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About me: Rudolf Kruse

e in 1979 diploma in mathematics (minor computer science) at TU Braunschweig
e there dissertation in 1980, rehabilitation in 1984

e 2 years full-time employee at Fraunhofer Institute

e in 1986 offer of professorship for computer science at TU Braunschweig

e since 1996 professor at the University of Magdeburg

e research: data mining, explorative data analysis, fuzzy systems, neuronal net-
works, evolutionary algorithms, Bayesian networks

® mailto:kruse@iws.cs.uni-magdeburg.de
o office: G29-008, telephone: 0391 67-58706

e consultation: Wednesdays, 11 a.m. — 12 noon
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About the working group Computational Intelligence

teaching: )
o Intelligent Systems Bachelor (2 V + 2 U, 5 CP)
e Evolutionary Algorithms Bachelor (2 V 4 2 U, 5 CP)
e Neuronal Networks Bachelor (2 V + 2 U, 5 CP)
o Fuzzy Systems Master (2 V + 2 U, 6 CP)
e Bayesian Network Master (2 V + 2 U, 6 CP)
e [ntelligent Data Analysis Master (2 V + 2 U, 6 CP)

e (pro-)seminars: Information Mining, Computational Intelligence

research examples:
e dynamic graph analysis in brain networks (C. Moewes)

e analysis of social networks (P. Held)

e planet search by astronomical data analysis (C. Braune)
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About the lecture

e lecture dates: Thursday, 3:15 p.m.—4:45 p.m., G22A-218

e information about the course:
http://fuzzy.cs.ovgu.de/wiki/pmwiki.php?n=Lehre.BN1213
o weekly lecture slides as PDF

o also assignment sheets for the exercise

o important announcements and date!
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Content of the lecture

e Introduction

e Rule-based Systems

e Elements of Graph Theory

e Decomposition

e Probability Foundations

e Applied Probability Theory

e Probabilistic Causal Networks

e Propagation in Belief Networks

e Learning Graphical Models

® Decision Graphs / Influence Diagrams

e Frameworks of Imprecision and Uncertainty
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About the exercise

e active participation and explanations of your solutions

e tutor will call attention to mistakes and answer questions

e pure ‘calculations’ of sample solution is not the purpose

e tutor: Pascal Held mailto:pheld@ovgu.de

e consultation: Just knock on the door and see if he is there :-)
e first assignment due October 18, 2012

e Thursday, 3:15 p.m.—4:45 p.m., G22A-208
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Conditions for Certificate (“Schein”) and Exam

Certificate will get who...
e contribute well in exercises every week,

e present > 2 solutions to written assignment during exercises.
o tick off > 66% of all written assignments,

e small colloquium (& 10 min.) or written test (if > 20 students).

Exam or marked certificate will get who...
e just pass the oral exam (= 25 minutes) or written exam (if > 20 students).

e active participation in the exercises will help getting a good grade ;-)
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Books about the course

Rudolf Kruse | Christian Borgelt | Frank Klawonn
Christian Moewes | Georg RuB | Matthias Steinbrecher

Computational
Intelligence

Eine methodische Einflihrung
in Kiinstliche Neuronale Netze, Evolutionare Algorithmen,
Fuzzy-Systeme und Bayes-Netze
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WILEY SERIES IN COMPUTATIONAL STATISTICS

Christian Borgelt, Rudolf Kruse
and Matthias Steinbrecher

GRAPHICAL
MODELS

METHODS FOR DATA ANALYSIS AND MINING

Second Edition
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http://www.computational-intelligence.eu/
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http://www.viewegteubner.de/Buch/978-3-8348-1275-9/

Knowledge Based Systems

e Human Expert

A human expert is a specialist for a specific differentiated application field who
creates solutions to customer problems in this respective field and supports them
by applying these solutions.

e Requirements

o Formulate precise problem scenarios from customer inquiries
o Find correct and complete solution

o Understandable answers

o Explanation of solution

o Support the deployment of solution
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Knowledge Based Systems (2)

e “Intelligent” System

An intelligent system is a program that models the
knowledge and inference methods of a human expert
of a specific field of application.

