEFCLASS log file file created by NEFCLASS-J 1.0 (c) Ulrike Nauck, Braunschweig, 199
% This file was created at January 1, 1999 10:04:58 PM GMT+00:00

Training data: C:\VisualCafePDE\projects\VC_NEFCLASS\wbc.dat
Training for at most 500 cycles and for at least O cycles.
Continue for 100 cycles after a local optimum was found.
Learning will stop at 0 misclassifications.

There is no validation.

Parameter: LearningRate = 1.0, Fuzzy set constraints:
keep order, must overlap,

rule weights are not used.

The number of rules will be determined automatically.
Each variable uses 2 TRIANGULAR fuzzy sets.

Fuzzy sets will be trained.

Starting the training process using 100.0% of all cases.

Searching for rules in the training data...

Performance on training data (100.0% of all cases):

135 possible rules found. Now determine the optimal consequents.

Performances of Rule Candidates per Class

Selection of consequents is complete.
135 rules found in the data:

This rule base covers all patterns.
Training Fuzzy Sets.

Current Result Best Result
Cycle wrong error cycle wrong error
1 27 118.371901 1 27
118.371901

Training fuzzy sets stopped after epoch 128
Best classifier was found in cycle 27 (30 misclassfications, error = 62.112250)
Restoring best solution.

Performance on training data (100.0% of all cases):
683 patterns, 30 misclassifications (error = 62.453891)

Experiments with NEFCLASS-J

41

® After rule learning the rule base ends up with

o 55 rules of the kind:
if clumb_thickness is small and
uniformity_of _cell_size is small and
uniformity_of cell_shape is small and

marginal_adhesion is small and
single_epithelial_cell_size is small and
bare_nuclei is small and
bland_chromatin is small and
normal_nucleoli is small and
mitoses is small then benign

® After fuzzy set training the classification result is:
o 30 misclassifications
O error = 62.453891

Prune the Rule Base of the Classifier

A classifier is considered to be “better” than another classifier if the number of
misclassifications or the error value are smaller. The number of misclassifications
determine the classification performance, and the error (sum of squared differences
between targets and outputs) measures the ambiguity of the classifications. The pruning
process reduces the number of rules to five. The number of misclassifications are the same

(30). The following box shows an excerpt of the log file.

Rule learning will not be invoked.

Each variable uses 2 TRIANGULAR fuzzy sets.
Fuzzy sets will be trained.

This is an automatic pruning cycle.

Starting to prune the classifier with 55 rules.
Performance on training data (683 patterns) before pruning:
30 misclassifications (error = 62.453891)

Prune variables by correlation...

Prune rules by classification frequency...
Prune linguistic terms by minimum frequency...
Prune linguistic terms by fuzzy set support.
Further pruning cannot improve the classfier.
Final pruning result:

The rule base contains 5 rules.

Performance on training data (683 patterns):
32 misclassifications (error = 53.190468).

42 Experiments with NEFCLASS-J

® After pruning the rule base ends up with 5 rules as follows:

o if uniformity_of _cell_size is small and uniformity_of cell_shape is small and
bare_nuclei is small and then benign

o if uniformity_of _cell_size is large and uniformity_of _cell_shape is small and
bare_nuclei is large and then malign

o if uniformity_of _cell_size is small and uniformity_of _cell_shape is small and
bare_nuclei is large and then malign

o if uniformity_of _cell_size is large and uniformity_of cell_shape is large and
bare_nuclei is small and then malign

o if uniformity_of _cell_size is large and uniformity_of cell_shape is large and
bare_nuclei is large and then malign

® The classification result is:
0 32 misclassifications
o error =53.190468

Performance on Training Data

Predicted Class

0 1 n.c. sum
0 224 | 32.80% 15 2.20% 0 0.00% 239 34.99%
1 17 2.49%| 427 62.52% 0 0.00% 444 65.01%

sum 241 | 35.29% 442 64.71% 0 0.00% 683 100.00%

0: malign Correct: 651 (95.31%)
1. benign Misclassified: 32 (4.69%)
n.c.. not classified

Conclusion

The pruning methods reduced the number of rules and not all variables are used now. So
the rules became shorter. The error value was lowered from 62.45 to 53.19. On the other
hand the number of misclassifications increased. But now the rule base can be interpreted
well. So with a next experiment it is tried to improve this result.

