Bayesian Networks

Prof. Dr. Rudolf Kruse, Pascal Held

INF

Computational Intelligence Group
Department of Knowledge Processing and Language Engineering
Faculty of Computer Science
kruse@iws.cs.uni-magdeburg.de

About me: Rudolf Kruse

- in 1979 diploma in mathematics (minor computer science) at TU Braunschweig
- there dissertation in 1980, rehabilitation in 1984
- 2 years full-time employee at Fraunhofer Institute
- in 1986 offer of professorship for computer science at TU Braunschweig
- since 1996 professor at the University of Magdeburg
- research: data mining, explorative data analysis, fuzzy systems, neuronal networks, evolutionary algorithms, Bayesian networks
- mailto:kruse@iws.cs.uni-magdeburg.de
- office: G29-008, telephone: 0391 67-58706
- consultation: Wednesdays, 11 a.m. - 12 noon

About the working group Computational Intelligence

teaching:

- Intelligent Systems
- Evolutionary Algorithms
- Neuronal Networks
- Fuzzy Systems
- Bayesian Network
- Intelligent Data Analysis

Bachelor ($2 \mathrm{~V}+2 \ddot{\mathrm{U}}, 5 \mathrm{CP}$)
Bachelor ($2 \mathrm{~V}+2 \mathrm{U}, 5 \mathrm{CP}$)
Bachelor ($2 \mathrm{~V}+2 \ddot{\mathrm{U}}, 5 \mathrm{CP}$)
Master ($2 \mathrm{~V}+2 \ddot{\mathrm{U}}, 6 \mathrm{CP}$)
Master ($2 \mathrm{~V}+2 \ddot{\mathrm{U}}, 6 \mathrm{CP}$)
Master ($2 \mathrm{~V}+2 \ddot{\mathrm{U}}, 6 \mathrm{CP}$)

- (pro-)seminars: Information Mining, Computational Intelligence
research examples:
- dynamic graph analysis in brain networks (C. Moewes)
- analysis of social networks (P. Held)
- planet search by astronomical data analysis (C. Braune)

About the lecture

- lecture dates: Thursday, 3:15 p.m.-4:45 p.m., G22A-218
- information about the course: http://fuzzy.cs.ovgu.de/wiki/pmwiki.php?n=Lehre.BN1213
- weekly lecture slides as PDF
- also assignment sheets for the exercise
o important announcements and date!

Content of the lecture

- Introduction
- Rule-based Systems
- Elements of Graph Theory
- Decomposition
- Probability Foundations
- Applied Probability Theory
- Probabilistic Causal Networks
- Propagation in Belief Networks
- Learning Graphical Models
- Decision Graphs / Influence Diagrams
- Frameworks of Imprecision and Uncertainty

About the exercise

- active participation and explanations of your solutions
- tutor will call attention to mistakes and answer questions
- pure 'calculations' of sample solution is not the purpose
- tutor: Pascal Held mailto:pheld@ovgu.de
- consultation: Just knock on the door and see if he is there :-)
- first assignment due October 18, 2012
- Thursday, 3:15 p.m.-4:45 p.m., G22A-208

Conditions for Certificate ("Schein") and Exam

Certificate will get who...

- contribute well in exercises every week,
- present ≥ 2 solutions to written assignment during exercises.
- tick off $\geq 66 \%$ of all written assignments,
- small colloquium ($\approx 10 \mathrm{~min}$.) or written test (if >20 students).

Exam or marked certificate will get who...

- just pass the oral exam (≈ 25 minutes) or written exam (if >20 students).
- active participation in the exercises will help getting a good grade ;-)

Books about the course

http://www.computational-intelligence.eu/

Knowledge Based Systems

- Human Expert

A human expert is a specialist for a specific differentiated application field who creates solutions to customer problems in this respective field and supports them by applying these solutions.

- Requirements
- Formulate precise problem scenarios from customer inquiries
- Find correct and complete solution
- Understandable answers
- Explanation of solution
- Support the deployment of solution

Knowledge Based Systems (2)

- "Intelligent" System

An intelligent system is a program that models the knowledge and inference methods of a human expert of a specific field of application.

- Requirements for construction:
- Knowledge Representation
- Knowledge Acquisition
- Knowledge Modification

Qualities of Knowledge

In most cases our knowledge about the present world is

- incomplete/missing (knowledge is not comprehensive)
- e.g. "I don't know the bus departure times for public holidays because I only take the bus on working days."
- vague/fuzzy/imprecise (knowledge is not exact)
- e.g. "The bus departs roughly every full hour."
- uncertain (knowledge is unreliable)
- e.g. "The bus departs probably at 12 o'clock."

We have to decide nonetheless!

- Reasoning under Vagueness
- Reasoning with Probabilities
- ... and Cost/Benefit

Example

Objective: Be at the university at 9:15 to attend a lecture.

- There are several plans to reach this goal:
- P_{1} : Get up at 8:00, leave at 8:55, take the bus at 9:00 \ldots
- P_{2} : Get up at 7:30, leave at 8:25, take the bus at 8:30 \ldots
- ...
- All plans are correct, but
- they imply different costs and different probabilities to actually reach that goal.
- P_{2} would be the plan of choice as the lecture is important and the success rate of P_{1} is only about $80-95 \%$.
- Question: Is a computer capable of solving these problems involving uncertainty?

Uncertainty and Rules (1)

- Example: We are given a simple expert system for dentists that may contain the following rule:

$$
\forall p:[\operatorname{Symptom}(p, \text { toothache }) \Rightarrow \operatorname{Disease}(p, \text { cavity })]
$$

- This rule is incorrect! Better:

$$
\begin{aligned}
\forall p: & {[\operatorname{Symptom}(p, \text { toothache }) \Rightarrow} \\
& \operatorname{Disease}(p, \text { cavity }) \vee \operatorname{Disease}(p, \text { gumdisease }) \vee \ldots]
\end{aligned}
$$

- Maybe take the causal rule?

$$
\forall p:[\text { Disease }(p, \text { cavity }) \Rightarrow \operatorname{Symptom}(p, \text { toothache })]
$$

- Incorrect, too.

Uncertainty and Rules (2)

Problems with propositional logic:

- We cannot enumerate all possible causes, even though ...
- We do not know the (medical) cause-effect interactions, and even though ...
- Uncertainty about the patient remains:
- Caries and toothache may co-occurr by chance.
- Were (exhaustively) all examinations conducted? - If yes: correctly?
- Did the patient answer all questions? - If yes: appropriately?
- Without perfect knowledge no correct logical rules!

Uncertainty and Facts

Example:

- We would like to support a robot's localization by fixed landmarks.

From the presence of a landmark we may infer the location.

Problem:

- Sensors are imprecise!
- We cannot conclude definitely a location simply because there was a landmark detected by the sensors.
- The same holds true for undetected landmarks.
- Only probabilities are being increased or decreased.

Degrees of Belief

- We (or other agents) are only believing facts or rules to some extent.
- One possibility to express this partial belief is by using probability theory.
- "The agent believes the sensor information to 0.9 " means: In 9 out of 10 cases the agent trusts in the correctness of the sensor output.
- Probabilities gather the "uncertainty" that originates due to ignorance.
- Probabilities \neq Vagueness/Fuzziness!
- The predicate "large" is fuzzy whereas "This might be Peter's watch." is uncertain.

Rational Decisions under Uncertainty

- Choice of several actions or plans
- These may lead to different results with different probabilities.
- The actions cause different (possibly subjective) costs.
- The results yield different (possibly subjective) benefits.
- It would be rational to choose that action that yields the largest total benefit.

Decision Theory $=$ Utility Theory + Probability Theory

Decision-theoretic Agent

input perception
output action
1: $K \leftarrow$ a set of probabilistic beliefs about the state of the world
2: calculate updated probabilities for current state based on available evidence including current percept and previous action
3: calculate outcome probabilities for actions, given action descriptions and probabilities of current states
4: select action A with highest expected utility given probabilities of outcomes and utility information
5: return A
Decision Theory: An agent is rational if and only if it chooses the action yielding the largest utility averaged over all possible outcomes of all actions.

Rule-based Systems

Rule-based Systems

Modi of usage:

- Query: Facts are retrieved from database or user is interrogated
- Explanation: System answers questions how a decision was concluded

Example rule base:

1. COLLAT \wedge PYMT \wedge REP $\Rightarrow \mathrm{OK}$
2. APP \Rightarrow COLLAT
3. RATING \Rightarrow REP
4. INC \Rightarrow PYMT
5. $\mathrm{BAL} \wedge \mathrm{REP} \Rightarrow \mathrm{OK}$

Description:
COLLAT satisfactory collateral PYMT payments undisputed
REP good reputation
APP high appraisal
RATING good rating
INC positive income
BAL excellent balance
OK loan will be approved

Decision Rule Tree

Corresponding and/or-Tree:

Example Queries

- User: Why do you believe that the loan should be approved?
- System: Because the collateral for the loan is satisfactory, and the applicant is able to make the loan payments, and the applicant has a good financial reputation.
- User: Why did you ask me about whether or not the applicant's income exceeds his/her expenses?
- System: Because I was trying to establish whether or not the applicant is able to make the loan payments.
- User: Why do you believe that the applicant has a good financial reputation?
- System: Because the credit rating service said that the applicant has a good credit rating.

Rules

- A rule in general is a if-then-construct consisting of a condition and an action.

> If condition then conclusion

- These two parts may be interpreted differently according to the context:
- Inference rules: If premise then conclusion
- Hypotheses: If evidence then hypothesis
- Productions: If condition then action
- Rules are often referred to as productions or production rules.

Rules

- A rule in the ideal case represents a unit of knowledge.
- A set of rules together with an execution/evaluation strategy comprises a program to find solutions to specific problem classes.
- Prolog program: rule-based system
- Rule-based systems are historically the first types of AI systems and were for a long time considered prototypical expert systems.
- Nowadays, not every expert systems uses rules as its core inference mechanism.
- Rising importance in the field of business process rules.

Rule Evaluation

Forward chaining

- Expansion of knowledge base: as soon as new facts are inserted the system also calculates the conclusions/consequences.
- Data-driven behavior
- Premises-oriented reasoning: the chaining is determined by the left parts of the rules.

Backward chaining

- Answering queries
- Demand-driven behavior
- Conclusion-oriented reasoning: the chaining is determined by the right parts of the rules.

Components of a Rules-based System

Data base

- Set of structured data objects
- Current state of modeled part of world

Rule base

- Set of rules
- Application of a rule will alter the data base

Rule interpreter

- Inference machine
- Controls the program flow of the system

Rule Interpretation

- Main scheme forward chaining
- Select and apply rules from the set of rules with valid antecedences. This will lead to a modified data base and the possibility to apply further rules.
- Run this cycle as long as possible.
- The process terminates, if
- there is no rule left with valid antecendence
- a solution criterion is satisfied
- a stop criterion is satisfied (e.g. maximum number of steps)
- Following tasks have to be solved:
- Identify those rules with a valid condition
\Rightarrow Instantiation or Matching
- Select rules to be executed
\Rightarrow need for conflict resolution
(e.g. via partial or total orderings on the rules)

Certainty Factors

Mycin (1970)

- Objective: Development of a system that supports physicians in diagnosing bacterial infections and suggesting antibiotics.
- Features: Uncertain knowledge was represented and processed via uncertainty factors.
- Knowledge: 500 (uncertain) decision rules as static knowledge base.
- Case-specific knowledge:
- static: patients' data
- dynamic: intermediate results (facts)
- Strengths:
- diagnosis-oriented interrogation
- hypotheses generation
- finding notification
- therapy recommendation
- explanation of inference path

Uncertainty Factors

- Uncertainty factor $\mathrm{CF} \in[-1,1] \approx$ degree of belief.
- Rules:

$$
\mathrm{CF}(A \rightarrow B) \begin{cases}=1 & B \text { is certainly true given } A \\ >0 & A \text { supports } B \\ =0 & A \text { has no influence on } B \\ <0 & A \text { provides evidence against } B \\ =-1 & B \text { is certainly false given } A\end{cases}
$$

A Mycin Rule

RULE035

If 1) the gram stain of the organism is gramneg, and
2) the morphology of the organism is rod, and
3) the aerobicity of the organism is anaerobic
then there is suggestive evidence (0.6) that the
identity of the organism is bacteroides

Example

$$
\begin{array}{rlrl}
A & \rightarrow B[0.80] & & A[1.00] \tag{1.00}\\
C & \rightarrow D[0.50] & C[0.50] \\
B \wedge D & \rightarrow E[0.90] & F[0.80] \\
E \vee F & \rightarrow G[0.25] & H[0.90] \\
H & \rightarrow G[0.30] &
\end{array}
$$

Propagation Rules

- Conjunction:

$$
\mathrm{CF}(A \wedge B)=\min \{\mathrm{CF}(A), \mathrm{CF}(B)\}
$$

- Disjunction:

$$
\mathrm{CF}(A \vee B)=\max \{\mathrm{CF}(A), \mathrm{CF}(B)\}
$$

- Serial Combination: $\operatorname{CF}(B,\{A\})=\mathrm{CF}(A \rightarrow B) \cdot \max \{0, \mathrm{CF}(A)\}$
- Parallel Combination: for $n>1$:

$$
\begin{aligned}
& \mathrm{CF}\left(B,\left\{A_{1}, \ldots, A_{n}\right\}\right)= \\
& \quad f\left(\mathrm{CF}\left(B,\left\{A_{1}, \ldots, A_{n-1}\right\}\right), \mathrm{CF}\left(B,\left\{A_{n}\right\}\right)\right)
\end{aligned}
$$

with

$$
f(x, y)= \begin{cases}x+y-x y & \text { if } \quad x, y>0 \\ x+y+x y & \text { if } x, y<0 \\ \frac{x+y}{1-\min \{|x|,|y|\}} & \text { otherwise }\end{cases}
$$

Example (cont.)

Was Mycin a failure?

- It worked in the Mycin case because the rules had tree-like structure.
- It can be shown that the rule combination scheme is inconsistent in general.

Example: $\operatorname{CF}(A)=0.9, \operatorname{CF}(D)=$?

Certainty factor is increased just because (the same) evidence is transferred over different (parallel) paths!

Was Mycin a failure?

Mycin was never used for its intended purpose, because

- physicians were distrustful and not willing to accept Mycin's recommendations.
- Mycin was too good.

However,

- Mycin was a milestone for the development of expert systems.
- it gave rise to impulses for expert system development in general.

Probabilistic Rules

How to assign probabilities to rules (implications)?

$$
P(B \mid A) \leq P(A \rightarrow B)=P(\neg A \vee B)
$$

A	B	$P(\cdot)$
0	0	0.04
0	1	0.95
1	0	0.01
1	1	0

$$
P(B \mid A)=0 \text {, but } P(A \rightarrow B)=0.99 \text { ! }
$$

In the following, probabilistic rules are evaluated with conditional probabilities.

Elements of Graph Theory

Simple Graph

Simple Graph

A simple graph (or just: graph) is a tuple $\mathcal{G}=(V, E)$ where

$$
V=\left\{A_{1}, \ldots, A_{n}\right\}
$$

represents a finite set of vertices (or nodes) and

$$
E \subseteq(V \times V) \backslash\{(A, A) \mid A \in V\}
$$

denotes the set of edges.
It is called simple since there are no self-loops and no multiple edges.

Edge Types

Let $\mathcal{G}=(V, E)$ be a graph. An edge $e=(A, B)$ is called

- directed if $(A, B) \in E \Rightarrow(B, A) \notin E$ Notation: $A \rightarrow B$
- undirected if $(A, B) \in E \Rightarrow(B, A) \in E$ Notation: $A-B$ or $B-A$

(Un)directed Graph

A graph with only (un)directed edges is called an (un)directed graph.

Adjacency Set

Let $\mathcal{G}=(V, E)$ be a graph. The set of nodes that is accessible via a given node $A \in V$ is called the adjacency set of A :

$$
\operatorname{adj}(A)=\{B \in V \mid(A, B) \in E\}
$$

Paths

Let $\mathcal{G}=(V, E)$ be a graph. A series ρ of r pairwise different nodes

$$
\rho=\left\langle A_{i_{1}}, \ldots, A_{i_{r}}\right\rangle
$$

is called a path from A_{i} to A_{j} if

- $A_{i_{1}}=A_{i}, \quad A_{i_{r}}=A_{j}$
- $A_{i_{k+1}} \in \operatorname{adj}\left(A_{i_{k}}\right), \quad 1 \leq k<r$

A path with only undirected edges is called an undirected path

$$
\rho=A_{i_{1}}-\cdots-A_{i_{r}}
$$

whereas a path with only directed edges is referred to as a directed path

$$
\rho=A_{i_{1}} \rightarrow \cdots \rightarrow A_{i_{r}}
$$

If there is a directed path ρ from node A to node B in a directed graph \mathcal{G} we write

$$
A \underset{\mathcal{G}}{\stackrel{\rho}{\mathcal{G}}} B .
$$

If the path ρ is undirected we denote this with

$$
A \stackrel{\underset{\mathcal{G}}{\rho}}{\stackrel{\rho}{\boldsymbol{p}}} B .
$$

Graph Types

Loop

Let $\mathcal{G}=(V, E)$ be an undirected graph. A path

$$
\rho=X_{1}-\cdots-X_{k}
$$

with $X_{k}-X_{1} \in E$ is called a loop.

Cycle

Let $\mathcal{G}=(V, E)$ be a directed graph. A path

$$
\rho=X_{1} \rightarrow \cdots \rightarrow X_{k}
$$

with $X_{k} \rightarrow X_{1} \in E$ is called a cycle.

Directed Acyclic Graph (DAG)

A directed graph $\mathcal{G}=(V, E)$ is called acyclic if for every path $X_{1} \rightarrow \cdots \rightarrow X_{k}$ in \mathcal{G} the condition $X_{k} \rightarrow X_{1} \notin E$ is satisfied, i. e. it contains no cycle.

Parents, Children and Families

Let $\mathcal{G}=(V, E)$ be a directed graph. For every node $A \in V$ we define the following sets:

- Parents:
parents $\mathcal{G}(A)=\{B \in V \mid B \rightarrow A \in E\}$
- Children:
$\operatorname{children}_{\mathcal{G}}(A)=\{B \in V \mid A \rightarrow B \in E\}$
- Family:
family $_{\mathcal{G}}(A)=\{A\} \cup$ parents $_{\mathcal{G}}(A)$
If the respective graph is clear from the context, the index \mathcal{G} is omitted.

Ancestors, Descendants, Non-Descendants

Let $\mathcal{G}=(V, E)$ be a DAG. For every node $A \in V$ we define the following sets:

- Ancestors:

$$
\operatorname{ancs}_{\mathcal{G}}(A)=\{B \in V \mid \exists \rho: B \underset{\mathcal{G}}{\underset{\sim}{\rho}} A\}
$$

- Descendants:

$$
\operatorname{descs}_{\mathcal{G}}(A)=\{B \in V \mid \exists \rho: A \underset{\mathcal{G}}{\rho} B\}
$$

- Non-Descendants:

$$
\operatorname{non-descs}_{\mathcal{G}}(A)=V \backslash\{A\} \backslash \operatorname{descs}_{\mathcal{G}}(A)
$$

If the respective graph is clear from the context, the index \mathcal{G} is omitted.

$$
\begin{aligned}
\operatorname{ancs}(F) & =\{A, B, C, D\} \\
\operatorname{descs}(F) & =\{J, K, L, M\}
\end{aligned}
$$

$$
\text { non-descs }(F)=\{A, B, C, D, E, G, H\}
$$

Operations on Graphs

Let $\mathcal{G}=(V, E)$ be a DAG.
The Minimal Ancestral Subgraph of \mathcal{G} given a set $M \subseteq V$ of nodes is the smallest subgraph that contains all ancestors of all nodes in M.

The Moral Graph of \mathcal{G} is the undirected graph that is obtained by

1. connecting nodes that share a common child with an arbitrarily directed edge and,
2. converting all directed edges into undirected ones by dropping the arrow heads.

Moral graph of ancestral graph induced by the set $\{E, F, G\}$.

u-Separation

Let $\mathcal{G}=(V, E)$ be an undirected graph and $X, Y, Z \subseteq V$ three disjoint subsets of nodes. We agree on the following separation criteria:

1. Z u-separates X from Y - written as

$$
X \Perp_{\mathcal{G}} Y \mid Z,
$$

if every possible path from a node in X to a node in Y is blocked.
2. A path is blocked if it contains one (or more) blocking nodes.
3. A node is a blocking node if it lies in Z.

u-Separation

E. g. path $A-B-E-G-H$ is blocked by $E \in Z$. It can be easily verified, that every path from X to Y is blocked by Z. Hence we have:

$$
\{A, B, C, D\} \Perp_{\mathcal{G}}\{G, H, J\} \mid\{E, F\}
$$

u-Separation

Another way to check for u-separation: Remove the nodes in Z from the graph (and all the edges adjacent to these nodes). X and Y are u-separated by Z if the remaining graph is disconnected with X and Y in separate subgraphs.

d-Separation

Now: Separation criterion for directed graphs.
We use the same principles as for u-separation. Two modifications are necessary:

- Directed paths may lead also in reverse to the arrows.
- The blocking node condition is more sophisticated.

Blocking Node (in a directed path)
A node A is blocked if its edge directions along the path

- are of type 1 and $A \in Z$, or
- are of type 2 and neither A nor one of its descendants is in Z.

Type 1

Type 2

d-Separation

Checking path $A \rightarrow C \rightarrow E \leftarrow D$:

- C is serial and not in Z : non-blocking
- E is converging and not in Z, neither is F, G, H or J : blocking
\Rightarrow Path is blocked

$$
A \Perp D \mid \emptyset
$$

d-Separation

Checking path $A \rightarrow C \rightarrow E \leftarrow D$:

- C is serial and not in Z : non-blocking
- E is converging and in Z : non-blocking
\Rightarrow Path is not blocked

$$
A \not \Perp D \mid E
$$

d-Separation

Checking path $A \rightarrow C \rightarrow E \leftarrow D$:

- C is serial and not in Z : non-blocking
- E is converging and not in Z but one of its descendants (J) is in Z : non-blocking
\Rightarrow Path is not blocked

$$
A \not \Perp D \mid J
$$

d-Separation

Checking path $A \rightarrow C \rightarrow E \rightarrow F \rightarrow H$:

- C is serial and not in Z : non-blocking
- E is serial and not in Z : non-blocking
- F is serial and not in Z : non-blocking
\Rightarrow Path is not blocked

$$
A \not \Perp H \mid \emptyset
$$

d-Separation

Checking path $A \rightarrow C \rightarrow E \rightarrow F \rightarrow H$:

- C is serial and not in Z : non-blocking
- E is serial and in Z : blocking
- F is serial and not in Z : non-blocking
\Rightarrow Path is blocked

d-Separation

Checking path $A \rightarrow C \rightarrow E \leftarrow D \rightarrow B$:

- C is serial and not in Z : non-blocking
- E is converging and in Z : non-blocking
- D is serial and in Z : blocking
\Rightarrow Path is blocked

$$
A \Perp H, B \mid D, E
$$

d-Separation: Alternative Way for Checking

Steps

- Create the minimal ancestral subgraph induced by $X \cup Y \cup Z$.

d-Separation: Alternative Way for Checking

Steps

- Create the minimal ancestral subgraph induced by $X \cup Y \cup Z$.
- Moralize that subgraph.

d-Separation: Alternative Way for Checking

Steps:

- Create the minimal ancestral subgraph induced by $X \cup Y \cup Z$.
- Moralize that subgraph.
- Check for u-Separation in that undirected graph.

$$
A \Perp H, B \mid D, E
$$

Decomposition

Example

Example World

Relation

color	shape	size
\square	\bigcirc	small
\square	\bigcirc	medium
\square	\bigcirc	small
\square	\bigcirc	medium
\square	\triangle	medium
\square	\triangle	large
\square	\square	medium
\square	\square	medium
\square	\triangle	medium
\square	\triangle	large

- 10 simple geometric objects
- 3 attributes

Example

Relation

color	shape	size
\square	\bigcirc	small
\square	\bigcirc	medium
\square	\bigcirc	small
\square	\bigcirc	medium
\square	\triangle	medium
\square	\triangle	large
\square	\square	medium
\square	\square	medium
\square	\triangle	medium
\square	\triangle	large
\square	\triangle	

Geometric Representation

Object Representation

- Universe of Discourse: Ω
- $\omega \in \Omega$ represents a single abstract object.
- A subset $E \subseteq \Omega$ is called an event.
- For every event we use the function R to determine whether E is possible or not.

$$
R: 2^{\Omega} \rightarrow\{0,1\}
$$

- We claim the following properties of R :

1. $R(\emptyset)=0$
2. $\forall E_{1}, E_{2} \subseteq \Omega: R\left(E_{1} \cup E_{2}\right)=\max \left\{R\left(E_{1}\right), R\left(E_{2}\right)\right\}$

- For example:

$$
R(E)= \begin{cases}0 & \text { if } E=\emptyset \\ 1 & \text { otherwise }\end{cases}
$$

Object Representation

- Attributes or Properties of these objects are introduced by functions: (later referred to as random variables)

$$
A: \Omega \rightarrow \operatorname{dom}(A)
$$

where $\operatorname{dom}(A)$ is the domain (i. e., set of all possible values) of A.

