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Abstract

Surgical simulation is the coming training method for
medical education. The main reasons for this are the
reduced risk for the patients and the easy repeatability of
complicated surgical procedures. Therefore, an improved
impression of reality during the simulated training must
be obtained. For this, a complex model of the human’s
anatomy and physiology is needed. With regards to
pathological conditions, which should be considered, it is
necessary to build more general anatomical models. Sim-
ple static models are unsuitable for surgical simulation
because convincing interactivity is only possible with
deformable organs and elastic tissues. Traditional models
of tissue deformation have difficulties to simulate the
appearance of deformation because of the unknown
physical parameters of the tissue’s elasticity. Hence this
paper describes a method for elastodynamic shape mod-
eling with neuro-fuzzy systems, which are able to adapt
the necessary parameters from real tissues.

1. Introduction

During training for aircraft pilots it is taken for granted
to complete many successful flights in a simulator before
flying a real airliner. This is reasonable because of the
increasing complexity of airliners and the intensifying
need of the passenger’s security. However, in the hazard-
ous area of surgery the medical training is performed
directly on the patient after using simple models built of
animal organs or corpses. With surgical simulators for
medical training the quality of surgical interventions
could be increased while simultaneously reducing the risk
for the patient.

Nowadays computer assisted surgery is already used
for procedure training and operation planning. Most of the

utilized methods are based on static visualization tech-
niques. To improve the benefit for surgical training a
visual convincing static modeling of the operation sce-
nario and the involved tissues is not sufficient, because
tissues can be deformed at contact and transections can be
made. Especially for the interaction with medical devices,
such as laparoscopic instruments, it is necessary to simu-
late the deformation of tissue under the influence of colli-
sion forces.

The elasticity of structures can be described by use of
differential equations and physical laws [5]. In many
cases, a model of a physical system can not be obtained
by conventional approaches. This can be caused by prob-
lems in constructing a system of differential equations and
in finding the required parameters. Furthermore, the
simulation of such a model description is often very time-
consuming and so, the use in real time applications is
sometimes impossible. A further problem is that often
even small or local changes to the model structure require
a rebuild of the whole shape model. Some approaches try
to resolve these problems by pre-processing elementary
deformations (e.g. [2]), but this is very expensive for
complex objects.

Different approaches use artificial neural networks to
simulate the behavior of physics-based model structures
(e.g. [6]). These approaches have the disadvantage that
the simulated structures could not be cut in smaller ob-
jects during the simulation process, which is necessary for
the simulation of surgical training procedures. Besides the
neural networks have to be trained off-line by use of ob-
servation data of physics based models, even if some
expert knowledge about the physical model is available.

For these reasons, we developed a model, which is
motivated by a combination of a fuzzy system and an
artificial neural network, a so-called hybrid neuro-fuzzy
system [12][19]. By using a fuzzy system, it is possible to
integrate expert knowledge in form of medical terms to



define the visual response of the tissue’s shape model. In
addition, with artificial neural network techniques it is
possible to learn or adapt the parameters of the developed
model. Measured data or physical models of the tissue can
be used for learning.

In the following, we present parts of our actual work
on this project. The underlying structure of the model is
motivated and its implementation is presented. Further-
more, learning approaches are shown, and an example of
a gynaecological laparoscopy in a virtual simulation envi-
ronment is given.

2. Dynamic shape modeling with spring-
mass models

Most human organs can be described as enclosed
shapes. These shapes can be created as static models
using appropriate modeling software. To simulate de-
formable organs a dynamic component is needed. Every
tissue has an assigned mass, elasticity and viscosity. To
describe these physical conditions a spring-mass model
can be used.

In spring-mass models the whole mass of the organs is

divided up between the mass points of the model, which
are represented as nodes in a mesh. Every node of the
mesh can be connected elastically or viscously to its
neighbors (see Figure 1). The connections are represented
as springs. One advantage of this approach is, that tran-
sections can be simulated by disconnecting springs. The
springs along the transection line are split up and two new
nodes are connected to each of the loose endings of the
springs (see Figure 2). Another advantage is, that the
visualization of the shape can be done by using existing
graphic algorithms e.g. texture mapping and surface ren-
dering.