Experiments with NEFCLASS-J 43

4.2.2 Use a Certain Number of Rules to Create the Classifier

We learned from the last experiment that the rulebase can be reduced to 5. We will
therefore try to create a classifier that is limited in its number of rules. We use the ‘best per
class’ option so that the number of rules should be 6. This experiment is devided into two
parts because the pruning methods do not reset the fuzzy sets after each step. So in the first
step we create and the prune the classifier and in a second step we reset the fuzzy sets,
train them and then prune the rule base again in order to reduce the influence of the fuzzy

set training on the pruning process.

The Parameter Settings

The same as in experiment 4.2.1

Size of the rule base 6

The same as in experiment 4.2.1

Create the Classifier

The main menu entry ‘Classifier|Create Classifier’ is used. The following box shows an

excerpt of the log file.

Training data: C:\VisualCafePDE\projects\VC_NEFCLASS\wbc.dat
Training for at most 500 cycles and for at least O cycles.

Continue for 100 cycles after a local optimum was found.

Learning will stop at 0 misclassifications.

There is no validation.

Parameter: LearningRate = 1.0, Fuzzy set constraints:

keep order, must overlap,

rule weights are not used.

The rule base will consist of 6 rules using the best 3 rules for each class.
Each variable uses 2 TRIANGULAR fuzzy sets.

Fuzzy sets will be trained.

WARNING: This rule base covers only 81% of all training patterns,
but this may improve during fuzzy set learning.
Training Fuzzy Sets.

Current Result Best Result
Cycle wrong error cycle wrong error
1 148 226.057851 1 148 2
6.
05
78
51

Training fuzzy sets stopped after epoch 500
Best classifier was found in cycle 499 (27 misclassfications, error = 108.876753)
Restoring best solution.

44 Experiments with NEFCLASS-J

® After rule learnig the rule base ends up with 6 rules
® After fuzzy set training the classification result is:

o 27 misclassfications

© error = 108.876753

Prune the Rule Base of the Classifier

The main menu entry ‘Classifier|Prune Classifier’ is used. The pruning process recudces
the number of rules to two. The following box shows an excerpt of the log file

Fuzzy sets will be trained.
This is an automatic pruning cycle.

Starting to prune the classifier with 6 rules.
Performance on training data (683 patterns) before pruning:
27 misclassifications (error = 108.876753)

Prune variables by correlation...

Prune rules by classification frequency...
Prune linguistic terms by minimum frequency
Pruning could not improve the classifier.

The previous version is restored.

Prune linguistic terms by fuzzy set support.
Further pruning cannot improve the classfier.

Final pruning result:
The rule base contains 2 rules.

Performance on training data (683 patterns):
25 misclassifications (error = 146.242560).

® After pruning the rule base ends up with two rules:

o if clumb_thickness is large and uniformity of _cell size is small and
uniformity_of cell_shape is small and bare_nuclei is small and bland_chromatin
is small and mitoses is small and then benign

o if clumb_thickness is large and uniformity of cell size is large and
uniformity_of cell_shape is large and bare_nuclei is large and bland_chromatin
is large and mitoses is large and then malign

® The classification result is
o 25 misclassifications
O error = 146.242560

Conclusion

The number of rules and the number of misclassifications is really good but the error value
increased a lot. This means that the classification became less crisp. Furthermore it would
be desirable to get shorter rules. So this experiment is continued with a reset of the fuzzy
sets and training and pruning again.

Experiments with NEFCLASS-J 45

Reset and Train the Fuzzy Sets

The main menu entry ‘Classifier|Reset Fuzzy Sets’ and ‘Classifier|Train fuzzy Sets Only’
are used. The following box shows an excerpt of the log file.

Training data: C:\VisualCafePDE\projects\VC_NEFCLASS\wbc.dat
Training for at most 500 cycles and for at least O cycles.

Continue for 100 cycles after a local optimum was found.

Learning will stop at 0 misclassifications.

There is no validation.

Parameter: LearningRate = 1.0, Fuzzy set constraints:

keep order, must overlap,

rule weights are not used.

There are 2 initial rules.

Rule learning will not be invoked.
Each variable uses 2 TRIANGULAR fuzzy sets.
Fuzzy sets will be trained.

Starting the training process using 100.0% of all cases.
Training Fuzzy Sets.

Current Result Best Result
Cycle wrong error cycle wrong error
1 431 566.603306 1 431 5
6.
60
33
06

Training fuzzy sets stopped after epoch 500
Performance on training data (100.0% of all cases):
683 patterns, 25 misclassifications (error = 165.652780)

® After fuzzy set training the classification result is:
o 25 misclassifications
O error = 165.652780

Prune the Rule Base of the Classifier

The main menu entry ‘Classifier|Prune Classifier’ is used. The pruning process recudces
the number of variables to two in the first rule and to three in the second rule. The
following box shows an excerpt of the log file

46 Experiments with NEFCLASS-J

Fuzzy sets will be trained.
This is an automatic pruning cycle.