- A set of attibutes $U=\left\{A_{1}, \ldots, A_{n}\right\}$ is called an attribute schema.
- The preimage of an attribute defines an event:

$$
\forall a \in \operatorname{dom}(A): A^{-1}(a)=\{\omega \in \Omega \mid A(\omega)=a\} \subseteq \Omega
$$

- Abbreviation: $A^{-1}(a)=\{\omega \in \Omega \mid A(\omega)=a\} \quad=\quad\{A=a\}$
- We will index the function R to stress on which events it is defined. $R_{A B}$ will be short for $R_{\{A, B\}}$.

$$
R_{A B}: \bigcup_{a \in \operatorname{dom}(A)} \bigcup_{b \in \operatorname{dom}(B)}\{\{A=a, B=b\}\} \rightarrow\{0,1\}
$$

Formal Representation

$A=$ color	$B=$ shape	$C=$ size
$a_{1}=\square$	$b_{1}=\bigcirc$	$c_{1}=$ small
$a_{1}=\square$	$b_{1}=\bigcirc$	$c_{2}=$ medium
$a_{2}=\square$	$b_{1}=\bigcirc$	$c_{1}=$ small
$a_{2}=\square$	$b_{1}=\bigcirc$	$c_{2}=$ medium
$a_{2}=\square$	$b_{3}=\triangle$	$c_{2}=$ medium
$a_{2}=\square$	$b_{3}=\triangle$	$c_{3}=$ large
$a_{3}=\square$	$b_{2}=\square$	$c_{2}=$ medium
$a_{4}=\square$	$b_{2}=\square$	$c_{2}=$ medium
$a_{4}=\square$	$b_{3}=\triangle$	$c_{2}=$ medium
$a_{4}=\square$	$b_{3}=\triangle$	$c_{3}=$ large

$$
\left.\begin{array}{l}
R_{A B C}(A=a, B=b, C=c) \\
\quad=R_{A B C}(\{A=a, B=b, C=c\}) \\
=R_{A B C}(\{\omega \in \Omega \mid A(\omega)=a \wedge \\
B(\omega)=b \wedge
\end{array}\right] \begin{aligned}
& C(\omega)=c)\}
\end{aligned} \quad \begin{aligned}
& = \begin{cases}0 & \text { if there is no tuple }(a, b, c) \\
1 & \text { else }\end{cases}
\end{aligned}
$$

R serves as an indicator function.

Operations on the Relations

Projection / Marginalization

Let $R_{A B}$ be a relation over two attributes A and B. The projection (or marginalization) from schema $\{A, B\}$ to schema $\{A\}$ is defined as:

$$
\forall a \in \operatorname{dom}(A): R_{A}(A=a)=\max _{\forall b \in \operatorname{dom}(B)}\left\{R_{A B}(A=a, B=b)\right\}
$$

This principle is easily generalized to sets of attributes.

Object Representation

Cylindrical Extention

Let R_{A} be a relation over an attribute A. The cylindrical extention $R_{A B}$ from $\{A\}$ to $\{A, B\}$ is defined as:

$$
\forall a \in \operatorname{dom}(A): \forall b \in \operatorname{dom}(B): R_{A B}(A=a, B=b)=R_{A}(A=a)
$$

This principle is easily generalized to sets of attributes.

Object Representation

Intersection

Let $R_{A B}^{(1)}$ and $R_{A B}^{(2)}$ be two relations with attribute schema $\{A, B\}$. The intersection $R_{A B}$ of both is defined in the natural way:

$$
\begin{aligned}
& \forall a \in \operatorname{dom}(A): \forall b \in \operatorname{dom}(B): \\
& \qquad R_{A B}(A=a, B=b)=\min \left\{R_{A B}^{(1)}(A=a, B=b), R_{A B}^{(2)}(A=a, B=b)\right\}
\end{aligned}
$$

This principle is easily generalized to sets of attributes.

Object Representation

Conditional Relation

Let $R_{A B}$ be a relation over the attribute schema $\{A, B\}$. The conditional relation of A given B is defined as follows:

$$
\forall a \in \operatorname{dom}(A): \forall b \in \operatorname{dom}(B): R_{A}(A=a \mid B=b)=R_{A B}(A=a, B=b)
$$

This principle is easily generalized to sets of attributes.

Object Representation

(Unconditional) Independence

Let $R_{A B}$ be a relation over the attribute schema $\{A, B\}$. We call A and B relationally independent (w.r.t. $R_{A B}$) if the following condition holds:
$\forall a \in \operatorname{dom}(A): \forall b \in \operatorname{dom}(B): R_{A B}(A=a, B=b)=\min \left\{R_{A}(A=a), R_{B}(B=b)\right\}$
This principle is easily generalized to sets of attributes.

Object Representation

(Unconditional) Independence

Intuition: Fixing one (possible) value of A does not restrict the (possible) values of B and vice versa.
Conditioning on any possible value of B always results in the same relation R_{A}.
Alternative independence expression:

$$
\begin{aligned}
& \forall b \in \operatorname{dom}(B): R_{B}(B=b)=1: \\
& \quad R_{A}(A=a \mid B=b)=R_{A}(A=a)
\end{aligned}
$$

Decomposition

- Obviously, the original two-dimensional relation can be reconstructed from the two one-dimensional ones, if we have (unconditional) independence.
- The definition for (unconditional) independence already told us how to do so:

$$
R_{A B}(A=a, B=b)=\min \left\{R_{A}(A=a), R_{B}(B=b)\right\}
$$

- Storing R_{A} and R_{B} is sufficient to represent the information of $R_{A B}$.
- Question: The (unconditional) independence is a rather strong restriction. Are there other types of independence that allow for a decomposition as well?

Conditional Relational Independence

Clearly, A and C are unconditionally dependent, i. e. the relation $R_{A C}$ cannot be reconstructed from R_{A} and R_{C}.

Conditional Relational Independence

However, given all possible values of B, all respective conditional relations $R_{A C}$ show the independence of A and C.

$$
R_{A C}(a, c \mid b)=\min \left\{R_{A}(a \mid b), R_{C}(c \mid b)\right\}
$$

With the definition of a conditional relation, the decomposition description for $R_{A B C}$ reads:

$$
R_{A B C}(a, b, c)=\min \left\{R_{A B}(a, b), R_{B C}(b, c)\right\}
$$

$R_{A C}\left(\cdot, \cdot \mid B=b_{1}\right)$

Conditional Relational Independence

Again, we reconstruct the initial relation from the cylindrical extentions of the two relations formed by the attributes A, B and B, C.

It is possible since A and C are (relationally) independent given B.

Probability Foundations

Reminder: Probability Theory

- Goal: Make statements and/or predictions about results of physical processes.
- Even processes that seem to be simple at first sight may reveal considerable difficulties when trying to predict.
- Describing real-world physical processes always calls for a simplifying mathematical model.
- Although everybody will have some intuitive notion about probability, we have to formally define the underlying mathematical structure.
- Randomness or chance enters as the incapability of precisely modelling a process or the inability of measuring the initial conditions.
- Example: Predicting the trajectory of a billard ball over more than 9 banks requires more detailed measurement of the initial conditions (ball location, applied momentum etc.) than physically possible according to Heisenberg's uncertainty principle.

Formal Approach on the Model Side

- We conduct an experiment that has a set Ω of possible outcomes.
E. g.:
- Rolling a die $(\Omega=\{1,2,3,4,5,6\})$
- Arrivals of phone calls $\left(\Omega=\mathbb{N}_{0}\right)$
- Bread roll weights ($\Omega=\mathbb{R}_{+}$)
- Such an outcome is called an elementary event.
- All possible elementary events are called the frame of discernment Ω (or sometimes universe of discourse).
- The set representation stresses the following facts:
- All possible outcomes are covered by the elements of Ω. (collectively exhaustive).
- Every possible outcome is represented by exactly one element of Ω. (mutual disjoint).

Events

- Often, we are interested in higher-level events (e.g. casting an odd number, arrival of at least 5 phone calls or purchasing a bread roll heavier than 80 grams)
- Any subset $A \subseteq \Omega$ is called an event which occurs, if the outcome $\omega_{0} \in \Omega$ of the random experiment lies in A :

$$
\text { Event } A \subseteq \Omega \text { occurs } \Leftrightarrow \bigvee_{\omega \in A}\left(\omega=\omega_{0}\right)=\text { true } \quad \Leftrightarrow \quad \omega_{0} \in A
$$

- Since events are sets, we can define for two events A and B :
- $A \cup B$ occurs if A or B occurs; $A \cap B$ occurs if A and B occurs.
- \bar{A} occurs if A does not occur (i. e., if $\Omega \backslash A$ occurs).
- A and B are mutually exclusive, iff $A \cap B=\emptyset$.

Event Algebra

- A family of sets $\mathcal{E}=\left\{E_{1}, \ldots, E_{n}\right\}$ is called an event algebra, if the following conditions hold:
- The certain event Ω lies in \mathcal{E}.
- If $E \in \mathcal{E}$, then $\bar{E}=\Omega \backslash E \in \mathcal{E}$.
- If E_{1} and E_{2} lie in \mathcal{E}, then $E_{1} \cup E_{2} \in \mathcal{E}$ and $E_{1} \cap E_{2} \in \mathcal{E}$.
- If Ω is uncountable, we require the additional property:

For a series of events $E_{i} \in \mathcal{E}, i \in \mathbb{N}$, the events $\bigcup_{i=1}^{\infty} E_{i}$ and $\bigcap_{i=1}^{\infty} E_{i}$ are also in \mathcal{E}. \mathcal{E} is then called a σ-algebra.

Side remarks:

- Smallest event algebra: $\mathcal{E}=\{\emptyset, \Omega\}$
- Largest event algebra (for finite or countable Ω): $\mathcal{E}=2^{\Omega}=\{A \subseteq \Omega \mid$ true $\}$

Probability Function

- Given an event algebra \mathcal{E}, we would like to assign every event $E \in \mathcal{E}$ its probability with a probability function $P: \mathcal{E} \rightarrow[0,1]$.
- We require P to satisfy the so-called Kolmogorov Axioms:
- $\forall E \in \mathcal{E}: 0 \leq P(E) \leq 1$
- $P(\Omega)=1$
- If $E_{1}, E_{2} \in \mathcal{E}$ are mutually exclusive, then $P\left(E_{1} \cup E_{2}\right)=P\left(E_{1}\right)+P\left(E_{2}\right)$.
- From these axioms one can conclude the following (incomplete) list of properties:
- $\forall E \in \mathcal{E}: P(\bar{E})=1-P(E)$
- $P(\emptyset)=0$
- For pairwise disjoint events $E_{1}, E_{2}, \ldots \in \mathcal{E}$ holds:

$$
P\left(\bigcup_{i=1}^{\infty} E_{i}\right)=\sum_{i=1}^{\infty} P\left(E_{i}\right)
$$

Note that for $|\Omega|<\infty$ the union and sum are finite also.

Elementary Probabilities and Densities

Question 1: How to calculate P ?
Question 2: Are there "default" event algebras?

- Idea for question 1: We have to find a way of distributing (thus the notion distribution) the unit mass of probability over all elements $\omega \in \Omega$.
- If Ω is finite or countable a probability mass function p is used:

$$
p: \Omega \rightarrow[0,1] \quad \text { and } \quad \sum_{\omega \in \Omega} p(\omega)=1
$$

- If Ω is uncountable (i. e., continuous) a probability density function f is used:

$$
f: \Omega \rightarrow \mathbb{R} \quad \text { and } \quad \int_{\Omega} f(\omega) \mathrm{d} \omega=1
$$

"Default" Event Algebras

- Idea for question 2 ("default" event algebras) we have to distinguish again between the cardinalities of Ω :
- Ω finite or countable:

$$
\mathcal{E}=2^{\Omega}
$$

- Ω uncountable, e.g. $\Omega=\mathbb{R}$:

$$
\mathcal{E}=\mathcal{B}(\mathbb{R})
$$

- $\mathcal{B}(\mathbb{R})$ is the Borel Algebra, i. e., the smallest σ-algebra that contains all closed intervals $[a, b] \subset \mathbb{R}$ with $a<b$.
- $\mathcal{B}(\mathbb{R})$ also contains all open intervals and single-item sets.
- It is sufficient to note here, that all intervals are contained

$$
\{[a, b],] a, b],] a, b[,[a, b[\subset \mathbb{R} \mid a<b\} \subset \mathcal{B}(\mathbb{R})
$$

because the event of a bread roll having a weight between 80 g and 90 g is represented by the interval [80,90].

Probability Spaces

- For a sample space A, an event algebra B (over A) and a probability function C, we call the triple

$$
(A, B, C)
$$

a probability space.

$$
(\Xi, \mathcal{X}, Q)
$$

Reminder: Preimage of a Function

- Let $f: D \rightarrow M$ be a function that assigns to every value of D a value in M.
- For every value of $y \in M$ we can ask which values of $x \in D$ are mapped to y :

$$
D \supseteq\{x \in D \mid f(x)=y\} \stackrel{\text { Def }}{=} f^{-1}(y)
$$

- $f^{-1}(y)$ is called the preimage of y under f, denoted also as $\{f=y\}$.
- The notion can be generalized from $y \in M$ to sets $B \subseteq M$:

$$
D \supseteq\{x \in D \mid f(x) \in B\} \stackrel{\text { Def }}{=} f^{-1}(B)
$$

- If f is bijective then $\forall y \in M:\left|f^{-1}(y)\right|=1$.
- Examples:
- $\sin ^{-1}(0)=\{k \cdot \pi \mid k \in \mathbb{Z}\}$
- $\exp ^{-1}(1)=\{0\}$
- $\operatorname{sgn}^{-1}(1)=(0,+\infty) \subset \mathbb{R}$

Random Variable

We still need a means of mapping real-world outcomes in Ξ to our space Ω.

- A function $X: D \rightarrow M$ is called a random variable iff the preimage of any value of M is an event (in some probability space).
- If X maps Ξ onto Ω, we define

$$
P_{X}(X \in A)=Q(\{\xi \in \Xi \mid X(\xi) \in A\}) .
$$

- X may also map from Ω to another domain: $X: \Omega \rightarrow \operatorname{dom}(X)$. We then define:

$$
P_{X}(X \in A)=P(\{\omega \in \Omega \mid X(\omega) \in A\}) .
$$

- If X is numeric, we call $F(x)$ with

$$
F(x)=P(X \leq x)
$$

the distribution function of X.

Example: Rolling a Die

$\Omega=\{1,2,3,4,5,6\} \quad X=\mathrm{id}$

$$
p_{1}(\omega)=\frac{1}{6}
$$

$$
\begin{aligned}
\sum_{\omega \in \Omega} p_{1}(\omega) & =\sum_{i=1}^{6} p_{1}\left(\omega_{i}\right) \\
& =\sum_{i=1}^{6} \frac{1}{6}=1
\end{aligned}
$$

$$
F_{1}(x)=P(X \leq x)
$$

$$
P(X \leq x)=\sum_{x^{\prime} \leq x} P\left(X=x^{\prime}\right)
$$

$$
P(a<X \leq b)=F_{1}(b)-F_{1}(a)
$$

$$
P(X=x)=P(\{X=x\})=P\left(X^{-1}(x)\right)=P(\{\omega \in \Omega \mid X(\omega)=x\})
$$

The Big Picture

$$
\begin{aligned}
& \text { Real World Model } \\
& Q\left(\left\{\xi \in \Xi \mid X(\xi) \in Y^{-1}(\circ)\right\}\right)=P(\{\omega \in \Omega \mid Y(\omega)=\uparrow\})=P(Y=\uparrow)=P(q)
\end{aligned}
$$

Applied Probability Theory

Why (Kolmogorov) Axioms?

- If P models an objectively observable probability, these axioms are obviously reasonable.
- However, why should an agent obey formal axioms when modeling degrees of (subjective) belief?
- Objective vs. subjective probabilities
- Axioms constrain the set of beliefs an agent can abide.
- Finetti (1931) gave one of the most plausible arguments why subjective beliefs should respect axioms:
"When using contradictory beliefs, the agent will eventually fail."

Unconditional Probabilities

- $P(A)$ designates the unconditioned or a priori probability that $A \subseteq \Omega$ occurs if no other additional information is present. For example:

$$
P(\text { cavity })=0.1
$$

Note: Here, cavity is a proposition.

- A formally different way to state the same would be via a binary random variable Cavity:

$$
P(\text { Cavity }=\text { true })=0.1
$$

- A priori probabilities are derived from statistical surveys or general rules.

Unconditional Probabilities

- In general a random variable can assume more than two values:

$$
\begin{aligned}
& P(\text { Weather }=\text { sunny })=0.7 \\
& P(\text { Weather }=\text { rainy })=0.2 \\
& P(\text { Weather }=\text { cloudy })=0.02 \\
& P(\text { Weather }=\text { snowy })=0.08 \\
& P(\text { Headache }=\text { true })=0.1
\end{aligned}
$$

- $P(X)$ designates the vector of probabilities for the (ordered) domain of the random variable X :

$$
\begin{aligned}
P(\text { Weather }) & =\langle 0.7,0.2,0.02,0.08\rangle \\
P(\text { Headache }) & =\langle 0.1,0.9\rangle
\end{aligned}
$$

- Both vectors define the respective probability distributions of the two random variables.

Conditional Probabilities

- New evidence can alter the probability of an event.
- Example: The probability for cavity increases if information about a toothache arises.
- With additional information present, the a priori knowledge must not be used!
- $P(A \mid B)$ designates the conditional or a posteriori probability of A given the sole observation (evidence) B.

$$
P(\text { cavity } \mid \text { toothache })=0.8
$$

- For random variables X and $Y P(X \mid Y)$ represents the set of conditional distributions for each possible value of Y.

Conditional Probabilities

- P (Weather \mid Headache $)$ consists of the following table:

	$\mathrm{h} \hat{=}$ Headache $=$ true	$\neg \mathrm{h} \hat{=}$ Headache $=$ false
Weather = sunny	$P(\mathrm{~W}=$ sunny $\mid \mathrm{h})$	$P(\mathrm{~W}=$ sunny $\mid \neg \mathrm{h})$
Weather = rainy	$P(\mathrm{~W}=$ rainy $\mid \mathrm{h})$	$P(\mathrm{~W}=$ rainy $\mid \neg \mathrm{h})$
Weather = cloudy	$P(\mathrm{~W}=$ cloudy $\mid \mathrm{h})$	$P(\mathrm{~W}=$ cloudy $\mid \neg \mathrm{h})$
Weather = snowy	$P(\mathrm{~W}=$ snowy $\mid \mathrm{h})$	$P(\mathrm{~W}=$ snowy $\mid \neg \mathrm{h})$

- Note that we are dealing with two distributions now!

Therefore each column sums up to unity!

- Formal definition:

$$
P(A \mid B)=\frac{P(A \wedge B)}{P(B)} \quad \text { if } \quad P(B)>0
$$

Conditional Probabilities

$$
P(A \mid B)=\frac{P(A \wedge B)}{P(B)}
$$

- Product Rule: $P(A \wedge B)=P(A \mid B) \cdot P(B)$
- Also: $P(A \wedge B)=P(B \mid A) \cdot P(A)$
- A and B are independent iff

$$
P(A \mid B)=P(A) \quad \text { and } \quad P(B \mid A)=P(B)
$$

- Equivalently, iff the following equation holds true:

$$
P(A \wedge B)=P(A) \cdot P(B)
$$

Interpretation of Conditional Probabilities

Caution! Common misinterpretation:

$$
\text { "P(A|B)=0.8 means, that } P(A)=0.8 \text {, given } B \text { holds." }
$$

This statement is wrong due to (at least) two facts:

- $P(A)$ is always the a-priori probability, never the probability of A given that B holds!
- $P(A \mid B)=0.8$ is only applicable as long as no other evidence except B is present. If C becomes known, $P(A \mid B \wedge C)$ has to be determined.
In general we have:

$$
P(A \mid B \wedge C) \neq P(A \mid B)
$$

E. g. $C \rightarrow A$ might apply.

Joint Probabilities

- Let X_{1}, \ldots, X_{n} be random variables over the same framce of descernment Ω and event algebra \mathcal{E}. Then $\vec{X}=\left(X_{1}, \ldots, X_{n}\right)$ is called a random vector with

$$
\vec{X}(\omega)=\left(X_{1}(\omega), \ldots, X_{n}(\omega)\right)
$$

- Shorthand notation:

$$
P\left(\vec{X}=\left(x_{1}, \ldots, x_{n}\right)\right)=P\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)=P\left(x_{1}, \ldots, x_{n}\right)
$$

- Definition:

$$
\begin{aligned}
P\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right) & =P\left(\left\{\omega \in \Omega \mid \bigwedge_{i=1}^{n} X_{i}(\omega)=x_{i}\right\}\right) \\
& =P\left(\bigcap_{i=1}^{n}\left\{X_{i}=x_{i}\right\}\right)
\end{aligned}
$$

Joint Probabilities

- Example: P (Headache, Weather) is the joint probability distribution of both random variables and consists of the following table:

	$\mathrm{h} \hat{=}$ Headache $=$ true	$\neg \mathrm{h} \hat{=}$ Headache $=$ false
Weather = sunny	$P(\mathrm{~W}=$ sunny $\wedge \mathrm{h})$	$P(\mathrm{~W}=$ sunny $\wedge \neg \mathrm{h})$
Weather = rainy	$P(\mathrm{~W}=$ rainy $\wedge \mathrm{h})$	$P(\mathrm{~W}=$ rainy $\wedge \neg \mathrm{h})$
Weather = cloudy	$P(\mathrm{~W}=$ cloudy $\wedge \mathrm{h})$	$P(\mathrm{~W}=$ cloudy $\wedge \neg \mathrm{h})$
Weather = snowy	$P(\mathrm{~W}=$ snowy $\wedge \mathrm{h})$	$P(\mathrm{~W}=$ snowy $\wedge \neg \mathrm{h})$

- All table cells sum up to unity.

Calculating with Joint Probabilities

All desired probabilities can be computed from a joint probability distribution.

	toothache	ᄀtoothache
cavity	0.04	0.06
ᄀcavity	0.01	0.89

- Example: $P($ cavity \vee toothache $)=P($ cavity \wedge toothache $)$
$+P(\neg$ cavity \wedge toothache $)$

$$
+P(\text { cavity } \wedge \neg \text { toothache })=0.11
$$

- Marginalizations: P (cavity $)=P($ cavity \wedge toothache $)$

$$
+P(\text { cavity } \wedge \neg \text { toothache })=0.10
$$

- Conditioning:

$$
P(\text { cavity } \mid \text { toothache })=\frac{P(\text { cavity } \wedge \text { toothache })}{P(\text { toothache })}=\frac{0.04}{0.04+0.01}=0.80
$$

Problems

- Easiness of computing all desired probabilities comes at an unaffordable price:

Given n random variables with k possible values each, the joint probability distribution contains k^{n} entries which is infeasible in practical applications.

- Hard to handle.
- Hard to estimate.

Therefore:

1. Is there a more dense representation of joint probability distributions?
2. Is there a more efficient way of processing this representation?

- The answer is no for the general case, however, certain dependencies and independencies can be exploited to reduce the number of parameters to a practical size.

Stochastic Independence

- Two events A and B are stochastically independent iff

$$
\begin{gathered}
P(A \wedge B)=P(A) \cdot P(B) \\
\Leftrightarrow \\
P(A \mid B)=P(A)=P(A \mid \bar{B})
\end{gathered}
$$

- Two random variables X and Y are stochastically independent iff $\forall x \in \operatorname{dom}(X): \forall y \in \operatorname{dom}(Y): \quad P(X=x, Y=y)=P(X=x) \cdot P(Y=y)$

$$
\Leftrightarrow
$$

$\forall x \in \operatorname{dom}(X): \forall y \in \operatorname{dom}(Y): \quad P(X=x \mid Y=y)=P(X=x)$

- Shorthand notation: $P(X, Y)=P(X) \cdot P(Y)$.

Note the formal difference between $P(A) \in[0,1]$ and $P(X) \in[0,1]^{|\operatorname{dom}(X)|}$.

Conditional Independence

- Let X, Y and Z be three random variables. We call X and Y conditionally independent given Z, iff the following condition holds:
$\forall x \in \operatorname{dom}(X): \forall y \in \operatorname{dom}(Y): \forall z \in \operatorname{dom}(Z):$

$$
P(X=x, Y=y \mid Z=z)=P(X=x \mid Z=z) \cdot P(Y=y \mid Z=z)
$$

- Shorthand notation: $X \Perp_{P} Y \mid Z$
- Let $\boldsymbol{X}=\left\{A_{1}, \ldots, A_{k}\right\}, \boldsymbol{Y}=\left\{B_{1}, \ldots, B_{l}\right\}$ and $\boldsymbol{Z}=\left\{C_{1}, \ldots, C_{m}\right\}$ be three disjoint sets of random variables. We call \boldsymbol{X} and \boldsymbol{Y} conditionally independent given \boldsymbol{Z}, iff

$$
P(\boldsymbol{X}, \boldsymbol{Y} \mid \boldsymbol{Z})=P(\boldsymbol{X} \mid \boldsymbol{Z}) \cdot P(\boldsymbol{Y} \mid \boldsymbol{Z}) \Leftrightarrow P(\boldsymbol{X} \mid \boldsymbol{Y}, \boldsymbol{Z})=P(\boldsymbol{X} \mid \boldsymbol{Z})
$$

- Shorthand notation: $\boldsymbol{X} \Perp_{P} \boldsymbol{Y} \mid \boldsymbol{Z}$

Conditional Independence

- The complete condition for $\boldsymbol{X} \Perp_{P} \boldsymbol{Y} \mid \boldsymbol{Z}$ would read as follows:

$$
\begin{aligned}
& \forall a_{1} \in \operatorname{dom}\left(A_{1}\right): \cdots \forall a_{k} \in \operatorname{dom}\left(A_{k}\right): \\
& \forall b_{1} \in \operatorname{dom}\left(B_{1}\right): \cdots \forall b_{l} \in \operatorname{dom}\left(B_{l}\right): \\
& \quad \forall c_{1} \in \operatorname{dom}\left(C_{1}\right): \cdots \forall c_{m} \in \operatorname{dom}\left(C_{m}\right): \\
& \quad P\left(A_{1}=a_{1}, \ldots, A_{k}=a_{k}, B_{1}=b_{1}, \ldots, B_{l}=b_{l} \mid C_{1}=c_{1}, \ldots, C_{m}=c_{m}\right) \\
& \quad=P\left(A_{1}=a_{1}, \ldots, A_{k}=a_{k} \mid C_{1}=c_{1}, \ldots, C_{m}=c_{m}\right) \\
& \quad \cdot P\left(B_{1}=b_{1}, \ldots, B_{l}=b_{l} \mid C_{1}=c_{1}, \ldots, C_{m}=c_{m}\right)
\end{aligned}
$$

- Remarks:

1. If $\boldsymbol{Z}=\emptyset$ we get (unconditional) independence.
2. We do not use curly braces ($\}$) for the sets if the context is clear. Likewise, we use X instead of \boldsymbol{X} to denote sets.