(a) (b)

Figure 2: Transection of the fallopian tube

To every node of the mesh, external forces can be ap-
plied (for example gravity or collision forces). The inter-
nal forces and the displacement of the nodes can be com-
puted correspondingly. Also, the displacement of a node
can be given and the resulting forces can be calculated.
By use of this model structure inertia and torque (e.g. in
case of object rotation) can be simulated as well [17].

The use of surface meshes to simulate the organ’s
shape is sufficient in most cases (e.g. vessels). Same as in
real anatomy, the outer shapes of the fallopian tube and
the uterus have to be fixed because of the connection with
the pelvic cavity. Hence, the mass nodes of the model are
connected with it via springs. For other organs (e.g. a
gallbladder) the shape can be stabilized with additional
springs at the inside.

One of the first applications of spring-mass models for
the simulation of elastic deformable models was devel-
oped by Terzopoulos et. al. [23]. Some improved tech-
niques were presented, for example, in [2][3][22][21].
One of the main problems of these approaches is the diffi-
culty to derive the parameters of the physical model and
the high computational demands during simulation. To
resolve these problems, a neural network architecture was
developed, which is able to simulate spring-mass models
[13]. In this way it is possible to learn the parameters of
the physical model and to speed up the simulation by use
of problem specific propagation procedures. Furthermore,
a fuzzy system was implemented to initialize the network
parameters if some prior knowledge about the model, like
stiffness, elasticity or shiftability, is available [18]. The
structure of this neuro-fuzzy approach is described in the
following section.

 (a) Fallopian tube (tuba uterina)

(b) Uterus

Figure 1: Elastodynamic shape models of human
anatomy: Mass points are connected via springs



3. Simulation of elastodynamic shapes with
neuro-fuzzy systems

Fuzzy systems and neural networks are successfully
used in the area of control theory, data analysis, and
knowledge based systems [9][11][12]. Fuzzy systems can
be used to derive parameters of dynamic systems, if only
vague data about the system is available. Artificial recur-
rent neural networks can be used to simulate the dynamic
of time-dependent systems. Furthermore, neural networks
can be trained to simulate the behavior of real dynamic
systems.

Neuro-fuzzy systems combine the advantages of both
techniques, particularly the ability to learn of neural net-
works with the interpretability of fuzzy systems [12][19].
Therefore, a hybrid approach for the description and
simulation of elastic tissue in virtual medicine was cho-
sen.

The network parameters can be derived with the fuzzy-
system if some prior knowledge is available, which can be
used to define the behavior of the simulated tissue. The
simulation process can be performed with the artificial
recurrent neural network. Furthermore, it can be used to
learn or adapt the parameters of the network, if measured
data exist.

Since both systems can be used independently, the
neural network and the fuzzy system are described sepa-
rately in the following sections.

3.1. The network model

The presented network uses a problem specific struc-
ture. The structure of the neural network was designed to
speed up the simulation and learning process for elastic
solids. In contrast to common neural network models, this
model uses vectors instead of single input and output
signals. So the standard model of a neuron was vector-
ized.

The structure implements the system of differential
equations (see, for example, [5] or [25]), which defines
the spring-mass model. The presented model is capable to
simulate nonlinear dynamics by use of arbitrary activation
functions. Thus, it resolves the insufficient biomechanical
realism of linear spring-mass models. For a comparison of
different elasticity models see, for example, [2].

Two different network nodes are used for this purpose:
the mass nodes and the spring nodes. In the following a
short description of the model structure is given. For a
more formal definition see [13].

Mass point dynamic. The neurons determining the
mass dynamics (inertia) are divided in three ‘sub-neurons’
which calculate the position, velocity, and acceleration of
the mass point (see Figure 3).

An external force can be applied to the neuron, which
calculates the actual acceleration. The velocity and posi-
tion neurons are self-connected feedback nodes. These
neurons are used as integrators.

positionvelocityaccele-
rationexternal forces

spring forces velocity output

position output

Figure 3: Neurons describing the mass point dynamic

Spring dynamic. The neurons determining the spring
dynamics (see Figure 4) calculate the actual total spring
force F, based on the position and velocity of the con-
nected nodes.