e Requirements for construction:

o Knowledge Representation
o Knowledge Acquisition

o Knowledge Modification
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Qualities of Knowledge

In most cases our knowledge about the present world is

¢ incomplete/missing (knowledge is not comprehensive)

o e.g. “I don’'t know the bus departure times for public holidays because I only
take the bus on working days.”

e vague/fuzzy/imprecise (knowledge is not exact)

o e.g. “The bus departs roughly every full hour.”

e uncertain (knowledge is unreliable)

o e.g. “The bus departs probably at 12 o’clock.”

We have to decide nonetheless!
e Reasoning under Vagueness

e Reasoning with Probabilities

e ... and Cost/Benefit

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks

11



Example

Objective: Be at the university at 9:15 to attend a lecture.
e There are several plans to reach this goal:
o Pp: Get up at 8:00, leave at 8:55, take the bus at 9:00 . ..
o Po: Get up at 7:30, leave at 8:25, take the bus at 8:30 ...

o ...

e All plans are correct, but

o they imply different costs and different probabilities
to actually reach that goal.

o P, would be the plan of choice as the lecture is important
and the success rate of Pj is only about 80-95%.

e (uestion: Is a computer capable of solving these
problems involving uncertainty?
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Uncertainty and Rules (1)

e Example: We are given a simple expert system for dentists
that may contain the following rule:

Vp : [Symptom(p, toothache) = Disease(p, cavity)]

e This rule is tncorrect! Better:
Vp : [Symptom(p,toothache) =
Disease(p, cavity) V Disease(p, gumdisease) V . . . ]

e Maybe take the causal rule?

Vp : [Disease(p, cavity) = Symptom(p, toothache)}

e [ncorrect, too.
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Uncertainty and Rules (2)

Problems with propositional logic:
e We cannot enumerate all possible causes, even though . ..
e We do not know the (medical) cause-effect interactions, and even though . ..

e Uncertainty about the patient remains:
o (Caries and toothache may co-occurr by chance.

o Were (exhaustively) all examinations conducted?
— If yes: correctly?

o Did the patient answer all questions?
— If yes: appropriately?

e Without perfect knowledge no correct logical rules!
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Uncertainty and Facts

Example:

e We would like to support a robot’s localization by fixed landmarks.
From the presence of a landmark we may infer the location.

Problem:
® Sensors are imprecise!

o We cannot conclude definitely a location simply because
there was a landmark detected by the sensors.

o The same holds true for undetected landmarks.

o Only probabilities are being increased or decreased.
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Degrees of Belief

e We (or other agents) are only believing facts or rules to some extent.
e One possibility to express this partial belief is by using probability theory.

e “The agent believes the sensor information to 0.9” means:
In 9 out of 10 cases the agent trusts in the correctness of the sensor output.

e Probabilities gather the “uncertainty” that originates due to ignorance.

e Probabilities # Vagueness/Fuzziness!

o The predicate “large” is fuzzy whereas “This might be Peter’s watch.”
Is uncertain.
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Rational Decisions under Uncertainty

e Choice of several actions or plans

e These may lead to different results with different probabilities.
e The actions cause different (possibly subjective) costs.

e The results yield different (possibly subjective) benefits.

e [t would be rational to choose that action that yields the largest total benefit.

Decision Theory = Utility Theory 4+ Probability Theory
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Decision-theoretic Agent

input perception
output action

1. X < a set of probabilistic beliefs about the state of the world

2. calculate updated probabilities for current state based on available evidence includ-
ing current percept and previous action

5. calculate outcome probabilities for actions, given action descriptions and probabil-
ities of current states

+ select action A with highest expected utility given probabilities of outcomes and
utility information

5. return A

Decision Theory: An agent is rational if and only if it chooses
the action yielding the largest utility averaged
over all possible outcomes of all actions.
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