Conditional Independence - Example 1

(Weak) Dependence in the entire dataset: X and Y dependent.

Conditional Independence - Example 1

No Dependence in Group 1: X and Y conditionally independent given Group 1.

Conditional Independence - Example 1

No Dependence in Group 2: X and Y conditionally independent given Group 2.

Conditional Independence - Example 2

- $\operatorname{dom}(G)=\{$ mal, fem $\}$
- $\operatorname{dom}(S)=\{\mathrm{sm}, \overline{\mathrm{sm}}\}$
- $\operatorname{dom}(M)=\{$ mar, $\overline{\mathrm{mar}}\}$
- $\operatorname{dom}(P)=\{$ preg, $\overline{\text { preg }}\}$

p_{GSMP}	$\mathrm{G}=\mathrm{mal}$		$\mathrm{G}=\mathrm{fem}$	
	$\mathrm{S}=\mathrm{sm}$	$\mathrm{S}=\overline{\mathrm{sm}}$	$\mathrm{S}=\mathrm{sm}$	$\mathrm{S}=\overline{\mathrm{sm}}$
$\mathrm{M}=\operatorname{mar} \quad \mathrm{P}=\mathrm{preg}$	0	0	0.01	0.05
$\mathrm{P}=\overline{\mathrm{preg}}$	0.04	0.16	0.02	0.12
$\mathrm{M}=\overline{\operatorname{mar}} \mathrm{P}=\mathrm{preg}$	0	0	0.01	0.01
$\mathrm{P}=\overline{\mathrm{preg}}$	0.10	0.20	0.07	0.21

Conditional Independence - Example 2

$$
\begin{aligned}
P(\mathrm{G}=\mathrm{fem}) & =P(\mathrm{G}=\mathrm{mal})=0.5 & & P(\mathrm{P}=\mathrm{preg})=0.08 \\
P(\mathrm{~S}=\mathrm{sm}) & =0.25 & & P(\mathrm{M}=\mathrm{mar})=0.4
\end{aligned}
$$

- Gender and Smoker are not independent:

$$
P(\mathrm{G}=\mathrm{fem} \mid \mathrm{S}=\mathrm{sm})=0.44 \neq 0.5=P(\mathrm{G}=\mathrm{fem})
$$

- Gender and Marriage are marginally independent but conditionally dependent given Pregnancy:

$$
P(\text { fem }, \text { mar } \mid \overline{\text { preg }}) \approx 0.152 \neq 0.169 \approx P(\text { fem } \mid \overline{\text { preg }}) \cdot P(\text { mar } \mid \overline{\text { preg }})
$$

Bayes Theorem

- Product Rule (for events A and B):

$$
P(A \cap B)=P(A \mid B) P(B) \quad \text { and } \quad P(A \cap B)=P(B \mid A) P(A)
$$

- Equating the right-hand sides:

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

- For random variables X and Y :

$$
\forall x \forall y: \quad P(Y=y \mid X=x)=\frac{P(X=x \mid Y=y) P(Y=y)}{P(X=x)}
$$

- Generalization concerning background knowledge/evidence E :

$$
P(Y \mid X, E)=\frac{P(X \mid Y, E) P(Y \mid E)}{P(X \mid E)}
$$

Bayes Theorem - Application

$$
\begin{aligned}
P(\text { toothache } \mid \text { cavity }) & =0.4 \\
P(\text { cavity }) & =0.1 \quad P(\text { cavity } \mid \text { toothache })=\frac{0.4 \cdot 0.1}{0.05}=0.8 \\
P(\text { toothache }) & =0.05
\end{aligned}
$$

Why not estimate P (cavity | toothache) right from the start?

- Causal knowledge like P (toothache \mid cavity $)$ is more robust than diagnostic knowledge P (cavity | toothache).
- The causality P (toothache \mid cavity $)$ is independent of the a priori probabilities P (toothache) and P (cavity).
- If P (cavity) rose in a caries epidemic, the causality P (toothache \mid cavity) would remain constant whereas both P (cavity | toothache) and P (toothache) would increase according to P (cavity).
- A physician, after having estimated P (cavity \mid toothache), would not know a rule for updating.

Relative Probabilities

Assumption:
We would like to consider the probability of the diagnosis GumDisease as well.

$$
\begin{aligned}
P(\text { toothache } \mid \text { gumdisease }) & =0.7 \\
P(\text { gumdisease }) & =0.02
\end{aligned}
$$

Which diagnosis is more probable?

If we are interested in relative probabilities only (which may be sufficient for some decisions), P (toothache) needs not to be estimated:

$$
\begin{aligned}
\frac{P(C \mid T)}{P(G \mid T)} & =\frac{P(T \mid C) P(C)}{P(T)} \cdot \frac{P(T)}{P(T \mid G) P(G)} \\
& =\frac{P(T \mid C) P(C)}{P(T \mid G) P(G)}=\frac{0.4 \cdot 0.1}{0.7 \cdot 0.02} \\
& =28.57
\end{aligned}
$$

Normalization

If we are interested in the absolute probability of $P(C \mid T)$ but do not know $P(T)$, we may conduct a complete case analysis (according C) and exploit the fact that $P(C \mid T)+P(\neg C \mid T)=1$.

$$
\begin{aligned}
P(C \mid T) & =\frac{P(T \mid C) P(C)}{P(T)} \\
P(\neg C \mid T) & =\frac{P(T \mid \neg C) P(\neg C)}{P(T)} \\
1=P(C \mid T)+P(\neg C \mid T) & =\frac{P(T \mid C) P(C)}{P(T)}+\frac{P(T \mid \neg C) P(\neg C)}{P(T)} \\
P(T) & =P(T \mid C) P(C)+P(T \mid \neg C) P(\neg C)
\end{aligned}
$$

Normalization

- Plugging into the equation for $P(C \mid T)$ yields:

$$
P(C \mid T)=\frac{P(T \mid C) P(C)}{P(T \mid C) P(C)+P(T \mid \neg C) P(\neg C)}
$$

- For general random variables, the equation reads:

$$
P(Y=y \mid X=x)=\frac{P(X=x \mid Y=y) P(Y=y)}{\sum_{\forall y^{\prime} \in \operatorname{dom}(Y)} P\left(X=x \mid Y=y^{\prime}\right) P\left(Y=y^{\prime}\right)}
$$

- Note the "loop variable" y^{\prime}. Do not confuse with y.

Multiple Evidences

- The patient complains about a toothache. From this first evidence the dentist infers:

$$
P(\text { cavity } \mid \text { toothache })=0.8
$$

- The dentist palpates the tooth with a metal probe which catches into a fracture:

$$
P(\text { cavity } \mid \text { fracture })=0.95
$$

- Both conclusions might be inferred via Bayes rule. But what does the combined evidence yield? Using Bayes rule further, the dentist might want to determine:

$$
P(\text { cavity } \mid \text { toothache } \wedge \text { fracture })=\frac{P(\text { toothache } \wedge \text { fracture } \mid \text { cavity }) \cdot P(\text { cavity })}{P(\text { toothache } \wedge \text { fracture })}
$$

Multiple Evidences

Problem:
He needs P (toothache \wedge catch \mid cavity), i. e. diagnostics knowledge for all combinations of symptoms in general. Better incorporate evidences step-by-step:

$$
P(Y \mid X, E)=\frac{P(X \mid Y, E) P(Y \mid E)}{P(X \mid E)}
$$

Abbreviations:

- C - cavity
- T - toothache
- F - fracture

Objective:

Computing $P(C \mid T, F)$ with just causal statements of the form $P(\cdot \mid C)$ and under exploitation of independence relations among the variables.

Multiple Evidences

- A priori:

$$
P(C)
$$

- Evidence toothache: $\quad P(C \mid T) \quad=P(C) \frac{P(T \mid C)}{P(T)}$
- Evidence fracture: $\quad P(C \mid T, F)=P(C \mid T) \frac{P(F \mid C, T)}{P(F \mid T)}$

$$
\begin{aligned}
T \Perp F \mid C & \Leftrightarrow \quad P(F \mid C, T)=P(F \mid C) \\
P(C \mid T, F) & =P(C) \frac{P(T \mid C)}{P(T)} \frac{P(F \mid C)}{P(F \mid T)}
\end{aligned}
$$

Seems that we still have to cope with symptom inter-dependencies?!

Multiple Evidences

- Compound equation from last slide:

$$
\begin{aligned}
P(C \mid T, F) & =P(C) \frac{P(T \mid C) P(F \mid C)}{P(T) P(F \mid T)} \\
& =P(C) \frac{P(T \mid C) P(F \mid C)}{P(F, T)}
\end{aligned}
$$

- $P(F, T)$ is a normalizing constant and can be computed if $P(F \mid \neg C)$ and $P(T \mid \neg C)$ are known:

$$
P(F, T)=\underbrace{P(F, T \mid C)}_{P(F \mid C) P(T \mid C)} P(C)+\underbrace{P(F, T \mid \neg C)}_{P(F \mid \neg C) P(T \mid \neg C)} P(\neg C)
$$

- Therefore, we finally arrive at the following solution...

Multiple Evidences

$$
P(C \mid F, T)=\frac{\qquad P(C)|P(T \mid C)| P(F \mid C)}{|P(F \mid C)| P(T \mid C)|P(C)+P(F \mid \neg C)| P(T \mid \neg C)}
$$

Note that we only use causal probabilities $P(\cdot \mid C)$ together with the a priori (marginal) probabilities $P(C)$ and $P(\neg C)$.

Multiple Evidences - Summary

Multiple evidences can be treated by reduction on

- a priori probabilities
- (causal) conditional probabilities for the evidence
- under assumption of conditional independence

General rule:

$$
P(Z \mid X, Y)=\alpha P(Z) P(X \mid Z) P(Y \mid Z)
$$

for X and Y conditionally independent given Z and with normalizing constant α.

Monty Hall Puzzle

Marylin Vos Savant in her riddle column in the New York Times:
You are a candidate in a game show and have to choose between three doors. Behind one of them is a Porsche, whereas behind the other two there are goats. After you chose a door, the host Monty Hall (who knows what is behind each door) opens another (not your chosen one) door with a goat. Now you have the choice between keeping your chosen door or choose the remaining one.

Which decision yields the best chance of winning the Porsche?

Monty Hall Puzzle

$G \quad$ You win the Porsche.
$R \quad$ You revise your decision.
$A \quad$ Behind your initially chosen door is (and remains) the Porsche.

$$
\begin{aligned}
P(G \mid R) & =P(G, A \mid R)+P(G, \bar{A} \mid R) \\
& =P(G \mid A, R) P(A \mid R)+P(G \mid \bar{A}, R) P(\bar{A} \mid R) \\
& =0 \cdot P(A \mid R)+1 \cdot P(\bar{A} \mid R) \\
& =P(\bar{A} \mid R)=P(\bar{A})=\frac{2}{3} \\
P(G \mid \bar{R}) & =P(G, A \mid \bar{R})+P(G, \bar{A} \mid \bar{R}) \\
& =P(G \mid A, \bar{R}) P(A \mid \bar{R})+P(G \mid \bar{A}, \bar{R}) P(\bar{A} \mid \bar{R}) \\
& =1 \cdot P(A \mid \bar{R})+0 \cdot P(\bar{A} \mid \bar{R}) \\
& =P(A \mid \bar{R})=P(A)=\frac{1}{3}
\end{aligned}
$$

Simpson's Paradox

Example: $\quad C=$ Patient takes medication, $E=$ patient recovers

	E	$\neg E$	\sum	Recovery rate
C	20	20	40	50%
$\neg C$	16	24	40	40%
\sum	36	44	80	

Men	E	$\neg E$	\sum	Rec.rate	Women	E	$\neg E$	\sum	Rec.rate
C	18	12	30	60%	C	2	8	10	20%
$\neg C$	7	3	10	70%	$\neg C$	9	21	30	30%
	25	15	40			11	29	40	

$$
\text { but } \begin{aligned}
P(E \mid C) & >P(E \mid \neg C) \\
P(E \mid C, M) & <P(E \mid \neg C, M) \\
P(E \mid C, W) & <P(E \mid \neg C, W)
\end{aligned}
$$

Probabilistic Reasoning

- Probabilistic reasoning is difficult and may be problematic:
- $P(A \wedge B)$ is not determined simply by $P(A)$ and $P(B)$: $P(A)=P(B)=0.5 \quad \Rightarrow \quad P(A \wedge B) \in[0,0.5]$
- $P(C \mid A)=x, P(C \mid B)=y \quad \Rightarrow \quad P(C \mid A \wedge B) \in[0,1]$

Probabilistic logic is not truth functional!

- Central problem: How does additional information affect the current knowledge? I. e., if $P(B \mid A)$ is known, what can be said about $P(B \mid A \wedge C)$?
- High complexity: n propositions $\rightarrow 2^{n}$ full conjunctives
- Hard to specify these probabilities.

Summary

- Uncertainty is inevitable in complex and dynamic scenarios that force agents to cope with ignorance.
- Probabilities express the agent's inability to vote for a definitive decision. They model the degree of belief.
- If an agent violates the axioms of probability, it may exhibit irrational behavior in certain circumstances.
- The Bayes rule is used to derive unknown probabilities from present knowledge and new evidence.
- Multiple evidences can be effectively included into computations exploiting conditional independencies.

Probabilistic Causal Networks

The Big Objective(s)

In a wide variety of application fields two main problems need to be addressed over and over:

1. How can (expert) knowledge of complex domains be efficiently represented?
2. How can inferences be carried out within these representations?
3. How can such representations be (automatically) extracted from collected data?

We will deal with all three questions during the lecture.

Example 1: Planning in car manufacturing

Available information

- "Engine type e_{1} can only be combined with transmission t_{2} or t_{5}."
- "Transmission t_{5} requires crankshaft c_{2}."
- "Convertibles have the same set of radio options as SUVs."

Possible questions/inferences:

- "Can a station wagon with engine e_{4} be equipped with tire set y_{6} ?"
- "Supplier S_{8} failed to deliver on time. What production line has to be modified and how?"
- "Are there any peculiarities within the set of cars that suffered an aircondition failure?"

Example 2: Medical reasoning

Available information:

- "Malaria is much less likely than flu."
- "Flu causes cough and fever."
- "Nausea can indicate malaria as well as flu."
- "Nausea never indicated pneunomia before."

Possible questions/inferences

- "The patient has fever. How likely is he to have malaria?"
- "How much more likely does flu become if we can exclude malaria?"

Common Problems

Both scenarios share some severe problems:

- Large Data Space

It is intractable to store all value combinations, i. e. all car part combinations or inter-disease dependencies.
(Example: VW Bora has 10^{200} theoretical value combinations*)

- Sparse Data Space

Even if we could handle such a space, it would be extremely sparse, i. e. it would be impossible to find good estimates for all the combinations.
(Example: with 100 diseases and 200 symptoms, there would be about 10^{62} different scenarios for which we had to estimate the probability.*)

* The number of particles in the observable universe is estimated to be between 10^{78} and 10^{85}.

Idea to Solve the Problems

- Given: A large (high-dimensional) distribution δ representing the domain knowledge.
- Desired: A set of smaller (lower-dimensional) distributions $\left\{\delta_{1}, \ldots, \delta_{s}\right\}$ (maybe overlapping) from which the original δ could be reconstructed with no (or as few as possible) errors.
- With such a decomposition we can draw any conclusions from $\left\{\delta_{1}, \ldots, \delta_{s}\right\}$ that could be inferred from δ - without, however, actually reconstructing it.

Example: Car Manufacturing

- Let us consider a car configuration is described by three attributes:
- Engine $E, \operatorname{dom}(E)=\left\{e_{1}, e_{2}, e_{3}\right\}$
- Breaks B, $\operatorname{dom}(B)=\left\{b_{1}, b_{2}, b_{3}\right\}$
- Tires $T, \operatorname{dom}(T)=\left\{t_{1}, t_{2}, t_{3}, t_{4}\right\}$
- Therefore the set of all (theoretically) possible car configurations is:

$$
\Omega=\operatorname{dom}(E) \times \operatorname{dom}(B) \times \operatorname{dom}(T)
$$

- Since not all combinations are technically possible (or wanted by marketing) a set of rules is used to cancel out invalid combinations.

Example: Car Manufacturing

Possible car configurations

- Every cube designates a valid value combination.
- 10 car configurations in our model.
- Different colors are intended to distinguish the cubes only.

Example

- Is it possible to reconstruct δ from the δ_{i} ?

Example: Reconstruction of δ with $\delta_{B E}$ and $\delta_{E T}$

Example: Reconstruction of δ with $\delta_{B E}$ and $\delta_{E T}$

Example: Reconstruction of δ with $\delta_{B E}$ and $\delta_{E T}$

Example - Qualitative Aspects

- Lecture theatre in winter: Waiting for Mr. K and Mr. B. Not clear whether there is ice on the roads.
- 3 variables:
- E road condition: $\operatorname{dom}(E)=\{$ ice,\neg ice $\}$
- K K had an accident: $\quad \operatorname{dom}(\mathrm{K})=\{$ yes, no $\}$
- B B had an accident: $\operatorname{dom}(B)=\{$ yes, no $\}$
- Ignorance about these states is modelled via the observer's belief.

$\downarrow \quad \mathrm{E}$ influences K and B (the more ice the more accidents)
\uparrow Knowledge about accident increases belief in ice

Example

A priori knowledge	Evidence	Inferences
E unknown	B has accident	$\Rightarrow \mathrm{E}=$ ice more likely
		$\Rightarrow \mathrm{K}$ has accident more likely
$\mathrm{E}=\neg$ ice	B has accident	\Rightarrow no change in belief about E
		\Rightarrow no change in belief about accident of K
E unknown		K and B dependent
E known	K and B independent	

Causal Dependence vs. Reasoning

Rule: $\quad A$ entails B
A and $A \xrightarrow{x} B$, therefore B more likely as effect (causality)

- Abduction (\leftarrow) :
B and $A \xrightarrow{x} B$, therefore A more likely as cause (no causality)

For this reason, the notion "dependency model" is to be preferred to "causal network".

Objective

Is it possible to exploit local constraints (wherever they may come from - both structural and expert knowledge-based) in a way that allows for a decomposition of the large (intractable) distribution $P\left(X_{1}, \ldots, X_{n}\right)$ into several sub-structures $\left\{C_{1}, \ldots, C_{m}\right\}$ such that:

- The collective size of those sub-structures is much smaller than that of the original distribution P.
- The original distribution P is recomposable (with no or at least as few as possible errors) from these sub-structures in the following way:

$$
P\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{m} \Psi_{i}\left(c_{i}\right)
$$

where c_{i} is an instantiation of C_{i} and $\Psi_{i}\left(c_{i}\right) \in \mathbb{R}^{+}$a factor potential.

The Big Picture / Lecture Roadmap

Probabilistic Causal Networks

Probabilistic causal networks are directed acyclic graphs (DAGs) where the nodes represent propositions or variables and the directed edges model a direct causal dependence between the connected nodes. The strength of dependence is defined by conditional probabilities.

In general (according chain rule):

$$
\begin{aligned}
P\left(X_{1}, \ldots, X_{6}\right)= & P\left(X_{6} \mid X_{5}, \ldots, X_{1}\right) \\
& P\left(X_{5} \mid X_{4}, \ldots, X_{1}\right) \\
& P\left(X_{4} \mid X_{3}, X_{2}, X_{1}\right) \\
& P\left(X_{3} \mid X_{2}, X_{1}\right) \\
& P\left(X_{2} \mid X_{1}\right) \\
& P\left(X_{1}\right)
\end{aligned}
$$

Probabilistic Causal Networks

Probabilistic causal networks are directed acyclic graphs (DAGs) where the nodes represent propositions or variables and the directed edges model a direct causal dependence between the connected nodes. The strength of dependence is defined by conditional probabilities.

According graph (independence structure):

$$
\begin{aligned}
P\left(X_{1}, \ldots, X_{6}\right)= & P\left(X_{6} \mid X_{5}\right) \\
& P\left(X_{5} \mid X_{2}, X_{3}\right) \\
& P\left(X_{4} \mid X_{2}\right) \\
& P\left(X_{3} \mid X_{1}\right) \\
& P\left(X_{2} \mid X_{1}\right) \\
& P\left(X_{1}\right)
\end{aligned}
$$

Formal Framework

Nomenclature for the next slides:

- X_{1}, \ldots, X_{n}

Variables
(properties, attributes, random variables, propositions)

- $\Omega_{1}, \ldots, \Omega_{n}$
respective finite domains
(also designated with $\operatorname{dom}\left(X_{i}\right)$)
- $\Omega={\underset{i=1}{X} \Omega_{i}, ~}_{\text {in }}$

Universe of Discourse (tuples that characterize objects described by X_{1}, \ldots, X_{n})

- $\Omega_{i}=\left\{x_{i}^{(1)}, \ldots, x_{i}^{\left(n_{i}\right)}\right\} \quad n=1, \ldots, n, n_{i} \in \mathbb{N}$

Formal Framework

- Let Ω^{*} be the real universe of objects under consideration (e.g. population of people, collection of cars, customer transactions, etc.). Then the random vector $\vec{X}=\left(X_{1}, \ldots, X_{n}\right)$ describes each element $\omega^{*} \in \Omega^{*}$ in terms of the universe of discourse Ω :

$$
\vec{X}: \Omega^{*} \rightarrow \Omega \quad \text { with } \quad \vec{X}\left(\omega^{*}\right)=\left(X_{1}\left(\omega^{*}\right), \ldots, X_{n}\left(\omega^{*}\right)\right)
$$

- If $\left(\Omega^{*}, \mathcal{E}, Q\right)$ is an intrinsic probability space acting in the background, then it induces - in combination with \vec{X} - a probability measure P over Ω :

$$
\begin{aligned}
& \forall\left(x_{1}, \ldots, x_{n}\right) \in \Omega: \\
& P\left(\left\{\left(x_{1}, \ldots, x_{n}\right)\right\}\right)=P\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right) \\
&=Q\left(\left\{\omega^{*} \in \Omega^{*} \mid \bigwedge_{i=1}^{n} X_{i}=x_{i}\right\}\right)
\end{aligned}
$$

Formal Framework

- The product space $\left(\Omega, 2^{\Omega}, P\right)$ is unique iff $P\left(\left\{\left(x_{1}, \ldots, x_{n}\right)\right\}\right)$ is specified for all $x_{i} \in\left\{x_{i}^{(1)}, \ldots, x_{i}^{\left(n_{i}\right)}\right\}, i=1, \ldots, n$.
- When the distribution $P\left(X_{1}, \ldots, X_{n}\right)$ is given in tabular form, then $\prod_{i=1}^{n}\left|\Omega_{i}\right|$ entries are necessary.
- For variables with $\left|\Omega_{i}\right| \geq 2$ at least 2^{n} entries.
- The application of DAGs allows for the representation of existing (in)dependencies.

Constructing a DAG

input $P\left(X_{1}, \ldots, X_{n}\right)$
output a unique DAG G
1: Set the nodes of G to $\left\{X_{1}, \ldots, X_{n}\right\}$.
2: Choose a total ordering on the set of variables (e.g. $X_{1} \prec X_{2} \prec \cdots \prec X_{n}$)

3: For X_{i} find the smallest (uniquely determinable) set $S_{i} \subseteq\left\{X_{1}, \ldots, X_{n}\right\}$ sucht that $P\left(X_{i} \mid S_{i}\right)=P\left(X_{i} \mid X_{1} \ldots, X_{i-1}\right)$.
4: Connect all nodes in S_{i} with X_{i} and store $P\left(X_{i} \mid S_{i}\right)$ as quantization of the dependencies for that node X_{i} (given its parents).
return G

Belief Network

- A Belief Network (V, E, P) consists of a set $V=\left\{X_{1}, \ldots, X_{n}\right\}$ of random variables and a set E of directed edges between the variables.
- Each variable has a finite set of mutual exclusive and collectively exhaustive states.
- The variables in combination with the edges form a directed, acyclich graph.
- Each variable with parent nodes B_{1}, \ldots, B_{m} is assigned a potential table $P\left(A \mid B_{1}, \ldots, B_{m}\right)$.
- Note, that the connections between the nodes not necessarily express a causal relationship.
- For every belief network, the following equation holds:

$$
P(V)=\prod_{v \in V: P(c(v))>0} P(v \mid c(v))
$$

with $c(v)$ being the parent nodes of v.