Starting to prune the classifier with 2 rules.
Performance on training data (683 patterns) before pruning:
25 misclassifications (error = 165.652780)

Prune variables by correlation...

Prune linguistic terms by minimum frequency...
Prune linguistic terms by fuzzy set support.
Further pruning cannot improve the classfier.

Final pruning result:
The rule base contains 2 rules.

Performance on training data (683 patterns):
24 misclassifications (error = 64.956353).

® After the pruning process the rule base ends up with 2 rules:
o if uniformity_of_cell_size is small and bare_nuclei is small and then benign
o if uniformity_of_cell_size is large and uniformity_of cell_shape is large and
bare_nuclei is large and then malign

® The classification result is:
o0 24 misclassifications
O error = 64.956353

Performance on Training Data

Predicted Class

0 1 n.c. sum
0 226| 33.09% 13 1.90% 0 0.00% 239 34.99%
1 11 1.61%| 433| 63.40% 0 0.00% 444 65.01%

sum 237 34.70% 446 65.30% 0 0.00% 683 100.00%

0: malign Correct: 659 (96.49%)
1. benign Misclassified: 24 (3.51%)
n.c.. not classified

Experiments with NEFCLASS-J 47

Conclusion

This parameter setting offers a good performance. But up to now the classifier is created
with the whole data set and the performance is tested by using the same data. So there is
a need for a validation procedure in order to find out an error probability for the classifier.

4.2.3 Cross Validation of the Classifier

A 10-fold cross validation is used. We are interested in the validation of the fuzzy set
learning. We do not validate the structure learning process because we think thatdve f

a promising rule base during the last two experiments, i.e. we want to know how well a
classifier with this rule base will perform.

The Parameter Settings

Training data file wbc.dat

Number of fuzzy sets 2

Type of fuzzy sets triangular

Aggregation function maximum

Size of the rule base 6 (irrelevant, because rule base is fixed

Rule learning procedure| best per class (not used)

Fuzzy set constraints - keep relative order
- always overlap
Rule weights not used
Learning rate 1
Validation 10-fold cross validation
Stop control - Maximum number of epochs = 500

- Minimum number of epochs =0
- Number of epoches after optimum = 100
- Admissible classification errors = 0

Train the Fuzzy Sets with Cross Validation

For the validation the fuzzy sets must be reset and the ‘Train Fuzzy Sets Only’ command
of the ‘Classifier’ menu has to be used. An excerpt of the log file is given below.

48 Experiments with NEFCLASS-J

Training data: C:\VisualCafePDE\projects\VC_NEFCLASS\wbc.dat
Validation mode is 10-fold cross validation.

Parameter: LearningRate = 1.0, Fuzzy set constraints:
keep order, must overlap,

rule weights are not used.

There are 2 initial rules: ...

Rule learning will not be invoked.

Each variable uses 2 TRIANGULAR fuzzy sets.

Fuzzy sets will be trained.

Starting the training process using 10-fold cross validation.
Validation cycle 1 of 10

Training Fuzzy Sets.

Current Result Best Result
Cycle wrong error cycle wrong error
1 13 19.985655 1 13

19.985655

Training fuzzy sets stopped after epoch 336
Best classifier was found in cycle 235 (3 misclassfications, error = 9.516956)
Restoring best solution.

Result of validaton cycle 1:

Training data: 614 patterns, 22 misclassifications (error = 54.433769)
Validation data: 69 patterns, 3 misclassifications (error = 9.516956)
Result of validaton cycle 2:

Training data: 614 patterns, 26 misclassifications (error = 59.920585)
Validation data: 69 patterns, 1 misclassifications (error = 4.312431)
Result of validaton cycle 3:

Training data: 614 patterns, 23 misclassifications (error = 56.715695)
Validation data: 69 patterns, 2 misclassifications (error = 7.237653)
Result of validaton cycle 4:

Training data: 615 patterns, 28 misclassifications (error = 64.975795)
Validation data: 68 patterns, 1 misclassifications (error = 4.463641)
Result of validaton cycle 5:

Training data: 615 patterns, 24 misclassifications (error = 57.010478)
Validation data: 68 patterns, 3 misclassifications (error = 7.427357)
Result of validaton cycle 6:

Training data: 615 patterns, 27 misclassifications (error = 63.789943)
Validation data: 68 patterns, 3 misclassifications (error = 5.379538)
Result of validaton cycle 7:

Training data: 615 patterns, 23 misclassifications (error = 57.333187)
Validation data: 68 patterns, 4 misclassifications (error = 7.028670)
Result of validaton cycle 8:

Training data: 615 patterns, 26 misclassifications (error = 63.663097)
Validation data: 68 patterns, 2 misclassifications (error = 5.015220)
Result of validaton cycle 9:

Training data: 615 patterns, 25 misclassifications (error = 61.532933)
Validation data: 68 patterns, 2 misclassifications (error = 7.874834)
Result of validaton cycle 10:

Training data: 615 patterns, 21 misclassifications (error = 57.834692)
Validation data: 68 patterns, 4 misclassifications (error = 5.605990)

Experiments with NEFCLASS-J 49

® After the final cycle of the validaton process where the whole data set is used the result
IS:
o 25 misclassfications
O error = 64.150063

Performance on Training Data

Predicted Class

0 1 n.c sum
0 225| 32.94% 14 2.05% 0 0.00% 239 34.99%
1 11 1.61%, 433| 63.40% 0 0.00% 444 65.01%

sum 236 | 34.55% 447 65.45% 0 0.00% 683 100.00%

0: malign Correct: 658 (96.34%)
1: benign Misclassified: 25 (3.66%)
n.c.: not classified

Result of the Cross Validation

Number of patterns 683

mean = 0.036637
standard deviation = 0.015091
n=10

Estimated number of misclassifications per
pattern for unseen data:

99% confidence interval for the error estimation: 0.036637 + 0.012979

Estimated error value 3,7% +1,3%

4.3 Discussion of the Result and Comparison to other Approaches

The classifier resulting from the creation process described in the experiments produces
classification results wich can be interpreted very well because the rule base consists of
only two short rules. Under this constraint an estimated error value of 3,7% + 1,3% is a
really good classification result.

50 Experiments with NEFCLASS-J

The Rules

if uniformity_of cell_size is small and
bare_nuclei is small then benign

if uniformity_of cell_size is large and
uniformity_of cell_shape is large and
bare_nuclei is large then malign

The Fuzzy Sets

Var 2
1.0 sm
Var 2: uniformity_of _cell_size
0.0 : : , sm: small
0.0 2.0 4.0 11.0
Var 3
1.0 sm
0.0 Var 3: uniformity_of cell_shape
' T T 1 sm: small
0.0 2.0 4.0 11.0
Var 6
1.0 sm
Var 6: bare_nuclei
0.0 sm: small
I I 1
0.0 2.0 4.0 11.0

Experiments with NEFCLASS-J 51

The following table [MUck/KRUSE98b] compares NEFCLASS-J to results obtained with
other approaches. The classification performance on unseen data is comparable and the
classifier is very compact. The error estimates given in the table are either obtained from
1-leave out cross validation, 10 fold cross validation as used in the experiments described
above, or from testing the solution once by holding out 50% of the data for a test set.

Model Tool Remarks Error (%) Validation
Discriminant analysis| SPSS Linear Model 9 variables 3.95 1-leave-qut
Multilayer Perceptron| SNNS Four hidden units, Rprop 5.18 50% test set
Decision tree C4.5 31 nodes pruned 4.9 10-fold
Rules from decision | C45. rules 8 rules using 1-3 variables 4.6 10-fold
tree
NEFCLASS NEFCLASS-X| 2 rules using 5-6 variables 4.94 10-fold
NEFCLASS NEFCLASS-J| 2 rules using 2-3 variables 3.7 10-fold

4.4 Conclusion

For applying a neuro-fuzzy strategy one important aspect should be considered: for
whatever reason a fuzzy system to solve a problem is chosen, it cannot be because an exact
solution is needed. Fuzzy systems are used to exploit the tolerance for imprecise solutions.
Fuzzy systems should be used because they are easy to implement, easy to handle and easy
to understand. A learning algorithm to create a fuzzy system from data also should have
these features. Under this view the learning and pruning strategies of NEFCLASS are
simple and fast heuristics.

The new NEFCLASS tool was presented using the well-known Wisconsin Brest Cancer
data set. The new philosophy in pruning the rule base automatically was successfull, so
users who have no experience with pruning methods can create a compact interpretable
classifier.

The validation option that offers cross validation as well as single test enables the user to
compare the quality of the classification results very easily to other approaches. No further
computation with statistic tools is needed.

It is also shown that NEFCLASS-J is not a tool for automatic creation of a fuzzy classifer.

It supports the user, but it cannot do all the work because a precise and interpretable fuzzy
classifier can hardly be found by an automatic learning process. There will always be the
trade-off between readability and precision.