The spring and viscosity functions for the calculation
of the force F are implemented by the respective neurons.
This force is defined as F = f(p,v) + d(p,v), where f(p,v)
defines the spring force and d(p,v) the damping force or
viscosity.
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Figure 4: Neurons describing the spring dynamic

The network structure. The network is structured by
alternating spring and node layers. A sample of a 2D-
mesh is shown in Figure 5. Of course, different network
structures can be used. Therefore, the network can be
adapted for specific objects or to minimize the number of
springs and nodes required for an appropriate simulation
(see also section 2).

The system of differential equations, which is defined
by the network structure, is solved during the propagation
process. The used propagation methods are presented in
the following section.
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Figure 5: Network representation of a 2D-mesh

Propagation. In a first approach [17] we choose an al-
gorithm similar to the propagation in Hopfield networks
[8]. This propagation algorithm was separated in two
steps. During the first step, the network was propagated
until a local energy minimum was reached. The second
step was used to calculate the activities of the sub-neurons
for the next time step.

However, with rigid tissues stability problems could
occur during the propagation process. If the parameters of
the network are badly defined (e.g. large spring constants,
very small viscosity) the network tends to an unstable
(chaotic) behavior. For example, in case of great force
values and large spring constants, the calculated dis-
placement of the nodes during one time step could be
much too far. Thus, the propagation process could start to
oscillate or even diverge. Choosing a very low time con-
stant can solve the problem. But then, the propagation
process can not be done in real time.

However, experiments have shown that unstable be-
haviors only occur during very short time intervals, so
that a variable time step can be used. This idea was im-
plemented in our second approach [18].

The computation can be done parallel with all nodes
and springs. To compute this network it is effective to
group several nodes and springs to greater units and solve
each unit on a single processor. The order of computation
of the node and spring layers during propagation is im-
portant to minimize the required steps. Therefore, a heu-
ristic is used to determine the order of computation. Dur-
ing the first propagation, the node with the greatest force

vector is identified. Then the next propagation starts with
this node and continuously goes on layer by layer until all
nodes are computed. During the propagation, the node
with the greatest force difference between the old force
and the new computed force is identified. If the force
difference is greater than a threshold value, the propaga-
tion starts over.

During propagation, the network is updated using the
time constant t∆. In real time applications, this constant
can be used to define the graphic refresh rate. Thus, it is
possible to synchronize the propagation process with a
real time environment.

The learning and initialization methods. We are cur-
rently working on learning methods, which are based on
backpropagation learning methods for recurrent neural
networks (see, for example, [7][11][14][15]).

The learning algorithms use measured data or data
generated by an exact physical model of the tissue for
learning. The position of every node at discrete time-steps
is used as input. The learning algorithm tries to minimize
the error (total cost) function of the network. The pa-
rameters (weights) of the network are adapted after each
time-step by a gradient descent method. The learning
process is finished if the error is sufficient small. Thus,
even local differences in the solid structure can be
learned. During learning only the weights of the velocity
sub-neurons (the masses) and the spring neurons are
modified to ensure the interpretability of the network
[13].

If available, the parameters of the real physical model
can be used to set the weights of the neural network di-
rectly or to initialize the learning process. Furthermore,
the initialization can be done by use of a fuzzy system
[9][12].

3.2. The fuzzy system

The fuzzy system can be used to describe the relations
between existing (vague) expert knowledge of the solid
behavior (for example ‘very hard’, ‘soft’, ‘elastic’) and
the network parameters [17].

The fuzzy sets and rules can be edited with the pro-
gram ‘Elastodynamic Shape Modeler’ [16] shown in
Figure 7 (in color section). The ‘Fuzzy Rules Window’
shows some sample fuzzy rules. The fuzzy rules were
derived by inquiring of experts and they are optimized
manually. Currently, we are working on neuro-fuzzy
methods to optimize the derived rule base (see, for exam-
ple, [10][12]).

The fuzzy system defined this way makes it possible to
derive the parameters of the network by use of linguistic
terms or crisp input values, which can be selected, for
example, by sliders (see Figure 7 in color section, ‘Fuzzy
Input Window’). Of course, specific parts of the network



can be defined separately to make the simulation of tissue
consisting of different layers possible. This can be done
by creating an arbitrary ellipsoid, which defines the re-
gion of parameter changing. Variations of the fuzzy sys-
tem result in different behavior of the simulated object.