Example

- Let a_{1}, a_{2}, a_{3} be three blood groups and b_{1}, b_{2}, b_{3} three indications of a blood group test.

$$
\begin{array}{lll}
\text { Variables: } & A \text { (blood group) } & B \text { (indication) } \\
\text { Domains: } & \Omega_{A}=\left\{a_{1}, a_{2}, a_{3}\right\} & \Omega_{B}=\left\{b_{1}, b_{2}, b_{3}\right\}
\end{array}
$$

- It is conjectured that there is a causal relationship between the variables.
- A and B constitute random variables w.r.t. $\left(\Omega^{*}, \mathcal{E}, Q\right)$.

$$
\Omega=\Omega_{A} \times \Omega_{B} \quad A: \Omega^{*} \rightarrow \Omega_{A}, \quad B: \Omega^{*} \rightarrow \Omega_{B}
$$

- A, B and $\left(\Omega^{*}, \mathcal{E}, Q\right)$ induce the probability space $\left(\Omega, 2^{\Omega}, P\right)$ with

$$
P(\{(a, b)\})=Q\left(\left\{\omega^{*} \in \Omega^{*} \mid A\left(\omega^{*}\right)=a \wedge B\left(\omega^{*}\right)=b\right\}\right):
$$

$P\left(\left\{\left(a_{i}, b_{j}\right)\right\}\right)$	b_{1}	b_{2}	b_{3}	\sum
a_{1}	0.64	0.08	0.08	0.8
a_{2}	0.01	0.08	0.01	0.1
a_{3}	0.01	0.01	0.08	0.1
\sum	0.66	0.17	0.17	1

$$
\begin{aligned}
& A \\
& P(A, B)=P(B \mid A) \cdot P(A)
\end{aligned}
$$

We are dealing with a belief network.

Example

Choice of universe of discourse

	Variable	Domain	
A	metastatic cancer	$\left\{a_{1}, a_{2}\right\}$	
B	increased serum calcium	$\left\{b_{1}, b_{2}\right\}$	$\left(\cdot{ }_{1}\right.$ - present, $\cdot 2$ - absent $)$
C	brain tumor	$\left\{c_{1}, c_{2}\right\}$	$\Omega=\left\{a_{1}, a_{2}\right\} \times \cdots \times\left\{e_{1}, e_{2}\right\}$
D	coma	$\left\{d_{1}, d_{2}\right\}$	$\|\Omega\|=32$
E	headache	$\left\{e_{1}, e_{2}\right\}$	

Analysis of dependencies

Example

Choice of probability parameters

$$
\begin{aligned}
& P(a, b, c, d, e) \stackrel{\text { abbr. }}{=} P(A=a, B=b, C=c, D=d, E=e) \\
& \quad=P(e \mid c) P(d \mid b, c) P(c \mid a) P(b \mid a) P(a)
\end{aligned} \quad \begin{aligned}
& \quad=\quad \text { Shorthand notation }
\end{aligned}
$$

- 11 values to store instead of 31
- Consult experts, textbooks, case studies, surveys, etc.

Calculation of conditional probabilities
Calculation of marginal probabilities

Crux of the Matter

- Knowledge acquisition (Where do the numbers come from?) \rightarrow learning strategies
- Computational complexities
\rightarrow exploit independencies

Problem:

- When does the independency of X and Y given Z hold in (V, E, P) ?
- How can we determine $P(X, Y \mid Z)=P(X \mid Z) P(Y \mid Z)$ solely using the graph structure?

Dependencies

Converging Connection

Meal quality	
A	quality of ingredients
B	cook's skill
C	meal quality

- If C is not instantiated (i. e., no value specified/observed), A and B are marginally independent.
- After instantiation (observation) of C the variables A and B become conditionally dependent given C.
- Evidence can only be transferred over a converging connection if the variable in between (or one of its successors) is initialized.

Dependencies

Converging Connection (cont.)

Meal quality	
A	quality of ingredients
B	cook's skill
C	meal quality
D	restaurant success

- If nothing is known about the restaurant success or meal quality or both, the cook's skills and quality of the ingredients are unrelated, thas is, independent.
- However, if we observe that the restaurant has no success, we can infer that the meal quality might be bad.
- If we further learn that the ingredients quality is high, we will conclude that the cook's skills must be low, thus rendering both variables dependent.

Dependencies

Diverging Connection

Diagnosis	
A	body temperature
B	cough
C	disease

- If C is unknown, knowledge about A ist relevant for B and vice versa, i. e. A and B are marginally dependent.
- However, if C is observed, A and B become conditionally independent given C.
- A influences B via C. If C is known it in a way blocks the information from flowing from A to B, thus rendering A and B (conditionally) independent.

Dependencies

Serial Connection

Accidents	
A	rain
B	accident risk
C	road conditions

- Analog scenario to case 2
- A influences C and C influences B. Thus, A influences B. If C is known, it blocks the path between A and B.

Formal Representation

Converging Connection: Marginal Independence

- Decomposition according to graph:

$$
P(A, B, C)=P(C \mid A, B) \cdot P(A) \cdot P(B)
$$

- Embedded Independence:

$$
\begin{aligned}
P(A, B, C) & =\frac{P(A, B, C)}{P(A, B)} \cdot P(A) \cdot P(B) \quad \text { with } \quad P(A, B) \neq 0 \\
P(A, B) & =P(A) \cdot P(B) \\
& \Rightarrow A \Perp B \mid \emptyset
\end{aligned}
$$

Formal Representation

Diverging Connection: Conditional Independence

- Decomposition according to graph:

$$
P(A, B, C)=P(A \mid C) \cdot P(B \mid C) \cdot P(C)
$$

- Embedded Independence:

$$
\begin{aligned}
P(A, B \mid C) & =P(A \mid C) \cdot P(B \mid C) \\
& \Rightarrow A \Perp B \mid C
\end{aligned}
$$

- Alternative derivation:

$$
\begin{aligned}
P(A, B, C) & =P(A \mid C) \cdot P(B, C) \\
P(A \mid B, C) & =P(A \mid C) \\
& \Rightarrow A \Perp B \mid C
\end{aligned}
$$

Formal Representation

Serial Connection: Conditional Independence

- Decomposition according to graph:

$$
P(A, B, C)=P(B \mid C) \cdot P(C \mid A) \cdot P(A)
$$

- Embedded Independence:

$$
\begin{aligned}
P(A, B, C) & =P(B \mid C) \cdot P(C, A) \\
P(B \mid C, A) & =P(B \mid C) \\
& \Rightarrow A \Perp B \mid C
\end{aligned}
$$

Formal Representation

Trivial Cases:

- Marginal Independence:

$$
\begin{equation*}
\text { (A) B } P(A, B)=P(A) \cdot P(B) \tag{B}
\end{equation*}
$$

- Marginal Dependence:

$$
P(A, B)=P(B \mid A) \cdot P(A)
$$

Question

Question: Are X_{2} and X_{3} independent given X_{1} ?

d-Separation

Let $G=(V, E)$ a DAG and $X, Y, Z \in V$ three nodes.
a) A set $S \subseteq V \backslash\{X, Y\} d$-separates X and Y, if S blocks all paths between X and Y. (paths may also route in opposite edge direction)
b) A path π is d-separated by S if at least one pair of consecutive edges along π is blocked. There are the following blocking conditions:

1. $X \leftarrow Y \rightarrow Z \quad$ tail-to-tail
2. $\begin{aligned} & X \leftarrow Y \leftarrow Z \quad \text { head-to-tail } \\ & X \rightarrow Y \rightarrow Z\end{aligned}$
3. $X \rightarrow Y \leftarrow Z \quad$ head-to-head
c) Two edges that meet tail-to-tail or head-to-tail in node Y are blocked if $Y \in S$.
d) Two edges meeting head-to-head in Y are blocked if neither Y nor its successors are in S.

Relation to Conditional independence

If $S \subseteq V \backslash\{X, Y\}$ d-separates X and Y in a Belief network (V, E, P) then X and Y are conditionally independent given S :

$$
P(X, Y \mid S)=P(X \mid S) \cdot P(Y \mid S)
$$

Application to the previous example:

Paths: $\quad \pi_{1}=\left\langle X_{2}-X_{1}-X_{3}\right\rangle, \pi_{2}=\left\langle X_{2}-X_{5}-X_{3}\right\rangle$ $\pi_{3}=\left\langle X_{2}-X_{4}-X_{1}-X_{3}\right\rangle, \quad S=\left\{X_{1}\right\}$
$\pi_{1} \quad X_{2} \leftarrow X_{1} \rightarrow X_{3}$ tail-to-tail
$X_{1} \in S \Rightarrow \pi_{1}$ is blocked by S
$\pi_{2} \quad X_{2} \rightarrow X_{5} \leftarrow X_{3}$ head-to-head
$X_{5}, X_{6} \notin S \Rightarrow \pi_{2}$ is blocked by S
$\pi_{3} \quad X_{4} \leftarrow X_{1} \rightarrow X_{3}$ tail-to-tail
$X_{2} \rightarrow X_{4} \leftarrow X_{1}$ head-to-head
both connections are blocked $\Rightarrow \pi_{3}$ is blocked

Example (cont.)

- Answer: X_{2} and X_{3} are d-separated via $\left\{X_{1}\right\}$. Therefore X_{2} and X_{3} become conditionally independent given X_{1}.

$$
\begin{aligned}
& S=\left\{X_{1}, X_{4}\right\} \quad \Rightarrow \quad X_{2} \text { and } X_{3} \text { are d-separated by } S \\
& S=\left\{X_{1}, X_{6}\right\} \quad \Rightarrow \quad X_{2} \text { and } X_{3} \text { are not d-separated by } S
\end{aligned}
$$

Another Example

Are A and L conditionally independent given $\{B, M\}$?

Algebraic structure of CI statements

Question: Is it possible to use a formal scheme to infer new conditional independence (CI) statements from a set of initial CIs?

Repetition

Let (Ω, \mathcal{E}, P) be a probability space and W, X, Y, Z disjoint subsets of variables. If X and Y are conditionally independent given Z we write:

$$
X \Perp_{P} Y \mid Z
$$

Often, the following (equivalent) notation is used:

$$
I_{P}(X|Z| Y) \text { or } I_{P}(X, Y \mid Z)
$$

If the underlying space is known the index P is omitted.

(Semi-)Graphoid-Axioms

Let (Ω, \mathcal{E}, P) be a probability space and W, X, Y and Z four disjoint subsets of random variables (over Ω). Then the propositions
a) Symmetry: $\quad\left(X \Perp_{P} Y \mid Z\right) \Rightarrow\left(Y \Perp_{P} X \mid Z\right)$
b) Decomposition: $\left(W \cup X \Perp_{P} Y \mid Z\right) \Rightarrow\left(W \Perp_{P} Y \mid Z\right) \wedge\left(X \Perp_{P} Y \mid Z\right)$
c) Weak Union: $\quad\left(W \cup X \Perp_{P} Y \mid Z\right) \Rightarrow\left(X \Perp_{P} Y \mid Z \cup W\right)$
d) Contraction: $\quad\left(X \Perp_{P} Y \mid Z \cup W\right) \wedge\left(W \Perp_{P} Y \mid Z\right) \Rightarrow\left(W \cup X \Perp_{P} Y \mid Z\right)$
are called the Semi-Graphoid Axioms. The above propositions and
e) Intersection: $\quad\left(W \Perp_{P} Y \mid Z \cup X\right) \wedge\left(X \Perp_{P} Y \mid Z \cup W\right) \Rightarrow\left(W \cup X \Perp_{P} Y \mid Z\right)$
are called the Graphoid Axioms.

Decomposition

Drawings adapted from [Castillo et al. 1997].

Weak Union

Learning irrelevant information W cannot render irrelevant information X relevant.

Contraction

If X is irrelevant (to Y) after having learnt some irrelevant information W , then X must have been irrelevant before.

Intersection

Unless W affects Y when X is known or X affects Y when W is known, neither X nor W nor their combination can affect Y.

Drawings adapted from [Castillo et al. 1997].

Example

Proposition: $B \Perp C \mid A$

Conditional (In)Dependence Graphs

Definition: Let $\left(\cdot \Perp_{\delta} \cdot \mid \cdot\right)$ be a three-place relation representing the set of conditional independence statements that hold in a given distribution δ over a set U of attributes. An undirected graph $G=(U, E)$ over U is called a conditional dependence graph or a dependence map w.r.t. δ, iff for all disjoint subsets $X, Y, Z \subseteq U$ of attributes

$$
X \Perp_{\delta} Y \mid Z \Rightarrow\langle X| Z|Y\rangle_{G}
$$

i. e., if G captures by u-separation all (conditional) independences that hold in δ and thus represents only valid (conditional) dependences. Similarly, G is called a conditional independence graph or an independence map w.r.t. δ, iff for all disjoint subsets $X, Y, Z \subseteq U$ of attributes

$$
\langle X| Z|Y\rangle_{G} \Rightarrow X \Perp_{\delta} Y \mid Z
$$

i. e., if G captures by u-separation only (conditional) independences that are valid in δ. G is said to be a perfect map of the conditional (in)dependences in δ, if it is both a dependence map and an independence map.

Markov Properties of Undirected Graphs

Definition: An undirected graph $G=(U, E)$ over a set U of attributes is said to have (w.r.t. a distribution δ) the

pairwise Markov property,

iff in δ any pair of attributes which are nonadjacent in the graph are conditionally independent given all remaining attributes, i.e., iff

$$
\forall A, B \in U, A \neq B: \quad(A, B) \notin E \Rightarrow A \Perp_{\delta} B \mid U-\{A, B\},
$$

local Markov property,

iff in δ any attribute is conditionally independent of all remaining attributes given its neighbors, i.e., iff

$$
\forall A \in U: \quad A \Perp_{\delta} U-\operatorname{closure}(A) \mid \text { boundary }(A),
$$

global Markov property,

iff in δ any two sets of attributes which are u-separated by a third are conditionally independent given the attributes in the third set, i.e., iff

$$
\forall X, Y, Z \subseteq U: \quad\langle X| Z|Y\rangle_{G} \Rightarrow X \Perp_{\delta} Y \mid Z
$$

Markov Properties of Directed Acyclic Graphs

Definition: A directed acyclic graph $\vec{G}=(U, \vec{E})$ over a set U of attributes is said to have (w.r.t. a distribution δ) the

pairwise Markov property,

iff in δ any attribute is conditionally independent of any non-descendant not among its parents given all remaining non-descendants, i.e., iff

$$
\forall A, B \in U: B \in \operatorname{non}-\operatorname{descs}(A)-\operatorname{parents}(A) \Rightarrow A \Perp_{\delta} B \mid \operatorname{non-descs}(A)-\{B\}
$$

local Markov property,

iff in δ any attribute is conditionally independent of all remaining non-descendants given its parents, i.e., iff

$$
\forall A \in U: \quad A \Perp_{\delta} \operatorname{non}-\operatorname{descs}(A)-\operatorname{parents}(A) \mid \operatorname{parents}(A)
$$

global Markov property,

iff in δ any two sets of attributes which are d-separated by a third are conditionally independent given the attributes in the third set, i.e., iff

$$
\forall X, Y, Z \subseteq U: \quad\langle X| Z|Y\rangle_{\vec{G}} \Rightarrow X \Perp_{\delta} Y \mid Z
$$

Propagation in Belief Networks

Objective

- Given:

Belief network (V, E, P) with tree structure and $P(V)>0$. Set $W \subseteq V$ of instantiated variables where a priori knowledge $W \neq \emptyset$ is allowed

- Desired: $\quad P(B \mid W)$ for all $B \in V$
- Notation: W_{B}^{-}subset of those variables of W that belong to the subtree of (V, E) that has root B
$W_{B}^{+}=W \backslash W_{B}^{-}$
$s(B)$ set of direct successors of B
$\Omega_{B} \quad$ domain of B
$b^{*} \quad$ value that B is instantiated with

Example

Decomposition in the Tree

$$
\begin{aligned}
P(B=b \mid W) & =P\left(b \mid W_{B}^{-} \cup W_{B}^{+}\right) \quad \text { with } B \notin W \\
& =\frac{P\left(W_{B}^{-} \cup W_{B}^{+} \cup\{b\}\right)}{P\left(W_{B}^{-} \cup W_{B}^{+}\right)} \\
& =\frac{P\left(W_{B}^{-} \cup W_{B}^{+} \mid b\right) P(b)}{P\left(W_{B}^{-} \cup W_{B}^{+}\right)} \\
& =\frac{P\left(W_{B}^{-} \mid b\right) P\left(W_{B}^{+} \mid b\right) P(b)}{P\left(W_{B}^{-} \cup W_{B}^{+}\right)} \\
& =\beta_{B, W} \underbrace{P\left(W_{B}^{-} \mid b\right)}_{\text {Evidence from "below" Evidence from "above" }} \underbrace{P\left(b \mid W_{B}^{+}\right)}
\end{aligned}
$$

π - and λ-Values

Since we ignore the constant $\beta_{B, W}$ for the derivations below, the following designations are used instead of $P(\cdot)$:
π-values and λ-values
Let $B \in V$ be a variable and $b \in \Omega_{B}$ a value of its domain. We define the π - and λ-values as follows:

$$
\begin{aligned}
& \lambda(b)=\left\{\begin{array}{cl}
P\left(W_{B}^{-} \mid b\right) & \text { if } B \notin W \\
1 & \text { if } B \in W \wedge b^{*}=b \\
0 & \text { if } B \in W \wedge b^{*} \neq b
\end{array}\right. \\
& \pi(b)=P\left(b \mid W_{B}^{+}\right)
\end{aligned}
$$

$$
\begin{array}{rlrl}
\lambda(b) & =\prod_{C \in s(B)} P\left(W_{C}^{-} \mid b\right) & & \text { if } B \in W \\
\lambda(b) & =1 & & \text { if } B \text { leaf ir } \\
\pi(b) & =P(b) & & \text { if } B \text { root i } \\
P(b \mid W) & =\alpha_{B, W} \cdot \lambda(b) \cdot \pi(b) &
\end{array}
$$

λ-Message

λ-message

Let $B \in V$ be an attribute and $C \in s(B)$ its direct children with the respective domains $\operatorname{dom}(B)=\left\{B_{1}, \ldots, b_{i}, \ldots, b_{k}\right\}$ and $\operatorname{dom}(C)=\left\{c_{1}, \ldots, c_{j}, \ldots, c_{m}\right\}$.

$$
\lambda_{C \rightarrow B}\left(b_{i}\right) \stackrel{\text { Def }}{=} \sum_{j=1}^{m} P\left(c_{j} \mid b_{i}\right) \cdot \lambda\left(c_{j}\right), \quad i=1, \ldots, k
$$

The vector

$$
\vec{\lambda}_{C \rightarrow B} \stackrel{\text { Def }}{=}\left(\lambda_{C \rightarrow B}\left(b_{i}\right)\right)_{i=1}^{k}
$$

is called λ-message from C to B.

λ-Message

Let $B \in V$ an attribute an $b \in \operatorname{dom}(B)$ a value of its domain. Then

$$
\lambda(b)=\left\{\begin{array}{lll}
\rho_{B, W} \cdot \prod_{C \in s(B)} \lambda_{C}(b) & \text { if } B \notin W \\
1 & & \text { if } B \in W \wedge b=b^{*} \\
0 & \text { if } B \in W \wedge b \neq b^{*}
\end{array}\right.
$$

with $\rho_{B, W}$ being a positive constant.

π-Message

π-message

Let $B \in V$ be a non-root node in (V, E) and $A \in V$ its parent with domain $\operatorname{dom}(A)=\left\{a_{1}, \ldots, a_{j}, \ldots, a_{m}\right\}$.

$$
\begin{aligned}
& j=1, \ldots, m: \\
& \pi_{A \rightarrow B}\left(a_{j}\right) \stackrel{\text { Def }}{=} \begin{cases}\pi\left(a_{j}\right) \cdot \prod_{C \in s(A) \backslash\{B\}} \lambda_{C}\left(a_{j}\right) & \text { if } A \notin W \\
1 & \text { if } A \in W \wedge a=a^{*} \\
0 & \text { if } A \in W \wedge a \neq a^{*}\end{cases}
\end{aligned}
$$

The vector

$$
\vec{\pi}_{A \rightarrow B} \stackrel{\text { Def }}{=}\left(\pi_{A \rightarrow B}\left(a_{j}\right)\right)_{j=1}^{m}
$$

is called π-message from A to B.

π-Message

Let $B \in V$ be a non-root node in (V, E) and A the parent node of B. Further let $b \in \operatorname{dom}(B)$ be a value of B 's domain.

$$
\pi(b)=\mu_{B, W} \cdot \sum_{a \in \operatorname{dom}(A)} P(b \mid a) \cdot \pi_{A \rightarrow B}(a)
$$

Let $A \notin W$ a non-instantiated attribute and $P(V)>0$.

$$
\begin{aligned}
\pi_{A \rightarrow B}\left(a_{j}\right) & =\pi\left(a_{j}\right) \cdot \prod_{C \in s(A) \backslash\{B\}} \lambda_{C \rightarrow A}\left(a_{j}\right) \\
& =\tau_{B, W} \cdot \frac{P\left(a_{j} \mid W\right)}{\lambda_{B \rightarrow A}\left(a_{j}\right)}
\end{aligned}
$$

Propagation in Belief Trees

Belief Tree:

Parameters:

$$
\begin{array}{rl}
P\left(a_{1}\right)=0.1 & P\left(b_{1} \mid a_{1}\right)=0.7 \\
& P\left(b_{1} \mid a_{2}\right)=0.2 \\
P\left(d_{1} \mid a_{1}\right)=0.8 & P\left(c_{1} \mid b_{1}\right)=0.4 \\
P\left(d_{1} \mid a_{2}\right)=0.4 & P\left(c_{1} \mid b_{2}\right)=0.001
\end{array}
$$

Desired:
$\forall X \in\{A, B, C, D\}: P(X \mid \emptyset)=?$

Propagation in Belief Trees (2)

Belief Tree:

Initialization Phase:

- Set all λ-messages and λ-values to 1 .

Propagation in Belief Trees (3)

Belief Tree:

Initialization Phase:

- Set all λ-messages and λ-values to 1 .
- $\pi\left(a_{1}\right)=P\left(a_{1}\right)$ and $\pi\left(a_{2}\right)=P\left(a_{2}\right)$

Propagation in Belief Trees (4)

Belief Tree:

Initialization Phase:

- Set all λ-messages and λ-values to 1 .
- $\pi\left(a_{1}\right)=P\left(a_{1}\right)$ and $\pi\left(a_{2}\right)=P\left(a_{2}\right)$.
- A sends π-messages to B and D.

Propagation in Belief Trees (5)

Belief Tree:

Initialization Phase:

- Set all λ-messages and λ-values to 1 .
- $\pi\left(a_{1}\right)=P\left(a_{1}\right)$ and $\pi\left(a_{2}\right)=P\left(a_{2}\right)$.
- A sends π-messages to B and D.
- B and D update their π-values.

Propagation in Belief Trees (6)

Belief Tree:

Initialization Phase:

- Set all λ-messages and λ-values to 1 .
- $\pi\left(a_{1}\right)=P\left(a_{1}\right)$ and $\pi\left(a_{2}\right)=P\left(a_{2}\right)$.
- A sends π-messages to B and D.
- B and D update their π-values.
- B sends π-message to C.

Propagation in Belief Trees (7)

Belief Tree:

Initialization Phase:

- Set all λ-messages and λ-values to 1 .
- $\pi\left(a_{1}\right)=P\left(a_{1}\right)$ and $\pi\left(a_{2}\right)=P\left(a_{2}\right)$.
- A sends π-messages to B and D.
- B and D update their π-values.
- B sends π-message to C.
- C updates it π-value.

Propagation in Belief Trees (8)

Belief Tree:

Initialization Phase:

- Set all λ-messages and λ-values to 1 .
- $\pi\left(a_{1}\right)=P\left(a_{1}\right)$ and $\pi\left(a_{2}\right)=P\left(a_{2}\right)$.
- A sends π-messages to B and D.
- B and D update their π-values.
- B sends π-message to C.
- C updates it π-value.
- Initialization finished.

Larger Network (1): Parameters

Larger Network (2): After Initialization

Larger Network (3): Set Evidence e_{1}, g_{1}, h_{1}

Larger Network (4): Propagate Evidence

Larger Network (5): Propagate Evidence, cont.

Larger Network (6): Propagate Evidence, cont.

Larger Network (7): Propagate Evidence, cont.

Larger Network (8): Propagate Evidence, cont.

Larger Network (9): Propagate Evidence, cont.

Larger Network (10): Propagate Evidence, cont.

Larger Network (11): Propagate Evidence, cont.

Larger Network (12): Propagate Evidence, cont.

Larger Network (13): Propagate Evidence, cont.

Larger Network (14): Propagate Evidence, cont.

Larger Network (15): Finished

Propagation in Clique Trees

Problems

- The propagation algorithm as presented can only deal with trees.
- Can be extended to polytrees (i.e. singly connected graphs with multiple parents per node).
- However, it cannot handle networks that contain loops!

Idea

Main Objectives:

- Transform the cyclic directed graph into a secondary structure without cycles.
- Find a decomposition of the underlying joint distribution.

Task:

- Combine nodes of the original (primary) graph structure.
- These groups form the nodes of a secondary structure.
- Find a transformation that yields tree structure.

Idea (2)

Secondary Structure:

- We will generate an undirected graph mimicking (some of) the conditional independence statements of the cyclic directed graph.
- Maximal cliques are identified and form the nodes of the secondary structure.
- Specify a so-called potential function for every clique such that the product of all potentials yields the initial joint distribution.
- In order to propagate evidence, create a tree from the clique nodes such that the following property is satisfied:

If two cliques have some attributes in common, then these attributes have to be contained in every clique of the path connecting the two cliques. (called the running intersection property, RIP)

Justification:

- Tree: Unique path of evidence propagation.
- RIP: Update of an attribute reaches all cliques which contain it.