5

How to use NEFCLASS-J

In this chapter a ‘guided tour’ through the program is given. The data set used for this is
the ‘Iris’ data set. The interface and all of the parameters will be explained. A classifier
can be developed, trained and validated without any changes of parameters. But as
depicted in the fourth chapter, the user shoubdk with the program. With help of the
parameters the system is constrained so that a classifier can be developed that fits the
problem. But nevertheless the hardcopy pictures of the interface show the default values
for the parameters. Some tests how the changing of parameters influences the system are
made in Chapter 4.

This chapter of the thesis is not only a description of the GUI of NEFCLASS-J but shall
also function as a tutorial which will be released on the Internet. Therefore the reader is
adressed directly in the following and quite some effort was made to write a text that can
be understood by non-experts, too. The following pages also make use of color.
NEFCLASS-J uses distinct colors to help the user to recognize the different dialogs and
frames more easily. This chapter uses this color code to stress the relationship to certain
parts of the tool.

In addition to the guided tour where the parameters are introduced by an example there is
a picture of the main menu of the program. There the page numbers are given where the
respective menu item is explained. For information about the installation of NEFCLASS-J
please refer to the file readme.txt which is distributed together with the program.

5.1 The Trainig Data Set

The training set is the same as used in the manual of NEFCLASS-PC. So for users of this
implementation it might be easier to follow the new outfit of NEFCLASS-J. Also the
guided tour will look very much like the descriptions in this manual [UNauck 97].

NEFCLASS-J learns from training data, which must be provided in a pattern file. This
manual uses the Iris data which is also distributed in combination with NEFCLASS-J as

a concrete example for the explanations. Iris data is perhaps the best known database to be
found in the pattern recognition literature. Fisher’s papsHER 36] is a classic in the

field and is referenced frequently to this dayf2&HART 73]. The three types of Iris
flowers can be classified by the length and width of their sepals and petals. So the attribute
information is:

How to use NEFCLASS-J] 53

® sepal length in cm
® sepal width in cm
® petal length in cm
e petal width in cm
® class:

o Iris Setosa

o lIris Versicolour

o Iris Virginica

The data set contains 3 classes of 50 instances each, where each class refers to a type of
Iris plant. These are 150 cases of 4 numeric predictive attributes and the class coded as a
binary vector of 3 components. One class is linearly separable from the other 2; the latter
are NOT linearly separable from each other. Here some statistics on the data set are given:

Min Max Mean SD Class Correlation
sepal length 43 79 584 83 0.7826
sepal width 20 44 305 43 -0.4194
petal length 10 69 376 176 0.9490 (high!)
petal width 1 25 120 76 0.9565 (high!)
No missing attribute values

Table 5.1 Statisic information about the ‘iris’ data set

In the NEFCLASS-PC implementation there was need to devide the data file into two
files, one for training and one for testing. This is not necessary anymore. The new
validation feature offers an automatic random division of the file.

5.2 Guided Tour through NEFCLASS-J

Normally a user has a certain problem if he decides to use a program like NEFCLASS. In
most cases there is data base, other classification are just tried out and now the question
arises if there are other solutions which are faster, better (in accuracy or interpretability) or
even easier to handle. So let us specify these tasks.

54 How to use NEFCLASS-J

The Problem

> There is data to be classified.

> For some reason you decided to do a classification with a neuro-fuzzy system.

> You want to know how successful the classifier is, so you warkntow the
performance of the neuro-fuzzy system.

© You want to modify the classifier in order to find out if the performance can be
improved.

> In the case you have prior knowledge about the data, you want to use it for the creation
of the classifier

The Needs

® A data base consisting of patterns with class information,

® A software tool like NEFCLASS-J

O to create, train, and validate the classifier,

O to give you graphical and textual displays for interpreting the results,

O to do some statistics to get prior knowledge about the data.

O
The following figue shows the structure of the NEFCLASS main menu. In there the page
numbers for the descriptions of the features are written next to each menu entry. This is a
kind of index for the case that you are looking for some special descriptions.

The tutorial is devided into five parts that deal with the following topics:
1 The Philosophy

2 Create a Project

o

Open the project specification dialog
Open a data file for training

Edit the labels

View some statistics

Create the rule base

View the rule base

Learn the fuzzy sets and view the error
View the fuzzy sets

Save and close the project

O O OO OO0 0O

How to use NEFCLASS-J] 55

3 Try to Improve the Classifier by Changing the Parameters

Open a project

Change the number and type of fuzzy sets
Change the aggrega