4. Creation of elastodynamic shapes

One main difficulty developing surgical simulators is
to create appropriate anatomical models. Because of the
wide differences between the appearance of varying
pathological conditions, these models must be created
with a 3D CAD- or modeling tool. However, the created
models can only be used as static shapes. Nevertheless, to
utilize these models in surgical simulation a conversion to
elastodynamic shapes must be performed.

Nearly all 3D models, which are created by modeling
software, consist of sets of connected triangles or trian-
gular meshes. The edges of these triangles can be con-
verted to springs and the vertices to nodes of the spring-
mass model (e.g. the model of the uterus in Figure 1 (b)).
Using traditional methods to simulate deformable objects,
this direct conversion is not possible because the resulting
appearance of deformation depends on the structure of the
used spring-mass model to a great part. However, using
neuro-fuzzy systems for simulation, the deformation be-
havior can be learned from real tissues regardless of the
model’s structure [13]. Of course, this is only possible if
the organs are connected with other organs or cavities.
For organs, which are not connected, it might be neces-
sary to insert additional springs for the stabilization of the
outer shape. These springs can be added as lines by use of
a modeling tool.

To simplify the development process, we have devel-
oped the program ‘Elastodynamic Shape Modeler’ (see
Figure 7 in the color section), which transforms triangular
meshes and line sets into spring-mass models. The geo-
metric description of the shapes can be imported directly
from the used modeling tool. A fuzzy rule base is used to
modify the parameters of the elastodynamic shapes in an
arbitrary defined ellipsoid region. The deformation be-
havior is shown in a graphical window. In addition the
occurring forces of the shape’s deformation can be felt by
use of a force feedback device.

5. Simulation of elastodynamic shapes

The spring-mass models of the elastodynamic shapes
can be simulated as a whole. This is called total deforma-
tion and can be used especially if the objects are not fixed
or connected with other objects. The tuba uterina shown
in Figure 12 (in the color section) is simulated with total
deformation. However, the total deformation can only be
used in real time with small shapes consisting of only a
few hundred nodes and springs. Especially shapes, which

are created by a modeling software have up to a few hun-
dred thousands triangles. Even if the number of triangles
is reduced by use of simplifying algorithms for triangular
meshes, the mesh is usually too complex to simulate the
elastodynamic shape in real time. The uterus at Figure 1
(b) with about 5000 springs and nodes is an example of
such a complex shape.

However, most anatomical structures in the human
body are fixed and connected with other organs. There-
fore, it is not necessary to simulate the whole elastody-
namic shape.

For example, to simulate the deformation of the uterus,
which consists of very tight tissue, it is sufficient to use
only a global deformation. Near the barycenter of the
object a simple spring-mass model consisting of three
springs and four nodes is created (see Figure 6 (a)). The
nodes are consecutively connected by springs. Node 1 and
node 4 are fixed and can’t move. The initial positions of
node 1 and node 2 are the same as the position of node 3
and node 4. The position of the object depends on the
center of the spring between the inner nodes 2 and 3. The
orientation of the spring specifies the orientation of the
object. In case of a collision between a surgical tool and
the object a node and two springs are created. These
springs connect the new node with the inner nodes. They
are used to calculate the external forces of the inner nodes
(see Figure 6 (b)).

Figure 6: Simple elastodynamic model for global de-
formation ((a) undeformed, (b) deformed)

The global deformation is very fast, because only a
few springs are needed for simulation. However, only
tight tissues can be simulated that way. Additionally a
local deformation can be combined with the global de-
formation. A local deformation is the same as a total de-
formation except that the local deformation is limited to
the part of the organ, which has contact with the instru-



ment. This can be done, for example, with a recursive
propagation algorithm starting from the center of colli-
sion. For the use in the surgical simulator all deformation
techniques are combined to get a maximum frame rate
and a highly realistic impression.