Prerequisites

Complete Graph

An undirected Graph $G=(V, E)$ is called complete, if every pair of (distinct) nodes is connected by an edge.

Induced Subgraph

Let $G=(V, E)$ be an undirected graph and $W \subseteq V$ a selection of nodes. Then, $G_{W}=\left(W, E_{W}\right)$ is called the subgraph of G induced by W with E_{W} being

$$
E_{W}=\{(u, v) \in E \mid u, v \in W\}
$$

Incomplete graph

Subgraph $\left(W, E_{W}\right)$ with $W=\{A, B, C, E\}$

Complete (sub)graph

Prerequisites (2)

Complete Set, Clique

Let $G=(V, E)$ be an undirected graph. A set $W \subseteq V$ is called complete iff it induces a complete subgraph. It is further called a clique, iff W is maximal, i.e. it is not possible to add a node to W without violating the completeness condition.
a) W is complete $\Leftrightarrow W$ induces a complete subgraph
b) W is a clique $\Leftrightarrow W$ is complete and maximal

$$
\begin{aligned}
& C_{1}=\{A, B, C, D\} \\
& C_{2}=\{B, D, E\} \\
& C_{3}=\{E, F\}
\end{aligned}
$$

Prerequisites (3)

Perfect Ordering

Let $G=(V, E)$ be an undirected graph with n nodes and $\alpha=\left\langle v_{1}, \ldots, v_{n}\right\rangle$ a total ordering on V. Then, α is called perfect, if the following sets

$$
\operatorname{adj}\left(v_{i}\right) \cap\left\{v_{1}, \ldots, v_{i-1}\right\} \quad i=1, \ldots, n
$$

are complete, where $\operatorname{adj}\left(v_{i}\right)=\left\{w \mid\left(v_{i}, w\right) \in E\right\}$ returns the adjacent nodes of v_{i}.

i	$\operatorname{adj}\left(v_{i}\right)$	$\operatorname{adj}\left(v_{i}\right) \cap\left\{v_{1}, \ldots, v_{i-1}\right\}$		
1	$\{C\}$	$\{C\} \cap \emptyset$	$=\emptyset$	complete
2	$\{A, D, F\}$	$\{A\} \cap\{A, D, F\}$	$=\{A\}$	complete
3	$\{C, B, E, F\}$	$\{A, C\} \cap\{C, B, E, F\}$	$=\{C\}$	complete
4	$\{G, C, D, E, H\}$	$\{A, C, D\} \cap\{G, C, D, E, H\}$	$=\{C, D\}$	complete
5	$\{B, D, F, H\}$	$\{A, C, D, F\} \cap\{B, D, F, H\}$	$=\{D, F\}$	complete
6	$\{D, E\}$	$\{A, C, D, F, E\} \cap\{D, E\}$	$=\{D, E\}$	complete
7	$\{F, E\}$	$\{A, C, D, F, E, B\} \cap\{F, E\}$	$=\{F, E\}$	complete
8	$\{F\}$	$\{A, C, D, F, E, B, H\} \cap\{F\}$	$=\{F\}$	complete

α is a perfect ordering

Prerequisites (4)

Running Intersection Property

Let $G=(V, E)$ be an undirected graph with p cliques. An ordering of these cliques has the running intersection property (RIP), if for every $j>1$ there exists an $i<j$ such that:

$$
C_{j} \cap\left(C_{1} \cup \cdots \cup C_{j-1}\right) \subseteq C_{i}
$$

C_{6}

j				i
2	$C_{2} \cap C_{1}$	$=\{C\}$	$\subseteq C_{1}$	1
3	$C_{3} \cap\left(C_{1} \cup C_{2}\right)$	$=\{D, F\}$	$\subseteq C_{2}$	2
4	$C_{4} \cap\left(C_{1} \cup C_{2} \cup C_{3}\right)$	$=\{D, E\}$	$\subseteq C_{3}$	3
5	$C_{5} \cap\left(C_{1} \cup C_{2} \cup C_{3} \cup C_{4}\right)$	$=\{E, F\}$	$\subseteq C_{3}$	3
6	$C_{6} \cap\left(C_{1} \cup C_{2} \cup C_{3} \cup C_{4} \cup C_{5}\right)$	$=\{F\}$	$\subseteq C_{5}$	5

ξ has running intersection property

Prerequisites (5)

If a node ordering α of an undirected graph $G=(V, E)$ is perfect and the cliques of G are ordered according to the highest rank (w.r.t. α) of the containing nodes, then this clique ordering has RIP.

Clique	Rank		
$\{A, C\}$	$\max \{\alpha(A), \alpha(C)\}$	$=2$	$\rightarrow C_{1}$
$\{C, D, F\}$	$\max \{\alpha(C), \alpha(D), \alpha(F)\}$	$=4$	$\rightarrow C_{2}$
$\{D, E, F\}$	$\max \{\alpha(D), \alpha(E), \alpha(F)\}$	$=5$	$\rightarrow C_{3}$
$\{B, D, E\}$	$\max \{\alpha(B), \alpha(D), \alpha(E)\}$	$=6$	$\rightarrow C_{4}$
$\{F, E, H\}$	$\max \{\alpha(F), \alpha(E), \alpha(H)\}$	$=7$	$\rightarrow C_{5}$
$\{F, G\}$	$\max \{\alpha(F), \alpha(G)\}$	$=8$	$\rightarrow C_{6}$

How to get a perfect ordering?

Triangulated Graphs

Triangulated Graph

An undirected graph is called triangulated if every simple loop (i. e. path with identical start and end node but with any other node occurring at most once) of length greater 3 has a chord.

not triangulated

triangulated

not triangulated

no chord for $\langle A, B, E, C\rangle$

Triangulated Graphs (2)

Maximum Cardinality Search

Let $G=(V, E)$ be an undirected graph. An ordering according maximum cardinality search (MCS) is obtained by first assigning 1 to an arbitray node. If n numbers are assigned the node that is connected to most of the nodes already numbered gets assigned number $n+1$.

3 can be assigned to D or F
6 can be assigned to H or B

Triangulated Graphs (3)

An undirected graph is triangulated iff the ordering obtained by MCS is perfect.
To check whether a graph is triangulated is efficient to implement. The optimization problem that is related to the triangulation task is NP-hard. However, there are good heuristics.

Moral Graph (Repetition)

Let $G=(V, E)$ be a directed acyclic graph. If $u, w \in W$ are parents of $v \in V$ connect u and w with an (arbitrarily oriented) edge. After the removal of all edge directions the resulting graph $G_{m}=\left(V, E^{\prime}\right)$ is called the moral graph of G.

Join-Tree Construction (1)

Given directed graph.

Join-Tree Construction (2)

- Moral graph

Join-Tree Construction (3)

- Moral graph
- Triangulated graph

Join-Tree Construction (4)

- Moral graph
- Triangulated graph
- MCS yields perfect ordering

Join-Tree Construction (5)

- Moral graph
- Triangulated graph
- MCS yields perfect ordering
- Clique order has RIP

Join-Tree Construction (6)

- Moral graph
- Triangulated graph
- MCS yields perfect ordering
- Clique order has RIP
- Form a join-tree

Two cliques can be connected if they have a non-empty intersection. The generation of the tree follows the RIP. In case of a tie, connect cliques with the largest intersection. (e.g. $D B E-F E D$ instead of $D B E-C F D)$ Break remaining ties arbitrarily.

Example: Expert Knowledge

- Qualitative knowledge:

Metastatic cancer is a possible cause of brain tumor, and is also an explanation for increased total serum calcium. In turn, either of these could explain a patient falling into a coma. Severe headache is also possibly associated with a brain tumor.

- Special case:

The patient has heavy headache.

- Query:

Will the patient fall into coma?

Example: Choice of State Space

Attribute	Possible Values	
A	metastatic cancer	$\operatorname{dom}(A)=\left\{a_{1}, a_{2}\right\}$
$\cdot 1=$ existing		
B	increased total serum calcium	$\operatorname{dom}(B)=\left\{b_{1}, b_{2}\right\}$
$\cdot 2=$ notexisting		
C	brain tumor	$\operatorname{dom}(C)=\left\{c_{1}, c_{2}\right\}$
D	coma	$\operatorname{dom}(D)=\left\{d_{1}, d_{2}\right\}$
E	severe headache	$\operatorname{dom}(E)=\left\{e_{1}, e_{2}\right\}$

Exhaustive state space:

$$
\Omega=\operatorname{dom}(A) \times \operatorname{dom}(B) \times \operatorname{dom}(C) \times \operatorname{dom}(D) \times \operatorname{dom}(E)
$$

Marginal and conditional probabilities have to be specified!

Example: Qualitative Knowledge

$$
\left.\begin{array}{rl}
P\left(e_{1} \mid c_{1}\right) & =0.8 \\
P\left(e_{1} \mid c_{2}\right) & =0.6 \\
P\left(d_{1} \mid b_{1}, c_{1}\right) & =0.8 \\
P\left(d_{1} \mid b_{1}, c_{2}\right) & =0.8 \\
P\left(d_{1} \mid b_{2}, c_{1}\right) & =0.8 \\
P\left(d_{1} \mid b_{2}, c_{2}\right) & =0.05 \\
P\left(b_{1} \mid a_{1}\right) & =0.8 \\
P\left(b_{1} \mid a_{2}\right) & =0.2 \\
P\left(c_{1} \mid a_{1}\right) & =0.2 \\
P\left(c_{1} \mid a_{2}\right) & =0.05 \\
P\left(a_{1}\right) & =0.2 \quad \text { headaches common, but more common if tumor present }
\end{array}\right\} \text { but common consequence of metastases } \quad \text { incrain tumor rare, and uncommon coither cause is present }
$$

Propagation on Cliques (1)

Example: Metastatic Cancer

Dependencies

Moralization/Triangulation

MCS, hyper graph

Clique tree with separator sets

Propagation on Cliques (3)

Quantitative knowledge:

(a, b, c)	$P(a, b, c)$
a_{1}, b_{1}, c_{1}	0.032
a_{2}, b_{1}, c_{1}	0.008
\vdots	\vdots
a_{2}, b_{2}, c_{2}	0.608

(b, c, d)	$P(b, c, d)$
b_{1}, c_{1}, d_{1}	0.032
b_{2}, c_{1}, d_{1}	0.032
\vdots	\vdots
b_{2}, c_{2}, d_{2}	0.608

(c, e)	$P(c, e)$
c_{1}, e_{1}	0.064
c_{2}, e_{1}	0.552
c_{1}, e_{2}	0.016
c_{2}, e_{2}	0.368

Potential representation:

$$
\begin{aligned}
P(A, B, C, D, E,) & =P(A \mid \emptyset) P(B \mid A) P(C \mid A) P(B \mid B C) P(E \mid C) \\
& =\frac{P(A, B, C) P(B, C, D), P(C, E)}{P(B C) P(C)}
\end{aligned}
$$

Propagation on Cliques (4)

Propagation:

- $P\left(d_{1}\right)=0.32, \quad$ evidence $E=e_{1}, \quad$ desired: $\quad P^{*}(\ldots)=P\left(\cdot \mid\left\{e_{1}\right\}\right)$

$$
\begin{array}{lll}
P\left(c \mid e_{1}\right) & =P\left(c \mid e_{1}\right) & \text { conditional marginal distribution } \\
P\left(b, c, d \mid e_{1}\right)=\frac{P(b, c, d)}{P(c)} P\left(c \mid e_{1}\right) & \text { multipl./division with separation prob. } \\
P(b, c), & \text { calculate marginal distributions } \\
P\left(b, c \mid e_{1}\right) & \\
P\left(a, b, c \mid e_{1}\right)=\frac{P(a, b, c)}{P(b, c)} P\left(b, c \mid e_{1}\right) & \text { multipl./division with separation prob. } \\
P\left(d_{1} \mid e_{1}\right) & =P\left(d_{1} \mid e_{1}\right)=0.33 &
\end{array}
$$

Propagation on Cliques (5)

Marginal distributions in the HUGIN tool.

Propagation on Cliques (6)

Conditional marginal distributions with evidence $E=e_{1}$

Factorization

Potential Representation

Let $V=\left\{X_{j}\right\}$ be a set of random variables $X_{j}: \Omega \rightarrow \operatorname{dom}\left(X_{j}\right)$ and P the joint distribution over V. Further, let

$$
\left\{W_{i} \mid W_{i} \subseteq V, 1 \leq i \leq p\right\}
$$

a family of subsets of V with associated functions

$$
\psi_{i}: \underset{X_{j} \in W_{i}}{X} \operatorname{dom}\left(X_{j}\right) \rightarrow \mathbb{R}
$$

It is said that $P(V)$ factorizes according $\left(\left\{W_{1}, \ldots, W_{p}\right\},\left\{\psi_{1}, \ldots, \psi_{p}\right\}\right)$ if $P(V)$ can be written as:

$$
P(v)=k \cdot \prod_{i=1}^{p} \psi_{i}\left(w_{i}\right)
$$

where $k \in \mathbb{R}, w_{i}$ is a realization of W_{i} that meets the values of v.

Example

Factorization of a Belief Network

Let (V, E, P) be an belief network and $\left\{C_{1}, \ldots, C_{p}\right\}$ the cliques of the join tree. For every node $v \in V$ choose a clique C such that v and all of its parents are contained in C, i. e. $\{v\} \cup c(v) \subseteq C$. The chosen clique is designated as $f(v)$.

To arrive at a factorization $\left(\left\{C_{1}, \ldots, C_{p}\right\},\left\{\psi_{1}, \ldots, \psi_{p}\right\}\right)$ of P the factor potentials are:

$$
\psi_{i}\left(c_{i}\right)=\prod_{v: f(v)=C_{i}} P(v \mid c(v))
$$

Separator Sets and Residual Sets

Let $\left\{C_{1}, \ldots, C_{p}\right\}$ be a set of cliques w.r.t. V. The sets

$$
S_{i}=C_{i} \cap\left(C_{1} \cup \cdots \cup C_{i-1}\right), \quad i=1, \ldots, p, \quad S_{1}=\emptyset
$$

are called separator sets with their corresponding residual sets

$$
R_{i}=C_{i} \backslash S_{i}
$$

Decomposition w.r.t. a Join-Tree

- Given a clique ordering $\left\{C_{1}, \ldots, C_{p}\right\}$ that satisfies the RIP, we can easily conclude the following separation statements:

$$
R_{i} \Perp\left(C_{1} \cup \cdots \cup C_{i-1}\right) \backslash S_{i} \mid S_{i} \quad \text { for } i>1
$$

- Hence, we can formulate the following factorization:

$$
P\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{p} P\left(R_{i} \mid S_{i}\right),
$$

which also gives us a representation in terms of conditional probabilities (as for directed graphs before).

Example

$$
\begin{array}{lll}
S_{1}=\emptyset & R_{1}=\{A, B, C\} & f(A)=C_{1} \\
S_{2}=\{B, C\} & R_{2}=\{D\} & f(B)=C_{1} \\
S_{3}=\{C\} & R_{3}=\{E\} & f(C)=C_{1} \\
& & f(D)=C_{2} \\
& & f(E)=C_{3}
\end{array}
$$

$$
\begin{aligned}
& \psi_{1}\left(C_{1}\right)=P(A, B, C \mid \emptyset)=P(A) \cdot P(C \mid A) \cdot P(B \mid A) \\
& \psi_{2}\left(C_{2}\right)=P(D \mid B, C) \\
& \psi_{3}\left(C_{3}\right)=P(E \mid C)
\end{aligned}
$$

Propagation is accomplished by sending messages across the cliques in the tree. The emerging potentials are maintained by each clique.

Propagation in Join Trees

Main Idea

- Incorporate evidence into the clique potentials.
- Since we are dealing with a tree structure, exploit the fact that a clique "separates" all its neighboring cliques (and their respective subtrees) from each other.
- Apply a message passing scheme to inform neighboring cliques about evidence.
- Since we do not have edge directions, we will only need one type of message.
- After having updated all cliques' potentials, we
 marginalize (and normalize) to get the probabilities of single attributes.

Incorporating Evidence

- Every clique C_{i} maintains a potential function ψ_{i}.
- If for an attribute E some evidence e becomes known, we alter all potential functions of cliques containing E as follows:

$$
\psi_{i}^{*}\left(c_{i}\right)= \begin{cases}0, & \text { if a value in } c_{i} \text { is inconsistent with } e \\ \psi_{i}\left(c_{i}\right), & \text { otherwise }\end{cases}
$$

- All other potential functions are unchanged.

Notation and Nomenclature

In general:

- Clique C_{i} has q neighboring cliques B_{1}, \ldots, B_{q}.
- $\mathcal{C}_{i j}$ is the set of cliques in the subtree containing C_{i} after dropping the link to B_{j}.
- $X_{i j}$ is the set of attributes in the cliques of $\mathcal{C}_{i j}$.
- $V=X_{i j} \cup X_{j i}$ (complementary sets)
- $S_{i j}=S_{j i}=C_{i} \cap C_{j}$ (not shown here)
- $R_{i j}=X_{i j} \backslash S_{i j}$ (not shown here)

Here:

- Neighbors of $C_{1}:\left\{C_{2}, C_{4}, C_{3}\right\}, \mathcal{C}_{13}=\left\{C_{1}, C_{2}, C_{4}\right\}$
- $X_{13}=\{A, B, C, D, E, G\}, S_{13}=\{C, G\}$
- $V=X_{13} \cup X_{31}=\{A, B, C, D, E, F, G, H\}$
- $R_{13}=\{A, B, D, E\}, R_{31}=\{F, H\}$

Task: Calculate $P\left(s_{i j}\right)$:

$$
\begin{aligned}
V \backslash S_{i j} & =\left(X_{i j} \cup X_{j i}\right) \backslash S_{i j} \\
= & \left(X_{i j} \backslash S_{i j}\right) \cup\left(X_{j i} \backslash S_{i j}\right) \\
= & R_{i j} \cup R_{j i} \\
V \backslash S_{13} & =\left(X_{13} \cup X_{31}\right) \backslash S_{13} \\
& =R_{13} \cup R_{31} \\
V \backslash\{C, G\} & =\{A, B, D, E\} \cup\{F, H\} \\
& =\{A, B, D, E, F, H\}
\end{aligned}
$$

Note: $R_{i j}$ is the set of attributes that are in C_{i} 's subtree but not in B_{j} 's. Therefore, $R_{i j}$ and $R_{j i}$ are always disjoint.

Task: Calculate $P\left(s_{i j}\right)$:

$$
\begin{aligned}
& P\left(s_{i j}\right)=\sum_{v \backslash s_{i j}} \prod_{k=1}^{m} \psi_{k}\left(c_{k}\right) \\
& \stackrel{\text { last slide }}{=} \sum_{r_{i j} \cup r_{j i}} \prod_{k=1}^{m} \psi_{k}\left(c_{k}\right) \\
& \text { sum rule }\left(\sum_{r_{i j}} \prod_{c_{k} \in \mathcal{C}_{i j}} \psi_{k}\left(c_{k}\right)\right) \cdot\left(\sum_{r_{j i}} \prod_{c_{k} \in \mathcal{C}_{j i}} \psi_{k}\left(c_{k}\right)\right) \\
& \quad=M_{i j}\left(s_{i j}\right) \cdot M_{j i}\left(s_{i j}\right)
\end{aligned}
$$

$M_{i j}$ is the message sent from C_{i} to neighbor B_{j} and vice versa.

Task: Calculate $P\left(c_{i}\right)$:

$$
\begin{aligned}
V \backslash C_{i} & =\left(\bigcup_{k=1}^{q} X_{k i}\right) \backslash C_{i} \\
& =\bigcup_{k=1}^{q}\left(X_{k i} \backslash C_{i}\right) \\
& =\bigcup_{k=1}^{q} R_{k i}
\end{aligned}
$$

Example:

$$
\begin{aligned}
V \backslash C_{1} & =R_{21} \cup R_{41} \cup R_{31} \\
\{A, D, F, H\} & =\{A\} \cup\{D\} \cup\{F, H\}
\end{aligned}
$$

Task: Calculate $P\left(c_{i}\right)$:

$$
\begin{aligned}
P\left(c_{i}\right) & =\underbrace{\sum_{v \backslash c_{i}}}_{\text {Marginalization }} \underbrace{}_{\text {Decomposition }^{\prod_{j=1}^{m} \psi_{j}\left(c_{j}\right)}}=\psi_{i}\left(c_{i}\right) \sum_{v \backslash c_{i}} \prod_{i \neq j} \psi_{j}\left(c_{j}\right) \\
& =\psi_{i}\left(c_{i}\right) \sum_{r_{1 i} \cup \cdots \cup r_{q i}} \prod_{i \neq j} \psi_{j}\left(c_{j}\right) \\
& =\psi_{i}\left(c_{i}\right)(\underbrace{\sum_{c_{k} \in \mathcal{C}_{1 i}} \psi_{k}\left(c_{k}\right)}_{r_{1 i}}) \cdots(\underbrace{\sum_{r_{q i}} \prod_{c_{k} \in \mathcal{C}_{q i}} \psi_{k}\left(c_{k}\right)}_{M_{q i}\left(s_{i j}\right)}) \\
& =\psi_{i}\left(c_{i}\right) \prod_{j=1}^{q} M_{j i}\left(s_{i j}\right)
\end{aligned}
$$

Final Algorithm

- Input:
- Output:

Join tree (\mathcal{C}, Ψ) over set of variables V and evidence $E=e$.
The a-posteriori probability $P\left(x_{i} \mid e\right)$ for every non-evidential X_{i}.

- Initialization: Incorporate evidence $E=e$ into potential functions.
- Iterations:

1. For every clique C_{i} do: For every neighbor B_{j} of C_{i} do: If C_{i} has received all messages from the other neighbors, calculate and send $M_{i j}\left(s_{i j}\right)$ to B_{j}.
2. Repeat step 1 until no message is calculated.
3. Calculate the joint probability distribution for every clique:

$$
P\left(c_{i}\right) \propto \psi_{i}\left(c_{i}\right) \prod_{j=1}^{q} M_{j i}\left(s_{i j}\right)
$$

4. For every $X \in V$ calculate the a-posteriori probability:

$$
P\left(x_{i} \mid e\right)=\sum_{c_{k} \backslash x_{i}} P\left(c_{k}\right)
$$

where C_{k} is the smallest clique containing X_{i}.

Example: Putting it together

Goals: Find the marginal distributions and update them when evidence $H=h_{1}$ becomes known.

Steps:

1. Transform network into join-tree.
2. Specify factor potentials.
3. Propagate "zero" evidence to obtain the marginals before evidence is present.
4. Update factor potentials w.r.t. the evidence and do another propagation run.

Example: Step 1: Find a Join-Tree

Join-Tree creation:

Example: Step 1: Find a Join-Tree

Join-Tree creation:

1. Moralize the graph.

Example: Step 1: Find a Join-Tree

Join-Tree creation:

1. Moralize the graph.
2. Not yet triangulated.

Example: Step 1: Find a Join-Tree

Join-Tree creation:

1. Moralize the graph.
2. Triangulate the graph.

Example: Step 1: Find a Join-Tree

Join-Tree creation:

1. Moralize the graph.
2. Triangulate the graph.
3. Identify the maximal cliques.

Example: Step 1: Find a Join-Tree

Example Bayesian network

One of the join trees

Example: Step 2: Specify the Factor Potentials

Decomposition of $P(A, B, C, D, E, F, G, H)$:

$$
\begin{aligned}
P(a, b, c, d, e, f, g, h)= & \prod_{i=1}^{5} \Psi_{i}\left(c_{i}\right) \\
= & \Psi_{1}(b, c, e, g) \cdot \Psi_{2}(a, b, c) \\
& \cdot \Psi_{3}(c, f, g) \cdot \Psi_{4}(b, d) \\
& \cdot \Psi_{5}(g, f, h)
\end{aligned}
$$

Where to get the factor potentials from?

Example: Step 2: Specify the Factor Potentials

As long as the factor potentials multiply together as on the previous slide, we are free to choose them.

- Option 1: A factor potential of clique C_{i} is the product of all conditional probabilities of all node families properly contained in C_{i} :

$$
\begin{aligned}
& \Psi_{i}\left(c_{i}\right)= 1 \cdot \prod^{\left\{X_{i}\right\} \cup Y_{i} \subseteq C_{i} \wedge} \\
& \operatorname{parents}\left(X_{i}\right)=Y_{i}
\end{aligned}
$$

The 1 stresses that if no node family satisfies the product condition, we assign a constant 1 to the potential.

- Option 2: Choose potentials from the decomposition formula:

$$
P\left(\bigcup_{i=1}^{n} C_{i}\right)=\frac{\prod_{i=1}^{n} P\left(C_{i}\right)}{\prod_{j=1}^{m} P\left(S_{j}\right)}
$$

Example: Step 2: Specify the Factor Potentials

- Option 1: Factor potentials according to the conditional distributions of the node families of the underlying Bayesian network:

$$
\begin{aligned}
\Psi_{1}(b, c, e, g) & =P(e \mid b, c) \cdot P(g \mid e, b) \\
\Psi_{2}(a, b, c) & =P(b \mid a) \cdot P(c \mid a) \cdot P(a) \\
\Psi_{3}(c, f, g) & =P(f \mid c) \\
\Psi_{4}(b, d) & =P(d \mid b) \\
\Psi_{5}(g, f, h) & =P(h \mid g, f)
\end{aligned}
$$

(This assignment of factor potentials is used in this example.)

- Option 2: Factor potentials chosen from the join-tree decomposition:

$$
\begin{aligned}
\Psi_{1}(b, c, e, g) & =P(b, e \mid c, g) \\
\Psi_{2}(a, b, c) & =P(a \mid b, c) \\
\Psi_{3}(c, f, g) & =P(c \mid f, g) \\
\Psi_{4}(b, d) & =P(d \mid b) \\
\Psi_{5}(g, f, h) & =P(h, g, f)
\end{aligned}
$$

Example: Closer Look on Option 2: Separation in a Join-Tree

Encoded independence statements:
Given any separator, the variables in the cliques on one side become independent of the variables in the cliques on the other side.

Example: Closer Look on Option 2: Separation in a Join-Tree

Encoded independence statements:
Given any separator, the variables in the cliques on one side become independent of the variables in the cliques on the other side.

$$
A \Perp D, E, F, G, H \mid B, C
$$

Example: Closer Look on Option 2: Separation in a Join-Tree

Encoded independence statements:
Given any separator, the variables in the cliques on one side become independent of the variables in the cliques on the other side.

$$
\begin{aligned}
& A \Perp D, E, F, G, H \mid B, C \\
& D \Perp A, C, E, F, G, H \mid B
\end{aligned}
$$

Example: Closer Look on Option 2: Separation in a Join-Tree

Encoded independence statements:
Given any separator, the variables in the cliques on one side become independent of the variables in the cliques on the other side.

$$
\begin{array}{r}
A \Perp D, E, F, G, H \mid B, C \\
D \Perp A, C, E, F, G, H \mid B \\
A, B, E, D \Perp F, H \mid G, C
\end{array}
$$

Example: Closer Look on Option 2: Separation in a Join-Tree

Encoded independence statements:
Given any separator, the variables in the cliques on one side become independent of the variables in the cliques on the other side.

$$
\begin{aligned}
A & \Perp D, E, F, G, H \mid B, C \\
D & \Perp A, C, E, F, G, H \mid B \\
A, B, E, D & \Perp F, H \mid G, C \\
H & \Perp A, B, C, D, E \mid F, G
\end{aligned}
$$

Example: Closer Look on Option 2: Decomposition

The four separation statements translate into the following independence statements:

$$
\begin{array}{rlrl}
A \Perp D, E, F, G, H \mid B, C & \Leftrightarrow P(A \mid B, C, D, E, F, G, H) & =P(A \mid B, C) \\
D \Perp A, C, E, F, G, H \mid B & \Rightarrow P(D \mid B, C, E, F, G, H) & =P(D \mid B) \\
A, B, E, D \Perp F, H \mid G, C & \Rightarrow P(B, E \mid G, C, F, H) & =P(B, E \mid G, C) \\
H \Perp A, B, C, D, E \mid F, G & \Rightarrow P(C \mid F, G, H) & & =P(C \mid F, G)
\end{array}
$$

According to the chain rule we always have the following relation:

$$
\begin{aligned}
P(A, B, C, D, E, F, G, H)= & P(A \mid B, C, D, E, F, G, H) . \\
& P(D \mid B, C, E, F, G, H) . \\
& P(B, E \mid C, F, G, H) . \\
& P(C \mid F, G, H) . \\
& P(F, G, H)
\end{aligned}
$$

Example: Closer Look on Option 2: Decomposition

The four separation statements translate into the following independence statements:

$$
\begin{aligned}
& A \Perp D, E, F, G, H \mid B, C \Leftrightarrow P(A \mid B, C, D, E, F, G, H)=P(A \mid B, C) \\
& D \Perp A, C, E, F, G, H \mid B \Rightarrow P(D \mid B, C, E, F, G, H) \quad=P(D \mid B) \\
& A, B, E, D \Perp F, H \mid G, C \quad \Rightarrow P(B, E \mid G, C, F, H) \quad=P(B, E \mid G, C) \\
& H \Perp A, B, C, D, E \mid F, G \Rightarrow P(C \mid F, G, H) \quad=P(C \mid F, G)
\end{aligned}
$$

Exploiting the above independencies yields:

$$
\begin{aligned}
P(A, B, C, D, E, F, G, H)= & P(A \mid B, C) \\
& P(D \mid B) \\
& P(B, E \mid C, G) . \\
& P(C \mid F, G) \\
& P(F, G, H)
\end{aligned}
$$

Example: Closer Look on Option 2: Decomposition

The four separation statements translate into the following independence statements:

$$
\begin{array}{rlrl}
A \Perp D, E, F, G, H \mid B, C & \Leftrightarrow P(A \mid B, C, D, E, F, G, H) & =P(A \mid B, C) \\
D \Perp A, C, E, F, G, H \mid B & \Rightarrow P(D \mid B, C, E, F, G, H) & =P(D \mid B) \\
A, B, E, D \Perp F, H \mid G, C & \Rightarrow P(B, E \mid G, C, F, H) & =P(B, E \mid G, C) \\
H \Perp A, B, C, D, E \mid F, G & \Rightarrow P(C \mid F, G, H) & & =P(C \mid F, G)
\end{array}
$$

Getting rid of the conditions results in the final decomposition equation:

$$
\begin{aligned}
P(A, B, C, D, E, F, G, H) & =P(A \mid B, C) P(D \mid B) P(B, E \mid C, G) P(C \mid F, G) P(F, G, H) \\
& =\frac{P(A, B, C) P(D, B) P(B, E, C, G) P(C, F, G) P(F, G, H)}{P(B, C) P(B) P(C, G) P(F, G)} \\
& =\frac{P\left(C_{1}\right) P\left(C_{2}\right) P\left(C_{3}\right) P\left(C_{4}\right) P\left(C_{5}\right)}{P\left(S_{12}\right) P\left(S_{14}\right) P\left(S_{13}\right) P\left(S_{35}\right)}
\end{aligned}
$$

Example: Step 3: Messages to be sent for Propagation

- According to the join-tree propagation algorithm, the probability distributions of all clique instantiations c_{i} is calculated as follows:

$$
P\left(c_{i}\right) \propto \Psi_{i}\left(c_{i}\right) \prod_{j=1}^{q} M_{j i}\left(s_{i j}\right)
$$

- Spelt out for our example, we get:

$$
\begin{array}{rll}
P\left(c_{1}\right)=P(b, c, e, g) & =\Psi_{1}(b, c, e, g) & \cdot M_{21}(b, c) \cdot M_{31}(c, g) \cdot M_{41}(b) \\
P\left(c_{2}\right)=P(a, b, c) & \propto \Psi_{2}(a, b, c) & \cdot M_{12}(b, c) \\
P\left(c_{3}\right)=P(c, f, g) & \propto \Psi_{3}(c, f, g) & \cdot M_{13}(c, g) \cdot M_{53}(f, g) \\
P\left(c_{4}\right)=P(b, d) & \propto \Psi_{4}(b, d) & \cdot M_{14}(b) \\
P\left(c_{5}\right)=P(f, g, h) & \propto \Psi_{5}(f, g, h) & \cdot M_{35}(f, g)
\end{array}
$$

- The \propto-symbol indicates that the right-hand side may not add up to one. In that case we just normalize.

Example: Step 3: Message Computation Order

- The structure of the join-tree imposes a partial ordering according to which the messages need to be computed:

$$
\begin{aligned}
M_{41}(b) & =\sum_{d} \Psi_{4}(b, d) \\
M_{53}(f, g) & =\sum_{h} \Psi_{5}(f, g, h) \\
M_{21}(b, c) & =\sum_{a} \Psi_{2}(a, b, c) \\
M_{31}(c, g) & =\sum_{f} \Psi_{3}(c, f, g) M_{53}(f, g) \\
M_{13}(c, g) & =\sum_{b, e} \Psi_{1}(b, c, e, g) M_{21}(b, c) M_{41}(b) \\
M_{12}(b, c) & =\sum_{e, g} \Psi_{2}(b, c, e, g) M_{31}(c, g) M_{41}(b) \\
M_{14}(b) & =\sum_{c, e, g} \Psi_{1}(b, c, e, g) M_{21}(b, c) M_{31}(c, g) \\
M_{35}(f, g) & =\sum_{c} \Psi_{3}(c, f, g) M_{13}(c, g)
\end{aligned}
$$

Arrows represent is-needed-for relations. Messages on the same level can be computed in any order. Messages are computed levelwise from top to bottom.

Example: Step 3: Initialization (Potential Layouts)

Ψ_{1}					P
b_{1}	c_{1}	e_{1}	g_{1}		
			g_{2}		
		e_{2}	g_{1}		
			g_{2}		
	c_{2}	e_{1}	g_{1}		
			g_{2}		
		e_{2}	g_{1}		
			g_{2}		
b_{2}	c_{1}	e_{1}	g_{1}		
			g_{2}		
		e_{2}	g_{1}		
			g_{2}		
	c_{2}	e_{1}	g_{1}		
			g_{2}		
		e_{2}	g_{1}		
			g_{2}		

Ψ_{5}			P
f_{1}	g_{1}	h_{1}	
		h_{2}	
	g_{2}	h_{1}	
		h_{2}	
f_{2}	g_{1}	h_{1}	
		h_{2}	
	g_{2}	h_{1}	
		h_{2}	

Ψ_{3}			P
c_{1}	f_{1}	g_{1}	
		g_{2}	
	f_{2}	g_{1}	
		g_{2}	
c_{2}	f_{1}	g_{1}	
		g_{2}	
	f_{2}	g_{1}	
		g_{2}	

Example: Step 3: Initialization (Potential Values)

Ψ_{1}						P
b_{1}	c_{1}	e_{1}		g_{1}	0.190	
				g_{2}	0.010	
		e_{2}		g_{1}	0.320	
				g_{2}	0.480	
	c_{2}	e_{1}		g_{1}	0.380	
				g_{2}	0.020	
		e_{2}		g_{1}	0.240	
				g_{2}	0.360	
b_{2}	c_{1}	e_{1}		g_{1}	0.210	
				g_{2}	0.090	
		e_{2}		g_{1}	0.350	
				g_{2}	0.350	
	c_{2}	e_{1}		g_{1}	0.070	
				g_{2}	0.030	
		e_{2}		g_{1}	0.450	
				g_{2}	0.450	

Ψ_{3}				P
c_{1}	f_{1}	g_{1}	0.1	
		g_{2}	0.1	
	f_{2}	g_{1}	0.9	
		g_{2}	0.9	
c_{2}	f_{1}	g_{1}	0.4	
		g_{2}	0.4	
	f_{2}	g_{1}	0.6	
		g_{2}	0.6	

Example: Step 3: Initialization (Sending Messages)

Ψ_{1}					P
b_{1}	c_{1}	e_{1}	g_{1}	0.190	
			g_{2}	0.010	
		e_{2}	g_{1}	0.320	
			g_{2}	0.480	
	c_{2}	e_{1}	g_{1}	0.380	
			g_{2}	0.020	
		e_{2}	g_{1}	0.240	
			g_{2}	0.360	
b_{2}	c_{1}	e_{1}	g_{1}	0.210	
			g_{2}	0.090	
		e_{2}	g_{1}	0.350	
			g_{2}	0.350	
	c_{2}	e_{1}	g_{1}	0.070	
			g_{2}	0.030	
		e_{2}	g_{1}	0.450	
			g_{2}	0.450	

Ψ_{3}				
c_{1}	f_{1}	g_{1}	0.1	
		g_{2}	0.1	
	f_{2}	g_{1}	0.9	
		g_{2}	0.9	
c_{2}	f_{1}	g_{1}	0.4	
		g_{2}	0.4	
	f_{2}	g_{1}	0.6	
		g_{2}	0.6	

$$
\begin{aligned}
& M_{21}=\left(\begin{array}{lll}
b_{1}, c_{1} & b_{1}, c_{2} & b_{2}, c_{1} \\
b_{2}, c_{2} \\
0.06,0.10 & 0.40,0.44
\end{array}\right) \\
& M_{41}=\left(\begin{array}{l}
b_{1} \\
1, \\
1,
\end{array}\right)
\end{aligned}
$$

Example: Step 3: Initialization (Sending Messages)

Ψ_{1}					P
b_{1}	c_{1}	e_{1}	g_{1}	0.190	
			g_{2}	0.010	
		e_{2}	g_{1}	0.320	
			g_{2}	0.480	
	c_{2}	e_{1}	g_{1}	0.380	
			g_{2}	0.020	
		e_{2}	g_{1}	0.240	
			g_{2}	0.360	
b_{2}	c_{1}	e_{1}	g_{1}	0.210	
			g_{2}	0.090	
		e_{2}	g_{1}	0.350	
			g_{2}	0.350	
	c_{2}	e_{1}	g_{1}	0.070	
			g_{2}	0.030	
		e_{2}	g_{1}	0.450	
			g_{2}	0.450	

$$
\begin{aligned}
& M_{21}=\left(\begin{array}{ccc}
b_{1}, c_{1} & b_{1}, c_{2} & b_{2}, c_{1} \\
0.06, b_{2}, c_{2} \\
0.0 .10,0.40,0.44
\end{array}\right) \\
& M_{41}=\left(\begin{array}{c}
b_{1} \\
1, \\
1,
\end{array}\right) \\
& M_{13}=\left(\begin{array}{ccc}
c_{1}, g_{1} & c_{1}, g_{2} & c_{2}, g_{1} \\
0.254, & c_{2}, g_{2} \\
0.206 & 0.290,0.250
\end{array}\right) \\
& M_{35}=\left(\begin{array}{c}
f_{1}, g_{1} \\
0.14, \\
f_{1}, g_{2} \\
0.12
\end{array} f_{2}, g_{1}, f_{2}, g_{2}, 40,0.33\right)
\end{aligned}
$$

Example: Step 3: Initialization (Sending Messages)

Ψ_{1}					P
b_{1}	c_{1}	e_{1}	g_{1}	0.190	
			g_{2}	0.010	
		e_{2}	g_{1}	0.320	
			g_{2}	0.480	
	c_{2}	e_{1}	g_{1}	0.380	
			g_{2}	0.020	
		e_{2}	g_{1}	0.240	
			g_{2}	0.360	
b_{2}	c_{1}	e_{1}	g_{1}	0.210	
			g_{2}	0.090	
		e_{2}	g_{1}	0.350	
			g_{2}	0.350	
	C_{2}	e_{1}	g_{1}	0.070	
			g_{2}	0.030	
		e_{2}	g_{1}	0.450	
			g_{2}	0.450	

Ψ_{3}				
c_{1}	f_{1}	g_{1}	0.1	
		g_{2}	0.1	
	f_{2}	g_{1}	0.9	
		g_{2}	0.9	
c_{2}	f_{1}	g_{1}	0.4	
		g_{2}	0.4	
	f_{2}	g_{1}	0.6	
		g_{2}	0.6	

$$
\begin{aligned}
& M_{21}=\left(\begin{array}{lll}
b_{1}, c_{1} & b_{1}, c_{2} & b_{2}, c_{1} \\
0.06, & b_{2}, c_{2} \\
0.10,0.40, & 0.44
\end{array}\right) \\
& M_{41}=\left(\begin{array}{cc}
b_{1} & b_{2} \\
1, & 1
\end{array}\right) \\
& M_{13}=\left(\begin{array}{ccc}
c_{1}, g_{1} & c_{1}, g_{2} & c_{2}, g_{1} \\
0.254, & c_{2}, g_{2} \\
0.206, & 0.290,0.250
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& M_{53}=\left(\begin{array}{cccc}
f_{1}, g_{1} & f_{1}, g_{2} & f_{2}, g_{1} & f_{2}, g_{2} \\
1, & 1 & 1 & 1
\end{array}\right) \\
& M_{31}=\left(\begin{array}{ccc}
c_{1}, g_{1} & c_{1}, g_{2} & c_{2}, g_{1} \\
1 & c_{2}, g_{2} \\
1 & 1 & 1
\end{array}\right)
\end{aligned}
$$

Example: Step 3: Initialization (Sending Messages)

Ψ_{1}					P
b_{1}	c_{1}	e_{1}	g_{1}	0.190	
			g_{2}	0.010	
		e_{2}	g_{1}	0.320	
			g_{2}	0.480	
	c_{2}	e_{1}	g_{1}	0.380	
			g_{2}	0.020	
		e_{2}	g_{1}	0.240	
			g_{2}	0.360	
b_{2}	c_{1}	e_{1}	g_{1}	0.210	
			g_{2}	0.090	
		e_{2}	g_{1}	0.350	
			g_{2}	0.350	
	c_{2}	e_{1}	g_{1}	0.070	
			g_{2}	0.030	
		e_{2}	g_{1}	0.450	
			g_{2}	0.450	

Ψ_{4}		P	
b_{1}	d_{1}	0.4	
	d_{2}	0.6	
b_{2}	d_{1}	0.7	
	d_{2}	0.3	

Ψ_{3}				P
c_{1}	f_{1}	g_{1}	0.1	
		g_{2}	0.1	
	f_{2}	g_{1}	0.9	
		g_{2}	0.9	
c_{2}	f_{1}	g_{1}	0.4	
		g_{2}	0.4	
	f_{2}	g_{1}	0.6	
		g_{2}	0.6	

$$
\begin{aligned}
& M_{21}=\left(\begin{array}{lll}
b_{1}, c_{1} & b_{1}, c_{2} & b_{2}, c_{1} \\
0.06, c_{2} \\
0.06 \\
0.10
\end{array}, 0.40,0.44\right) \\
& M_{41}=\left(\begin{array}{ll}
b_{1} & b_{2} \\
1, & 1
\end{array}\right) \\
& M_{13}=\left(\begin{array}{ccc}
c_{1}, g_{1} & c_{1}, g_{2} & c_{2}, g_{1} \\
0.254, & c_{2}, g_{2} \\
0.206, & 0.290, & 0.250
\end{array}\right) \\
& M_{35}=\left(\begin{array}{c}
f_{1}, g_{1} \\
0.14, g_{1} \\
0.12, \\
f_{2}, g_{1}
\end{array} f_{2}, g_{2}, 40,0.33\right) \\
& M_{53}=\left(\begin{array}{c}
f_{1}, g_{1} \\
1, \\
f_{1}, g_{2} \\
1
\end{array}, f_{2}, g_{1},{ }_{2}, 1_{2}, g_{2}\right) \\
& M_{31}=\left(\begin{array}{ccc}
c_{1}, g_{1} & c_{1}, g_{2} \\
1 & c_{2}, g_{1} & c_{2}, g_{2} \\
1 & 1 & 1
\end{array}\right) \\
& M_{12}=\left(\begin{array}{ccc}
b_{1}, c_{1} & b_{1}, c_{2} & b_{2}, c_{1} \\
1, & 1 & b_{2}, c_{2} \\
1 & 1 & 1
\end{array}\right) \\
& M_{14}=\left(\begin{array}{cc}
b_{1} & b_{2} \\
0.16, & b_{2}
\end{array}\right)
\end{aligned}
$$

Example: Step 3: Initialization Complete

Example: Step 4: Evidence $H=h_{1}$ (Altering Potentials)

Ψ_{1}					P
b_{1}	c_{1}	e_{1}	g_{1}	0.190	
			g_{2}	0.010	
		e_{2}	g_{1}	0.320	
			g_{2}	0.480	
	c_{2}	e_{1}	g_{1}	0.380	
			g_{2}	0.020	
		e_{2}	g_{1}	0.240	
			g_{2}	0.360	
b_{2}	c_{1}	e_{1}	g_{1}	0.210	
			g_{2}	0.090	
		e_{2}	g_{1}	0.350	
			g_{2}	0.350	
	c_{2}	e_{1}	g_{1}	0.070	
			g_{2}	0.030	
		e_{2}	g_{1}	0.450	
			g_{2}	0.450	

Ψ_{3}				P
c_{1}	f_{1}	g_{1}	0.1	
		g_{2}	0.1	
	f_{2}	g_{1}	0.9	
		g_{2}	0.9	
c_{2}	f_{1}	g_{1}	0.4	
		g_{2}	0.4	
	f_{2}	g_{1}	0.6	
		g_{2}	0.6	

Example: Step 4: Evidence $H=h_{1}$ (Sending Messages)

					P
b_{1}	c_{1}	e_{1}	g_{1}	0.190	
			g_{2}	0.010	
		e_{2}	g_{1}	0.320	
			g_{2}	0.480	
	c_{2}	e_{1}	g_{1}	0.380	
			g_{2}	0.020	
		e_{2}	g_{1}	0.240	
			g_{2}	0.360	
b_{2}	c_{1}	e_{1}	g_{1}	0.210	
			g_{2}	0.090	
			g_{1}	0.350	
		e_{2}	g_{2}	0.350	
			g_{1}	0.070	
		e_{1}	g_{2}	0.030	
	c_{2}		g_{1}	0.450	
		e_{2}	g_{2}	0.450	

Ψ_{4}		P	
b_{1}	d_{1}	0.4	
	d_{2}	0.6	
b_{2}	d_{1}	0.7	
	d_{2}	0.3	

$$
\begin{aligned}
& M_{53}=\left(\begin{array}{ccc}
f_{1}, g_{1} & f_{1}, g_{2} & f_{2}, g_{1} \\
0.2, & f_{2}, g_{2} \\
0.5, & 0.4, & 0.7
\end{array}\right) \\
& M_{21}=\left(\begin{array}{ccc}
b_{1}, c_{1} & b_{1}, c_{2} & b_{2}, c_{1} \\
0.06, ~ & b_{2}, c_{2} \\
0.10,
\end{array}\right) \\
& M_{41}=\left(\begin{array}{c}
b_{1}, b_{2} \\
1, \\
1
\end{array}\right) \\
& M_{31}=\left(\begin{array}{ccc}
c_{1}, g_{1} & c_{1}, g_{2} & c_{2}, g_{1} \\
0.38 & c_{2}, g_{2} \\
0.38 \\
0.68, & 0.32,0.62
\end{array}\right) \\
& M_{12}=\left(\begin{array}{ccc}
b_{1}, c_{1} & b_{1}, c_{2} & b_{2}, c_{1} \\
0.527, & b_{2}, c_{2} \\
0.434
\end{array}, 0.512,0.464\right) \\
& M_{14}=\left(\begin{array}{cc}
b_{1} & b_{2} \\
0.075, & 0.409
\end{array}\right) \\
& M_{13}=\left(\begin{array}{ccc}
c_{1}, g_{1} & c_{1}, g_{2} & c_{2}, g_{1} \\
0.254, & c_{2}, g_{2} \\
0.206 & 0.290,0.250
\end{array}\right) \\
& M_{35}=\left(\begin{array}{c}
f_{1}, g_{1} \\
0.14, \\
0.14, g_{2} \\
0.12,0.40, \\
f_{2}, g_{1}
\end{array} f_{2}, g_{2}, 0.33\right)
\end{aligned}
$$

Example: Step 4: Evidence $H=h_{1}$ Incorporated

Building Graphical Models: Causal Modeling

Manual creation of a reasoning system based on a graphical model:

- Problem: strong assumptions about the statistical effects of causal relations.
- Nevertheless this approach often yields usable graphical models.

Example 1: Genotype Determination of Danish Jersey Cattle

Example 1: Genotype Determination of Danish Jersey Cattle

Danish Jersey Cattle Blood Type Determination

21 attributes:	11 - offspring ph.gr. 1
1 - dam correct?	12 - offspring ph.gr. 2
2 - sire correct?	13 - offspring genotype
3 - stated dam ph.gr. 1	14 - factor 40
4 - stated dam ph.gr. 2	15 - factor 41
5 - stated sire ph.gr. 1	16 - factor 42
6 - stated sire ph.gr. 2	17 - factor 43
7 - true dam ph.gr. 1	18 - lysis 40
8 - true dam ph.gr. 2	19 - lysis 41
9 - true sire ph.gr. 1	20 - lysis 42
10 - true sire ph.gr. 2	21 - lysis 43

The grey nodes correspond to observable attributes.

- This graph was specified by human domain experts, based on knowledge about (causal) dependences of the variables.

Example 1: Genotype Determination of Danish Jersey Cattle

- Full 21-dimensional domain has $2^{6} \cdot 3^{10} \cdot 6 \cdot 8^{4}=92876046336$ possible states.
- Bayesian network requires only 306 conditional probabilities.
- Example of a conditional probability table (attributes 2, 9, and 5):

sire	true sire	stated sire phenogroup 1		
correct	phenogroup 1	F1	V1	V2
yes	F1	1	0	0
yes	V1	0	1	0
yes	V2	0	0	1
no	F1	0.58	0.10	0.32
no	V1	0.58	0.10	0.32
no	V2	0.58	0.10	0.32

- The probabilities are acquired from human domain experts or estimated from historical data.