6. Application example

Although the simulation of deformable tissues can be
used in a wide field of surgical training (e.g.
[1][2][3][4][20]), the main field of application is the lapa-
roscopy also known as keyhole surgery. On the one hand,
force feedback devices for the simulation of laparoscopic
instruments already exists. On the other hand, keyhole
surgery requires much more training as conventional
surgery.

We choose the gynaecological laparoscopy as the main
field of application for our simulation system SUSILAP-
G (SUrgical SImulator for LAParoscopy in Gynaecol-
ogy). Many surgical interventions in gynaecology aim at
operations of the tuba uterina. Thus, for the first applica-
tion example a sterilization was chosen, which can be
performed with SUSILAP-G. An endoscopic view of a
real sterilization can be seen in Figure 8 in the color sec-
tion.

The simulator is written in C++ and the graphical in-
terface is based on Open Inventor [24], a standard object
orientated graphic library, which is available for many
operating systems. The elastodynamic shapes and the
simulation with neuro-fuzzy systems are fully embedded
in the class library of Open Inventor. Currently we have
developed versions for Windows and Unix.

An example of the virtual simulation environment of
SUSILAP-G is shown in Figure 9 in the color section. A
female patient in an operation theater is presented. In this
environment, two virtual laparoscopic instruments can be
manipulated using Laparoscopic Impulse Engines, which
are installed in a dummy (see Figure 10 in the color sec-
tion). The Impulse Engines can be moved like real laparo-
scopic instruments with four degrees of freedom. The
virtual operation can be observed on a computer monitor.
If virtual organs are deformed with the instruments, the
resulting forces can be felt.

On the monitor, the view of the virtual endoscope can
be seen. The enlarged endoscopic view is shown in Figure
11 in the color section. The uterus can be seen at the right
side and the ileum (a part of the intestine) on the left side
of the picture. The tuba uterina can be coagulated with
coagulation forceps. Other instruments like scissors and
needles can also be chosen. The fallopian tube is build by
use of 400 nodes and 1200 springs and is simulated with
total deformation. For manipulations of the fallopian tube
it is sufficient to simulate the uterus with a local deforma-
tion, since its global position remains nearly unchanged
during operation.

The ileum is simulated using global deformation and
simple ellipsoid shapes. Adjacent shapes are connected to
each other by just one spring. Every shape is simulated
using global deformation. Thus, the total number of
springs can be reduced without decreasing the impression
of reality.

We are currently using a Silicon Graphics Onyx2 Infi-
nite Reality for high-end visualization. Only one CPU is
used for the elastodynamic simulation of the complete
surgical intervention shown in Figure 12 in the color
section.

7. Summary

In the last section we have shown that the developed
model can be successfully used for the simulation of de-
formable shapes e.g. tissues in surgical simulation. The
shapes can be created with standard modeling software
and they can be converted to spring-mass models.

These models can be simulated by use of global de-
formation if the represented organ is nearly rigid or if it is
not the main organ to be operated on. Otherwise, a fast
simulation technique based on local deformation can be
used. This technique is especially useful for the simula-
tion of organs because most organs are connected with
cavities, so simulating a total deformation is not neces-
sary.

By use of the presented model, it is easy to apply ex-
ternal forces to any node, for example, gravity forces or
collision forces caused by medical tools. Furthermore,
changes of the object’s structure can be done during
simulation, for example changes caused by transections,
ruptures or fractions. The weights of the network can be
initialized by real mass and spring parameters. Besides,
these parameters can be adapted or learned by use of a
physical model or measured data of real objects. Besides,
the parameters can be defined by means of simple rules,
which are determined by inquiring medical experts. With
the program ‘Elastodynamic Shape Modeler’ the experts
can observe and feel the deformation resulting from the
use of these rules.

Currently we are working on improvements for the
learning procedure. One of the objectives of our project is
to develop a complete method, which enables us to meas-
ure the elastodynamic behavior of real tissues and to gen-
erate a simulation model of this tissue, by use of the
measured data. For the use in surgical simulation real time
three-dimensional data of deformed organs are difficult to
achieve. At present, we are working on non-invasive
methods to obtain these data by the use of sonography.

Up-to-date information concerning this project can be
obtained via the Internet from http://www.umi.cs.tu-
bs.de/ara or http://fuzzy.cs.uni-magdeburg.de/∼nuernb.
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