Example 1: Genotype Determination of Danish Jersey Cattle

moral graph
(already triangulated)

join tree

Example 1: Genotype Determination of Danish Jersey Cattle

Marginal distributions before setting evidence:

Example 1: Genotype Determination of Danish Jersey Cattle

Conditional distributions given evidence in the input variables:

Example 2: Item Planning at Volkswagen

Strategy of the VW Group

Marketing strategy	Vehicle specification by clients	Bestsellers defined by manufacturer
Complexity	Huge number of variants	Small number of vari- ants

Vehicle specification

Equipment	fastback	$2,81,150 \mathrm{~kW}$	Type Alpha	4	leather	\ldots
Group	car body type	engine	radio	doors	seat cover	\ldots

Example 2: Model "Golf"

- Approx. 200 equipment groups
- 2 to 50 items per group
- Therefore more than 2^{200} possible vehicle specifications
- Choice of valid specifications is constrained by a rule system (10000 technical rules, plus marketing and production rules)

Example of technical rules:

- If Engine $=e_{1}$ then Transmission $=t_{3}$
- If Engine $=e_{4}$ and Heating $=h_{2}$ then Generator $\in\left\{g_{3}, g_{4}, g_{5}\right\}$

Problem Representation

Complexity of the Planning Problem

Equipment table

	Engine	Transmission	Heating	Generator	\cdots
1	e_{1}	t_{3}	h_{1}	g_{1}	\cdots
2	e_{2}	t_{4}	h_{3}	g_{5}	\cdots
	\cdots	\cdots	\cdots	\cdots	\cdots
100000	e_{7}	t_{1}	h_{3}	g_{2}	\cdots

Installation rates

Engine	Transmission	Heating	Generator	\cdots	Rate
e_{1}	t_{1}	h_{1}	g_{1}	\cdots	0.0000012
\ldots	\ldots	\ldots	\cdots	\cdots	\ldots

Result is a 200-dimensional, finite probability space

- $P\left(\right.$ Engine $=e_{1}$, Transmission $\left.=t_{3}\right)=$?
- $P\left(\right.$ Heating $=h_{1} \mid$ Generator $\left.=g_{3}\right)=? \quad$ Problem of complexity!

Solution: Decomposition into Subspaces

$$
\begin{aligned}
P(E, H, T, A) & =P(A \mid E, H, T) \cdot P(T \mid E, H) \cdot P(E \mid H) \cdot P(H) \\
& \stackrel{\text { here }}{=} P(A \mid E, H) \cdot P(T \mid E) \cdot P(E) \quad \cdot P(H)
\end{aligned}
$$

Hypergraph Decomposition

Clique Tree of the VW Bora

Typical Planning Operation: Focusing

- Application:
- Compute item demand Calculation of installation rates of equipment combinations
- Simulation

Analyze customer requirements (e.g. of persons having ordered a navigation system for a VW Polo)

- Input: Equipment combinations
- Operation: Compute
- the conditional network distribution and
- the probabilities of the specified equipment combinations.

Implementation and Deployment

- Projec leader: Jörg Gebhardt
- Client server system
- Server on 6-8 maschines
- Quadcore platform
- Terabyte hard drive
- Java, Linux, Oracle

- WebSphere application server
- Software used daily worldwide
- 15 developers
- 4000 Bayesian networks are currently used

Learning Graphical Models

Prerequisites: Structure vs. Parameters

- $V=\{\mathrm{G}, \mathrm{M}, \mathrm{F}\}$
- $\operatorname{dom}(\mathrm{G})=\{\mathrm{g}, \overline{\mathrm{g}}\}$
- $\operatorname{dom}(\mathrm{M})=\{\mathrm{m}, \bar{m}\}$
- $\operatorname{dom}(F)=\{f, \bar{f}\}$
- The potential tables' layout is determined by the graph structure.
- The parameters (i.e. the table entries) can be easily estimated from the database, e.g.:

$$
\hat{P}(\mathrm{f} \mid \mathrm{g}, \mathrm{~m})=\frac{\#(\mathrm{~F}=\mathrm{f}, \mathrm{G}=\mathrm{g}, \mathrm{M}=\mathrm{m})}{\#(\mathrm{G}=\mathrm{g}, \mathrm{M}=\mathrm{m})}
$$

Prerequisites: Likelihood of a Database

Flu G	\bar{g}	\bar{g}	\bar{g}	\bar{g}	g	g	g	g
Malaria M	\bar{m}	\bar{m}	\mathbf{m}	\mathbf{m}	\bar{m}	\bar{m}	\mathbf{m}	\mathbf{m}
Fever F	\bar{f}	f	$\overline{\mathrm{f}}$	f	$\overline{\mathrm{f}}$	f	$\overline{\mathrm{f}}$	f
$\#$	34	6	2	8	16	24	0	10

Database D with 100 entries for 3 attributes.

$$
P(D \mid G)=\prod_{h=1}^{100} P\left(c_{h} \mid G\right)
$$

Prerequisites: Likelihood of a Database (2)

$$
\begin{aligned}
& P(D \mid G)=\prod_{h=1}^{100} P\left(c_{h} \mid G\right) \\
& =P(\mathbf{f} \mid \mathbf{g}, \mathbf{m})^{10} P(\overline{\mathbf{f}} \mid \mathbf{g}, \mathbf{m})^{0} P(\mathbf{f} \mid \mathbf{g}, \overline{\mathbf{m}})^{24} P(\overline{\mathbf{f}} \mid \mathbf{g}, \overline{\mathbf{m}})^{16} \\
& \quad \cdot P(\mathbf{f} \mid \overline{\mathbf{g}}, \mathbf{m})^{8} P(\overline{\mathbf{f}} \mid \overline{\mathbf{g}}, \mathbf{m})^{2} P(\mathbf{f} \mid \overline{\mathbf{g}}, \overline{\mathbf{m}})^{6} P(\overline{\mathbf{f}} \mid \overline{\mathbf{g}}, \overline{\mathbf{m}})^{34} \\
& \quad \cdot P(\mathbf{g})^{50} P(\overline{\mathbf{g}})^{50} P(\mathbf{m})^{20} P(\overline{\mathbf{m}})^{80}
\end{aligned}
$$

The last equation shows the principle of reordering the factors:

- First, we sort by attributes (here: F, G then M).
- Within the same attributes, factors are grouped by the parent attributes' values combinations (here: for $\mathrm{F}:(\mathrm{g}, \mathrm{m}),(\mathrm{g}, \overline{\mathrm{m}}),(\overline{\mathrm{g}}, \mathrm{m})$ and $(\overline{\mathrm{g}}, \overline{\mathrm{m}})$).
- Finally, it is sorted by attribute values (here: for F : first f, then \bar{f}).

Prerequisites: Likelihood of a Database (3)

General likelihood of a database D given a DAG G :

$$
P(D \mid G)=\prod_{i=1}^{n} \prod_{j=1}^{q_{i}} \prod_{k=1}^{r_{i}} \theta_{i j k}^{\alpha_{i j k}}
$$

General potential table:

A_{i}	$Q_{i 1}$	\cdots	$Q_{i j}$	\cdots	$Q_{i q_{i}}$
$a_{i 1}$	$\theta_{i 11}$	\cdots	$\theta_{i j 1}$	\cdots	$\theta_{i q_{i} 1}$
\vdots	\vdots	\ddots	\vdots	\ddots	\vdots
$a_{i k}$	$\theta_{i 1 k}$	\cdots	$\theta_{i j k}$	\cdots	$\theta_{i q_{i} k}$
\vdots	\vdots	\ddots	\vdots	\ddots	\vdots
$a_{i r_{i}}$	$\theta_{i 1 r_{i}}$	\cdots	$\theta_{i j r_{i}}$	\cdots	$\theta_{i q_{i} r_{i}}$

$$
\begin{gathered}
P\left(A_{i}=a_{i k} \mid \operatorname{parents}\left(A_{i}\right)=Q_{i j}\right)=\theta_{i j k} \\
\sum_{k=1}^{r_{i}} \theta_{i j k}=1
\end{gathered}
$$

Learning the Structure of Graphical Models from Data

(A) Test whether a distribution is decomposable w.r.t. a given graph. This is the most direct approach. It is not bound to a graphical representation, but can also be carried out w.r.t. other representations of the set of subspaces to be used to compute the (candidate) decomposition of the given distribution.
(B) Find a suitable graph by measuring the strength of dependences. This is a heuristic, but often highly successful approach, which is based on the frequently valid assumption that in a conditional independence graph an attribute is more strongly dependent on adjacent attributes than on attributes that are not directly connected to them.
(C) Find an independence map by conditional independence tests.

This approach exploits the theorems that connect conditional independence graphs and graphs that represent decompositions. It has the advantage that a single conditional independence test, if it fails, can exclude several candidate graphs. However, wrong test results can thus have severe consequences.

Evaluation Measures and Search Methods

- All learning algorithms for graphical models consist of an evaluation measure or scoring function and a (heuristic) search method, e.g.
- conditional independence search
- greedy search (spanning tree or K2 algorithm)
- guided random search (simulated annealing, genetic algorithms)
- An exhaustive search over all graphs is too expensive:
- $2\binom{n}{2}$ possible undirected graphs for n attributes.
- $f(n)=\sum_{i=1}^{n}(-1)^{i+1}\binom{n}{i} 2^{i(n-i)} f(n-i)$ possible directed acyclic graphs.

Evaluation Measures / Scoring Functions

Relational Networks

- Hartley Information Gain
- Conditional Hartley Information Gain

Probabilistic Networks

- χ^{2}-Measure
- Mutual Information / Cross Entropy / Information Gain
- (Symmetric) Information Gain Ratio
- (Symmetric/Modified) Gini Index
- Bayesian Measures (K2 metric, BDeu metric)
- Measures based on the Minimum Description Length Principle
- Other measures that are known from Decision Tree Induction

Learning the Structure of Graphical Models from Data

(A) Test whether a distribution is decomposable w.r.t. a given graph.

This is the most direct approach. It is not bound to a graphical representation, but can also be carried out w.r.t. other representations of the set of subspaces to be used to compute the (candidate) decomposition of the given distribution.
(B) Find a suitable graph by measuring the strength of dependences. This is a heuristic, but often highly successful approach, which is based on the frequently valid assumption that in a conditional independence graph an attribute is more strongly dependent on adjacent attributes than on attributes that are not directly connected to them.
(C) Find an independence map by conditional independence tests.

This approach exploits the theorems that connect conditional independence graphs and graphs that represent decompositions. It has the advantage that a single conditional independence test, if it fails, can exclude several candidate graphs. However, wrong test results can thus have severe consequences.

Testing for Decomposability: Comparing Relations

- In order to evaluate a graph structure, we need a measure that compares the actual relation to the relation represented by the graph.
- For arbitrary R, E_{1}, and E_{2} it is

$$
R\left(E_{1} \cap E_{2}\right) \leq \min \left\{R\left(E_{1}\right), R\left(E_{2}\right)\right\}
$$

- This relation entails that for any family \mathcal{M} of subsets of U it is always:

$$
\begin{aligned}
& \forall a_{1} \in \operatorname{dom}\left(A_{1}\right): \ldots \forall a_{n} \in \operatorname{dom}\left(A_{n}\right): \\
& \quad r_{U}\left(\bigwedge_{A_{i} \in U} A_{i}=a_{i}\right) \leq \min _{M \in \mathcal{M}}\left\{r_{M}\left(\bigwedge_{A_{i} \in M} A_{i}=a_{i}\right)\right\} .
\end{aligned}
$$

- Therefore: Measure the quality of a family \mathcal{M} as:
$\sum_{a_{1} \in \operatorname{dom}\left(A_{1}\right) \quad} \ldots \sum_{a_{n} \in \operatorname{dom}\left(A_{n}\right)}\left(\min _{M \in \mathcal{M}}\left\{r_{M}\left(\bigwedge_{A_{i} \in M} A_{i}=a_{i}\right)\right\}-r_{U}\left(\bigwedge_{A_{i} \in U} A_{i}=a_{i}\right)\right)$
Intuitively: Count the number of additional tuples.

Direct Test for Decomposability: Relational

5.

2.

6.

3. color

Comparing Probability Distributions

Definition: Let P_{1} and P_{2} be two strictly positive probability distributions on the same set \mathcal{E} of events. Then

$$
I_{\mathrm{KLdiv}}\left(P_{1}, P_{2}\right)=\sum_{F \in \mathcal{E}} P_{1}(F) \log _{2} \frac{P_{1}(F)}{P_{2}(F)}
$$

is called the Kullback-Leibler information divergence of P_{1} and P_{2}.

- The Kullback-Leibler information divergence is non-negative.
- It is zero if and only if $P_{1} \equiv P_{2}$.
- Therefore it is plausible that this measure can be used to assess the quality of the approximation of a given multi-dimensional distribution P_{1} by the distribution P_{2} that is represented by a given graph:
The smaller the value of this measure, the better the approximation.

Excursus: Shannon Entropy

Let X be a random variable with domain $\operatorname{dom}(X)=\left\{x_{1}, \ldots, x_{n}\right\}$. Then,

$$
H^{(\text {Shannon })}(X)=-\sum_{i=1}^{n} P\left(x_{i}\right) \log _{2} P\left(x_{i}\right)
$$

is called the Shannon entropy of (the probability distribution of) X, where $0 \cdot \log _{2} 0=0$ is assumed.

Intuitively: Expected number of yes/no questions that have to be asked in order to determine the obtaining value of X.

- Suppose there is an oracle, which knows the obtaining value, but responds only if the question can be answered with "yes" or "no".
- A better question scheme than asking for one alternative after the other can easily be found: Divide the set into two subsets of about equal size.
- Ask for containment in an arbitrarily chosen subset.
- Apply this scheme recursively \rightarrow number of questions bounded by $\left\lceil\log _{2} n\right\rceil$.

Question/Coding Schemes

$$
\begin{aligned}
P\left(x_{1}\right)= & 0.10, \quad P\left(x_{2}\right)=0.15, \quad P\left(x_{3}\right)=0.16, \quad P\left(x_{4}\right)=0.19, \quad P\left(x_{5}\right)=0.40 \\
& \text { Shannon entropy: } \quad-\sum_{i} P\left(x_{i}\right) \log _{2} P\left(x_{i}\right)=2.15 \text { bit/symbol }
\end{aligned}
$$

Linear Traversal

Code length: 3.24 bit/symbol
Code efficiency: 0.664

Equal Size Subsets

Code length: 2.59 bit/symbol Code efficiency: 0.830

Question/Coding Schemes

- Splitting into subsets of about equal size can lead to a bad arrangement of the alternatives into subsets \rightarrow high expected number of questions.
- Good question schemes take the probability of the alternatives into account.
- Shannon-Fano Coding
- Build the question/coding scheme top-down.
- Sort the alternatives w.r.t. their probabilities.
- Split the set so that the subsets have about equal probability (splits must respect the probability order of the alternatives).
- Huffman Coding (1952)
- Build the question/coding scheme bottom-up.
- Start with one element sets.
- Always combine those two sets that have the smallest probabilities.

Question/Coding Schemes

$$
\begin{aligned}
P\left(x_{1}\right)= & 0.10, \quad P\left(x_{2}\right)=0.15, \quad P\left(x_{3}\right)=0.16, \quad P\left(x_{4}\right)=0.19, \quad P\left(x_{5}\right)=0.40 \\
& \text { Shannon entropy: } \quad-\sum_{i} P\left(x_{i}\right) \log _{2} P\left(x_{i}\right)=2.15 \mathrm{bit} / \text { symbol }
\end{aligned}
$$

Shannon-Fano Coding (1948)

Code length: 2.25 bit/symbol Code efficiency: 0.955
(1952)

Code length: 2.20 bit/symbol Code efficiency: 0.977

Question/Coding Schemes

- It can be shown that Huffman coding is optimal if we have to determine the obtaining alternative in a single instance.
(No question/coding scheme has a smaller expected number of questions.)
- Only if the obtaining alternative has to be determined in a sequence of (independent) situations, this scheme can be improved upon.
- Idea: Process the sequence not instance by instance, but combine two, three or more consecutive instances and ask directly for the obtaining combination of alternatives.
- Although this enlarges the question/coding scheme, the expected number of questions per identification is reduced (because each interrogation identifies the obtaining alternative for several situations).
- However, the expected number of questions per identification cannot be made arbitrarily small. Shannon showed that there is a lower bound, namely the Shannon entropy.

Interpretation of Shannon Entropy

$$
\begin{gathered}
P\left(x_{1}\right)=\frac{1}{2}, \quad P\left(x_{2}\right)=\frac{1}{4}, \quad P\left(x_{3}\right)=\frac{1}{8}, \quad P\left(x_{4}\right)=\frac{1}{16}, \quad P\left(x_{5}\right)=\frac{1}{16} \\
\text { Shannon entropy: } \quad-\sum_{i} P\left(x_{i}\right) \log _{2} P\left(x_{i}\right)=1.875 \text { bit/symbol }
\end{gathered}
$$

If the probability distribution allows for a perfect Huffman code (code efficiency 1), the Shannon entropy can easily be interpreted as follows:

$$
\begin{aligned}
& -\sum_{i} P\left(x_{i}\right) \log _{2} P\left(x_{i}\right) \\
& =\sum_{i} \underbrace{P\left(x_{i}\right)}_{\begin{array}{c}
\text { occurrence } \\
\text { probability }
\end{array}} \cdot \underbrace{\log _{2} \frac{1}{P\left(x_{i}\right)}}_{\begin{array}{c}
\text { path length } \\
\text { in tree }
\end{array}} .
\end{aligned}
$$

In other words, it is the expected number of needed yes/no questions.

Perfect Question Scheme

Code length: 1.875 bit/symbol Code efficiency: 1

Reference to Kullback-Leibler Information Divergence

Information Content

The information content of an event $F \in \mathcal{E}$ that occurs with probability $P(F)$ is defined as

$$
\operatorname{Inf}_{P}(F)=-\log _{2} P(F)
$$

Intention:

- Neglect all subjective references to F and let the information content be determined by $P(F)$ only.
- The information of a certain message $(P(\Omega)=1)$ is zero.
- The less frequent a message occurs (i.e., the less probable it is), the more interesting is the fact of its occurrence:

$$
P\left(F_{1}\right)<P\left(F_{2}\right) \quad \Rightarrow \quad \operatorname{Inf}_{P}\left(F_{1}\right)>\operatorname{Inf}_{P}\left(F_{2}\right)
$$

- We only use one bit to encode the occurrence of a message with probability $\frac{1}{2}$.

Excursus: Information Content

The function Inf fulfills all these requirements:

- The expected value (w.r.t. to a probability distribution P_{1}) of $\operatorname{Inf}_{P_{2}}$ can be written as follows:

$$
E_{P_{1}}\left(\operatorname{Inf}_{P_{2}}\right)=-\sum_{F \in \mathcal{E}} P_{1}(F) \cdot \log _{2} P_{2}(F)
$$

- $H^{(\text {Shannon })}(P)$ is the expected value (in bits) of the information content that is related to the occurrence of the events $F \in \mathcal{E}$:

$$
H(P)=E_{P}\left(\operatorname{Inf}_{P}\right)
$$

$$
H^{(\text {Shannon })}(P)=\sum_{F \in \mathcal{E}} \underbrace{P(F)}_{\text {Probability of } F} \cdot \underbrace{\left(-\log _{2} P(F)\right)}_{\text {Information content of } F}
$$

Excursus: Approximation Measure

- Let P^{*} be a hypothetical probability distribution and P a (given or known) probability distribution that acts as a reference.
- We can compare both P^{*} and P by computing the difference of the expected information contents:

$$
\begin{aligned}
E_{P}\left(\operatorname{Inf}_{P^{*}}\right)-E_{P}\left(\operatorname{Inf}_{P}\right) & =-\sum_{F \in \mathcal{E}} P(F) \log _{2} P^{*}(F)+\sum_{F \in \mathcal{E}} P(F) \log _{2} P(F) \\
& =\sum_{F \in \mathcal{E}}\left(P(F) \log _{2} P(F)-P(F) \log _{2} P^{*}(F)\right) \\
& =\sum_{F \in \mathcal{E}} P(F)\left(\log _{2} P(F)-\log _{2} P^{*}(F)\right) \\
I_{\text {KLdiv }}\left(P, P^{*}\right) & =\sum_{F \in \mathcal{E}} P(F) \log _{2} \frac{P(F)}{P^{*}(F)}
\end{aligned}
$$

Direct Test for Decomposability: Probabilistic

1.

0.640
-5041

0
-4401

0.211
-4612

0.161
-4563

0.429
-4830

0.379
-4780

0.590
-4991

0
-4401

Upper numbers: The Kullback-Leibler information divergence of the original distribution and its approximation.

Lower numbers: The binary logarithms of the probability of an example database (log-likelihood of data).

Learning the Structure of Graphical Models from Data

(A) Test whether a distribution is decomposable w.r.t. a given graph. This is the most direct approach. It is not bound to a graphical representation, but can also be carried out w.r.t. other representations of the set of subspaces to be used to compute the (candidate) decomposition of the given distribution.
(B) Find a suitable graph by measuring the strength of dependences.

This is a heuristic, but often highly successful approach, which is based on the frequently valid assumption that in a conditional independence graph an attribute is more strongly dependent on adjacent attributes than on attributes that are not directly connected to them.
(C) Find an independence map by conditional independence tests.

This approach exploits the theorems that connect conditional independence graphs and graphs that represent decompositions. It has the advantage that a single conditional independence test, if it fails, can exclude several candidate graphs. However, wrong test results can thus have severe consequences.

Strength of Marginal Dependences: Relational

- Learning a relational network consists in finding those subspace, for which the intersection of the cylindrical extensions of the projections to these subspaces approximates best the set of possible world states, i. e. contains as few additional tuples as possible.
- Since computing explicitly the intersection of the cylindrical extensions of the projections and comparing it to the original relation is too expensive, local evaluation functions are used, for instance:

subspace	color \times shape	shape \times size	size \times color
possible combinations	12	9	12
occurring combinations	6	5	8
relative number	50%	56%	67%

- The relational network can be obtained by interpreting the relative numbers as edge weights and constructing the minimum weight spanning tree.

Strength of Marginal Dependences: Relational

Hartley information needed to determine coordinates: $\quad \log _{2} 4+\log _{2} 3=\log _{2} 12 \approx 3.58$ | coordinate pair: | $\log _{2} 6$ |
| :--- | :--- |
| gain: | $\log _{2} 12-\log _{2} 6=\log _{2} 2=1$ |

Definition: Let A and B be two attributes and R a discrete possibility measure with $\exists a \in \operatorname{dom}(A): \exists b \in \operatorname{dom}(B): R(A=a, B=b)=1$. Then

$$
\begin{aligned}
I_{\text {gain }}^{(\text {Hartley })}(A, B) & =\log _{2}\left(\sum_{a \in \operatorname{dom}(A)} R(A=a)\right)+\log _{2}\left(\sum_{b \in \operatorname{dom}(B)} R(B=b)\right) \\
& -\log _{2}\left(\sum_{a \in \operatorname{dom}(A)} \sum_{b \in \operatorname{dom}(B)} R(A=a, B=b)\right) \\
& =\log _{2} \frac{\left(\sum_{a \in \operatorname{dom}(A)} R(A=a)\right) \cdot\left(\sum_{b \in \operatorname{dom}(B)} R(B=b)\right)}{\sum_{a \in \operatorname{dom}(A)} \sum_{b \in \operatorname{dom}(B)} R(A=a, B=b)},
\end{aligned}
$$

is called the Hartley information gain of A and B w.r.t. R.

Strength of Marginal Dependences: Simple Example

- Intuitive interpretation of Hartley information gain:

The binary logarithm measures the number of questions to find the obtaining value with a scheme like a binary search. Thus Hartley information gain measures the reduction in the number of necessary questions.

- Results for the simple example:

$$
\begin{aligned}
& I_{\text {gain }}^{(\text {Hartley })}(\text { color, shape })=1.00 \mathrm{bit} \\
& I_{\text {gain }}^{(\text {Hartley })}(\text { shape, size }) \\
& I_{\text {gain }}^{(\text {Hartley })}(\text { color, size })
\end{aligned}
$$

- Applying the Kruskal algorithm yields as a learning result:

As we know, this graph describes indeed a decomposition of the relation.

Strength of Marginal Dependences: Probabilistic

Mutual Information / Cross Entropy / Information Gain

Based on Shannon Entropy $H=-\sum_{i=1}^{n} p_{i} \log _{2} p_{i} \quad$ (Shannon 1948)

$$
\begin{aligned}
I_{\text {gain }}(A, B) & =\overbrace{-\sum_{\forall a} P(a) \log _{2} P(a)}^{H(A)}-\overbrace{\sum_{\forall b} P(b)\left(-\sum_{\forall a} P(a \mid b) \log _{2} P(a \mid b)\right)}^{H(A \mid B)} \\
& =\overbrace{-}
\end{aligned}
$$

$H(A)$
Entropy of the distribution on attribute A
$H(A \mid B)$
Expected entropy of the distribution on attribute A if the value of attribute B becomes known
$H(A)-H(A \mid B) \quad$ Expected reduction in entropy or information gain

Strength of Marginal Dependences: Probabilistic

$$
\begin{aligned}
I_{\text {gain }}(A, B) & =-\sum_{\forall a} P(a) \log _{2} P(a)-\sum_{\forall b} P(b)\left(-\sum_{\forall a} P(a \mid b) \log _{2} P(a \mid b)\right) \\
& =-\sum_{\forall a} \sum_{\forall b} P(a, b) \log _{2} P(a)+\sum_{\forall b} \sum_{\forall a} P(a \mid b) P(b) \log _{2} P(a \mid b) \\
& =\sum_{\forall a} \sum_{\forall b} P(a, b)\left(\log _{2} \frac{P(a, b)}{P(b)}-\log _{2} P(a)\right) \\
& =\sum_{\forall a} \sum_{\forall b} P(a, b) \log _{2} \frac{P(a, b)}{P(a) P(b)}
\end{aligned}
$$

The information gain equals the Kullback-Leibler information divergence between the actual distribution $P(A, B)$ and a hypothetical distribution P^{*} in which A and B are marginal independent:

$$
\begin{aligned}
P^{*}(A, B) & =P(A) \cdot P(B) \\
I_{\mathrm{gain}}(A, B) & =I_{\mathrm{KLdiv}}\left(P, P^{*}\right)
\end{aligned}
$$

Information Gain: Simple Example

projection to
subspace

	s	m	l
	20	180	200
	40	160	40
	180	120	60

large	50	115	35	100
edium	82	133	99	146
small	88	82	36	34

product of
marginals

	s	m	l
\triangle	96	184	120
\square	58	110	72
	86	166	108

0.211 bit
0.050 bit

Strength of Marginal Dependences: Simple Example

- Results for the simple example:

$$
\begin{array}{ll}
I_{\text {gain }}(\text { color, shape }) & =0.429 \mathrm{bit} \\
I_{\text {gain }}(\text { shape }, \text { size }) & =0.211 \mathrm{bit} \\
I_{\text {gain }}(\text { color }, \text { size }) & =0.050 \mathrm{bit}
\end{array}
$$

- Applying the Kruskal algorithm yields as a learning result:

- It can be shown that this approach always yields the best possible spanning tree w.r.t. Kullback-Leibler information divergence (Chow and Liu 1968).
- In an extended form this also holds for certain classes of graphs (for example, tree-augmented naive Bayes classifiers).
- For more complex graphs, the best graph need not be found (there are counterexamples, see below).

Strength of Marginal Dependences: Drawbacks

Strength of Marginal Dependences: Drawbacks

p_{A}	a_{1}	a_{2}
	0.5	0.5

$p_{C \mid A B}$	$a_{1} b_{1}$	$a_{1} b_{2}$	$a_{2} b_{1}$	$a_{2} b_{2}$
c_{1}	0.9	0.3	0.3	0.5
c_{2}	0.1	0.7	0.7	0.5

p_{B}	b_{1}	b_{2}
	0.5	0.5

$p_{D \mid A B}$	$a_{1} b_{1}$	$a_{1} b_{2}$	$a_{2} b_{1}$	$a_{2} b_{2}$
d_{1}	0.9	0.3	0.3	0.5
d_{2}	0.1	0.7	0.7	0.5

$p_{A D}$	a_{1}	a_{2}
d_{1}	0.3	0.2
d_{2}	0.2	0.3

$p_{B D}$	b_{1}	b_{2}
d_{1}	0.3	0.2
d_{2}	0.2	0.3

$p_{C D}$	c_{1}	c_{2}
d_{1}	0.31	0.19
d_{2}	0.19	0.31

- Greedy parent selection can lead to suboptimal results if there is more than one path connecting two attributes.
- Here: the edge $C \rightarrow D$ is selected first.

Strength of Marginal Dependences: General Algorithms

- Optimum Weight Spanning Tree Construction
- Compute an evaluation measure on all possible edges (two-dimensional subspaces).
- Use the Kruskal algorithm to determine an optimum weight spanning tree.
- Greedy Parent Selection (for directed graphs)
- Define a topological order of the attributes (to restrict the search space).
- Compute an evaluation measure on all single attribute hyperedges.
- For each preceding attribute (w.r.t. the topological order): add it as a candidate parent to the hyperedge and compute the evaluation measure again.
- Greedily select a parent according to the evaluation measure.
- Repeat the previous two steps until no improvement results from them.

K2 Algorithm

- Idea: Compute the probability of a directed graph \vec{G} given the database D (Bayesian approach by [Cooper and Herskovits 1992])

$$
\begin{aligned}
\vec{G}_{\text {opt }} & =\underset{\vec{G}}{\arg \max } P(\vec{G} \mid D)=\underset{\vec{G}}{\arg \max } \frac{P(\vec{G}, D)}{P(D)} \\
& =\arg \max P(\vec{G}, D)
\end{aligned}
$$

\Rightarrow Find an equation for $P(\vec{G}, D)$.

- In order to compare two graphs, it is sufficient to compute the Bayes factor

$$
\frac{P\left(\vec{G}_{1} \mid D\right)}{P\left(\vec{G}_{2} \mid D\right)}=\frac{P\left(\vec{G}_{1}, D\right)}{P\left(\vec{G}_{2}, D\right)}
$$

In both ways one can avoid computing the probability $P(D)$.
Assuming equal probability of all graphs simplifies further.

K2 Algorithm

Model Averaging

We first consider $P(\vec{G}, D)$ to be the marginalization of $P(\vec{G}, \Theta, D)$ over all possible parameters Θ.

$$
\begin{aligned}
P(\vec{G}, D) & =\int_{\Theta} P(\vec{G}, \Theta, D) \mathrm{d} \Theta \\
& =\int_{\Theta} P(D \mid \vec{G}, \Theta) P(\vec{G}, \Theta) \mathrm{d} \Theta \\
& =\int_{\Theta} P(D \mid \vec{G}, \Theta) f(\Theta \mid \vec{G}) P(\vec{G}) \mathrm{d} \Theta \\
& =\underbrace{P(\vec{G})}_{\text {A priori prob. }} \int_{\Theta} \underbrace{P(D \mid \vec{G}, \Theta)}_{\text {Likelihood of } D} \underbrace{f(\Theta \mid \vec{G})}_{\text {Parameter densities }} \mathrm{d} \Theta
\end{aligned}
$$

K2 Algorithm

- The a priori distribution $P(\vec{G})$ can be used to bias the evaluation measure towards user-specific network structures.
- Substitute the likelihood $P(D \mid \vec{G}, \Theta)$ for its specific form:

$$
P(\vec{G}, D)=P(\vec{G}) \int_{\Theta} \underbrace{\left[\prod_{i=1}^{n} \prod_{j=1}^{q_{i}} \prod_{k=1}^{r_{i}} \theta_{i j k}^{\alpha_{i j k}}\right]}_{P(D \mid \vec{G}, \Theta)} f(\Theta \mid \vec{G}) \mathrm{d} \Theta
$$

- See slide 300 for the derivation of the likelihood term.

K2 Algorithm

- The parameter densities $f(\Theta \mid \vec{G})$ describe the probabilities of the parameters given a network structure.
- They are densities of second order (distribution over distributions)
- For fixed i and j, a vector $\left(\theta_{i j 1}, \ldots, \theta_{i j r_{i}}\right)$ represents a probability distribution, namely the j-th column of the i-th potential table.
- Assuming mutual independence between the potential tables, we arrive for $f(\Theta \mid \vec{G})$ at the following:

$$
f(\Theta \mid \vec{G})=\prod_{i=1}^{n} \prod_{j=1}^{q_{i}} f\left(\theta_{i j 1}, \ldots, \theta_{i j r_{i}}\right)
$$

K2 Algorithm

- Thus, we can further concretize the equation for $P(\vec{G}, D)$:

$$
\begin{aligned}
P(\vec{G}, D) & =P(\vec{G}) \int \ldots \int\left[\prod_{i=1}^{n} \prod_{j=1}^{q_{i}} \prod_{k=1}^{r_{i}} \theta_{i j k}^{\alpha_{i j k}}\right] \cdot\left[\prod_{i=1}^{n} \prod_{j=1}^{q_{i}} f\left(\theta_{i j 1}, \ldots, \theta_{i j r_{i}}\right)\right] \mathrm{d} \theta_{111}, \ldots, \mathrm{~d} \theta_{n q_{n} r_{n}} \\
& =P(\vec{G}) \prod_{i=1}^{n} \prod_{j=1}^{q_{i}} \int \ldots \int\left[\prod_{\theta_{i j k}}^{r_{i}} \theta_{i j k}^{\alpha_{i j k}}\right] \cdot f\left(\theta_{i j 1}, \ldots, \theta_{i j r_{i}}\right) \mathrm{d} \theta_{i j 1}, \ldots, \mathrm{~d} \theta_{i j r_{i}}
\end{aligned}
$$

K2 Algorithm

- A last assumption: For fixed i and j the density $f\left(\theta_{i j 1}, \ldots, \theta_{i j r_{i}}\right)$ is uniform:

$$
f\left(\theta_{i j 1}, \ldots, \theta_{i j r_{i}}\right)=\left(r_{i}-1\right)!
$$

- It simplifies $P(\vec{G}, D)$ further:

$$
\begin{aligned}
P(\vec{G}, D)= & P(\vec{G}) \prod_{i=1}^{n} \prod_{j=1}^{q_{i}} \int \ldots \int\left[\prod_{k=1}^{r_{i}} \theta_{i j k}^{\alpha_{i j k}}\right] \cdot\left(r_{i}-1\right)!\mathrm{d} \theta_{i j 1}, \ldots, \mathrm{~d} \theta_{i j r_{i}} \\
= & P(\vec{G}) \prod_{i=1}^{n} \prod_{j=1}^{q_{i}}\left(r_{i}-1\right)!\underbrace{\int \ldots \int \prod_{k=1}^{r_{i}} \theta_{i j k}^{\alpha_{i j k}} \mathrm{~d} \theta_{i j 1}, \ldots, \mathrm{~d} \theta_{i j r_{i}}}_{\text {Dirichlet's integral }=\frac{\prod_{k=1}^{r_{i}} \alpha_{i j k}!}{\left(\sum_{k=1}^{r_{i}} \alpha_{i j k}+r_{i}-1\right)!}}
\end{aligned}
$$

K2 Algorithm

- We finally arrive at an expression for $P(\vec{G}, D)$:

$$
P(\vec{G}, D)=\mathrm{K} 2(\vec{G} \mid D)=P(\vec{G}) \prod_{i=1}^{n} \prod_{j=1}^{q_{i}}\left[\frac{\left(r_{i}-1\right)!}{\left(N_{i j}+r_{i}-1\right)!} \prod_{k=1}^{r_{i}} \alpha_{i j k}!\right]
$$

$n \quad$ number of attributes describing the domain under consideration
$r_{i} \quad$ number of values of the i-th attribute A_{i}, i. e., $r_{i}=\left|\operatorname{dom}\left(A_{i}\right)\right|$
$q_{i} \quad$ number of instantiations of the parents of the i-th attribute in \vec{G}, i. e., $q_{i}=\Pi_{A_{j} \in \operatorname{parents}\left(A_{i}\right)} r_{i}=\prod_{A_{j} \in \operatorname{parents}\left(A_{i}\right)}\left|\operatorname{dom}\left(A_{i}\right)\right|$
$\alpha_{i j k}$ number of sample cases in which the i-th attribute has its k-th value and its parents in \vec{G} have their j-th instantiation

$$
N_{i j}=\sum_{k=1}^{r_{i}} \alpha_{i j k}
$$

Properties of the K2 Metric

- Global - Refers to the outer product: The total value of the K2 metric is the product over all K2 values of attribute families.
- Local - The likelihood equation assumes that given a parents instantiation, the probabilities for the respective child attribute values are mutual independent. This is reflected in the product over all q_{i} different parent attributes' value combinations of attribute A_{i}.

We exploit the global property to write the K2 metric as follows:

$$
\mathrm{K} 2(\vec{G} \mid D)=P(\vec{G}) \prod_{i=1}^{n} \mathrm{~K}_{\mathrm{local}}\left(A_{i} \mid D\right)
$$

with

$$
\mathrm{K} 2_{\mathrm{local}}\left(A_{i} \mid D\right)=\prod_{j=1}^{q_{i}}\left[\frac{\left(r_{i}-1\right)!}{\left(N_{i j}+r_{i}-1\right)!} \prod_{k=1}^{r_{i}} \alpha_{i j k}!\right]
$$

K2 Algorithm

Prerequisites:

- Choose a topological order on the attributes $\left(A_{1}, \ldots, A_{n}\right)$
- Start out with a network that consists of n isolated nodes.
- Let ζ_{i} be the quality of the i-th attribute given the (tentative) set of parent attributes M :

$$
\zeta_{i}(M)=\mathrm{K}_{\text {local }}\left(A_{i} \mid D\right) \quad \text { with } \quad \text { parents }\left(A_{i}\right)=M
$$

K2 Algorithm

Execution:

1. Determine for the parentless node A_{i} the quality measure $\zeta_{i}(\emptyset)$
2. Evaluate for every predecessor $\left\{A_{1}, \ldots, A_{i-1}\right\}$ whether inserted as parent of A_{i}, the quality measure would increase. Let Y be the node that yields the highest quality (increase):

$$
Y=\underset{1 \leq l \leq i-1}{\arg \max } \zeta_{i}\left(\left\{A_{l}\right\}\right)
$$

This best quality measure be $\zeta=\zeta_{i}(\{Y\})$.
3. If ζ is better than $\zeta_{i}(\emptyset), Y$ is inserted permanently as a parent node: parents $\left(A_{i}\right)=\operatorname{parents}\left(A_{i}\right) \cup\{Y\}$
4. Repeat steps 2 and 3 to increase the parent set until no quality increase can be achieved or no nodes are left or a predefined maximum number of parent nodes per node is reached.

K2 Algorithm

```
for \(i \leftarrow 1 \ldots n\) do // Initialization
    parents \(\left(A_{i}\right) \leftarrow \emptyset\)
end for
for \(i \leftarrow n, \ldots, 1\) do // Iteration
    repeat
    Select \(Y \in\left\{A_{1}, \ldots, A_{i-1}\right\} \backslash \operatorname{parents}\left(A_{i}\right)\),
        which maximizes \(\zeta=\zeta_{i}\left(\operatorname{parents}\left(A_{i}\right) \cup\{Y\}\right)\)
    \(\delta \leftarrow \zeta-\zeta_{i}\left(\operatorname{parents}\left(A_{i}\right)\right)\)
    if \(\delta>0\) then
        parents \(\left(A_{i}\right) \leftarrow \operatorname{parents}\left(A_{i}\right) \cup\{Y\}\)
        end if
        until \(\delta \leq 0\) or parents \(\left(A_{i}\right)=\left\{A_{1}, \ldots, A_{i-1}\right\}\) or \(\left|\operatorname{parents}\left(A_{i}\right)\right|=n_{\max }\)
end for
```


Demo of K2 Algorithm

Step 1 - Edgeless graph

Step 2 - Insert M temporarily.

(M)

Step 4 - Node L maximizes K2 value and thus is added permantently.

Demo of K2 Algorithm

Step 5 - Insert M temporarily.

Step 7 - M does not increase the quality of the network if insertes as third parent node.

Step 8 - Insert KA temporarily.

Demo of K2 Algorithm

Step 9 - Node L becomes perent node of M.

Step 10 - Adding KA does not increase overall network quaility.

Step 11 - Node L Result becomes parent node of KA.

Learning the Structure of Graphical Models from Data

(A) Test whether a distribution is decomposable w.r.t. a given graph. This is the most direct approach. It is not bound to a graphical representation, but can also be carried out w.r.t. other representations of the set of subspaces to be used to compute the (candidate) decomposition of the given distribution.
(B) Find a suitable graph by measuring the strength of dependences. This is a heuristic, but often highly successful approach, which is based on the frequently valid assumption that in a conditional independence graph an attribute is more strongly dependent on adjacent attributes than on attributes that are not directly connected to them.
(C) Find an independence map by conditional independence tests.

This approach exploits the theorems that connect conditional independence graphs and graphs that represent decompositions. It has the advantage that a single conditional independence test, if it fails, can exclude several candidate graphs. However, wrong test results can thus have severe consequences.

Structure Learning with Conditional Independence Tests

General Idea: Exploit the theorems that connect conditional independence graphs and graphs that represent decompositions.
In other words: we want a graph describing a decomposition, but we search for a conditional independence graph.
This approach has the advantage that a single conditional independence test, if it fails, can exclude several candidate graphs.

Assumptions:

- Faithfulness: The domain under consideration can be accurately described with a graphical model (more precisely: there exists a perfect map).
- Reliability of Tests: The result of all conditional independence tests coincides with the actual situation in the underlying distribution.
- Other assumptions that are specific to individual algorithms.

Conditional Independence Tests: Relational

Conditional Independence Tests: Relational

- The Hartley information gain can be used directly to test for (approximate) marginal independence.

attributes	relative number of possible value combinations	Hartley information gain
color, shape	$\frac{6}{3 \cdot 4}=\frac{1}{2}=50 \%$	$\log _{2} 3+\log _{2} 4-\log _{2} 6=1$
color, size	$\frac{8}{3.4}=\frac{2}{3} \approx 67 \%$	$\log _{2} 3+\log _{2} 4-\log _{2} 8 \approx 0.58$
shape, size	$\frac{5}{3 \cdot 3}=\frac{5}{9} \approx 56 \%$	$\log _{2} 3+\log _{2} 3-\log _{2} 5 \approx 0.85$

- In order to test for (approximate) conditional independence:
- Compute the Hartley information gain for each possible instantiation of the conditioning attributes.
- Aggregate the result over all possible instantiations, for instance, by simply averaging them.

Conditional Independence Tests: Simple Example

color	Hartley information gain
\square	$\log _{2} 1+\log _{2} 2-\log _{2} 2=0$
\square	$\log _{2} 2+\log _{2} 3-\log _{2} 4 \approx 0.58$
\square	$\log _{2} 1+\log _{2} 1-\log _{2} 1=0$
\square	$\log _{2} 2+\log _{2} 2-\log _{2} 2=1$
	average: $\quad \approx 0.40$

shape	Hartley information gain
\triangle	$\log _{2} 2+\log _{2} 2-\log _{2} 4=0$
\square	$\log _{2} 2+\log _{2} 1-\log _{2} 2=0$
\bigcirc	$\log _{2} 2+\log _{2} 2-\log _{2} 4=0$
	average: $\quad=0$

size	Hartley information gain
large	$\log _{2} 2+\log _{2} 1-\log _{2} 2=0$
medium	$\log _{2} 4+\log _{2} 3-\log _{2} 6=1$
small	$\log _{2} 2+\log _{2} 1-\log _{2} 2=0$
	average: $\quad \approx 0.33$

Conditional Independence Tests: Simple Example

- The Shannon information gain can be used directly to test for (approximate) marginal independence.
- Conditional independence tests may be carried out by summing the information gain for all instantiations of the conditioning variables:

$$
\begin{aligned}
& I_{\text {gain }}(A, B \mid C) \\
& =\sum_{c \in \operatorname{dom}(C)} P(c) \sum_{a \in \operatorname{dom}(A)} \sum_{b \in \operatorname{dom}(B)} P(a, b \mid c) \log _{2} \frac{P(a, b \mid c)}{P(a \mid c) P(b \mid c)},
\end{aligned}
$$

where $P(c)$ is an abbreviation of $P(C=c)$ etc.

- Since $I_{\text {gain }}($ color, size \mid shape $)=0$ indicates the only conditional independence, we get the following learning result:

Conditional Independence Tests: General Algorithm

Algorithm: (conditional independence graph construction)

1. For each pair of attributes A and B, search for a set $S_{A B} \subseteq U \backslash\{A, B\}$ such that $A \Perp B \mid S_{A B}$ holds in \widehat{P}, i.e., A and B are independent in \widehat{P} conditioned on $S_{A B}$. If there is no such $S_{A B}$, connect the attributes by an undirected edge.
2. For each pair of non-adjacent variables A and B with a common neighbour C (i.e., C is adjacent to A as well as to B), check whether $C \in S_{A B}$.

- If it is, continue.
- If it is not, add arrow heads pointing to C, i.e., $A \rightarrow C \leftarrow B$.

3. Recursively direct all undirected edges according to the rules:

- If for two adjacent variables A and B there is a strictly directed path from A to B not including $A \rightarrow B$, then direct the edge towards B.
- If there are three variables A, B, and C with A and B not adjacent, $B-C$, and $A \rightarrow C$, then direct the edge $C \rightarrow B$.

Conditional Independence Tests: Simple Example

Suppose that the following conditional independence statements hold:

$$
\begin{array}{ll}
A \Perp_{\hat{P}} B \mid \emptyset & B \Perp_{\hat{P}} A \mid \emptyset \\
A \not \Perp_{\hat{P}} D \mid C & D \Perp_{\hat{P}} A \mid C \\
B \Perp_{\hat{P}} D \mid C & D \Perp_{\hat{P}} B \mid C
\end{array}
$$

All other possible conditional independence statements that can be formed with the attributes A, B, C, and D (with single attributes on the left) do not hold.

- Step 1: Since there is no set rendering A and C, B and C and C and D independent, the edges $A-C, B-C$, and $C-D$ are inserted.
- Step 2: Since C is a common neighbor of A and B and we have $A \Perp_{\hat{P}} B \mid \emptyset$, but $A \not \Perp_{\hat{P}} B \mid C$, the first two edges must be directed $A \rightarrow C \leftarrow B$.
- Step 3: Since A and D are not adjacent, $C-D$ and $A \rightarrow C$, the edge $C-D$ must be directed $C \rightarrow D$.
(Otherwise step 2 would have already fixed the orientation $C \leftarrow D$.)

Conditional Independence Tests: Drawbacks

- The conditional independence graph construction algorithm presupposes that there is a perfect map. If there is no perfect map, the result may be invalid.

	$p_{A B C D}$	$\begin{gathered} A=a_{1} \\ B=b_{1} \quad B=b_{2} \end{gathered}$	$\begin{gathered} A=a_{2} \\ B=b_{1} \quad B=b_{2} \end{gathered}$	
	$C=c_{1} \quad \begin{aligned} & D=d_{1} \\ & D=d_{2}\end{aligned}$	$1 / 47$ $1 / 47$ $1 / 47$ $1 / 47$	$\begin{aligned} & 1 / 47 \\ & 2 / 47 \end{aligned}$	$\begin{aligned} & 2 / 47 \\ & 4 / 47 \end{aligned}$
	$C=c_{2} \quad \begin{aligned} & D=d_{1} \\ & D=d_{2}\end{aligned}$	$\begin{array}{ll}1 / 47 & 2 / 47 \\ 2 / 47 & 4 / 47\end{array}$	$1 / 47$ $4 / 47$	$\begin{array}{r} \hline 4 / 47 \\ 16 / 47 \end{array}$

- Independence tests of high order, i. e., with a large number of conditions, may be necessary.
- There are approaches to mitigate these drawbacks.
(For example, the order is restricted and all tests of higher order are assumed to fail, if all tests of lower order failed.)

The Cheng-Bell-Liu Algorithm

- Drafting: Build a so-called Chow-Liu tree as an initial graphical model.
- Evaluate all attribute pairs (candidate edges) with information gain.
- Discard edges with evaluation below independence threshold (~ 0.1 bits).
- Build optimum (maximum) weight spanning tree.
- Thickening: Add necessary edges.
- Traverse remaining candidate edges in the order of decreasing evaluation.
- Test for conditional independence in order to determine whether an edge is needed in the graphical model.
- Use local Markov property to select a condition set: an attribute is conditionally independent of all non-descendants given its parents.
- Since the graph is undirected in this step, the set of adjacent nodes is reduced iteratively and greedily in order to remove possible children.

The Cheng-Bell-Liu Algorithm (continued)

- Thinning: Remove superfluous edges.
- In the thickening phase a conditional independence test may have failed, because the graph was still too sparse.
- Traverse all edges that have been added to the current graphical model and test for conditional independence.
- Remove unnecessary edges. (two phases/approaches: heuristic test/strict test)
- Orienting: Direct the edges of the graphical model.
- Identify the v-structures (converging directed edges). (Markov equivalence: same skeleton and same set of v-structures.)
- Traverse all pairs of attributes with common neighbors and check which common neighbors are in the (maximally) reduced set of conditions.
- Direct remaining edges by extending chains and avoiding cycles.

Learning Undirected Graphical Models Directly

- Drafting: Build a Chow-Liu tree as an initial graphical model
- Evaluate all attribute pairs (candidate edges) with specificity gain.
- Discard edges with evaluation below independence threshold (~ 0.015).
- Build optimum (maximum) weight spanning tree.
- Thickening: Add necessary edges.
- Traverse remaining candidate edges in the order of decreasing evaluation.
- Test for conditional independence in order to determine whether an edge is needed in the graphical model.
- Use local Markov property to select a condition set: an attribute is conditionally independent of any non-neighbor given its neighbors.
- Since the graphical model to be learned is undirected, no (iterative) reduction of the condition set is needed (decisive difference to Cheng-Bell-Liu Algorithm).

Learning Undirected Graphical Models Directly

- Moralizing: Take care of possible v-structures.
- If one assumes a perfect undirected map, this step is unnecessary. However, v-structures are too common and cannot be represented without loss in an undirected graphical model.
- Possible v-structures can be taken care of by connecting the parents.
- Traverse all edges with an evaluation below the independence threshold that have a common neighbor in the graph.
- Add edge if conditional independence given the neighbors does not hold.
- Thinning: Remove superfluous edges.
- In the thickening phase a conditional independence test may have failed, because the graph was still too sparse.
- Traverse all edges that have been added to the current graphical model and test for conditional independence.

Application at Daimler AG

- Improving the Product Quality by Detecting Weaknesses
- Learn a decision tree or inference network for vehicle properties and failures.
- Look for suspicious conditional failure rates.
- Find causes of these suspicious rates.
- Optimize design of vehicle.
- Improve the Error Diagnosis in Service Garages
- Learn a decision tree or inference network for vehicle properties and failures.
- Record new faults.
- Test for most probable errors.

Analysis of the Daimler Database

- Database: approx. 18500 vehicles with more than 100 attributes
- Analysis of dependencies between specific equipment and failure.
- Results are used as a starting point for technical investigation.
 an electrical sliding roof are installed.

Example Network

Influence of specific equipment on battery failure:

(fictitious) battery failure rate	Aircondition		
		with	without
elec. sliding roof	with	8%	3%
	without	3%	2%

- Significant deviation from independent distribution.
- Hint for possible causes.
- Here: Larger battery might be required if both aircondition and electrical sliding roof are installed.

Explorative Data Analysis

Discovery of Local Patterns

Decision Graphs / Influence Diagrams

Preference Orderings

- A preference ordering \succeq is a ranking of all possible states of affairs (worlds) S
- these could be outcomes of actions, truth assts, states in a search problem, etc.
- $s \succeq t$: means that state s is at least as good as t
- $s \succ t$: means that state s is strictly preferred to t
- We insist that \succeq is
- reflexive: i.e., $\mathrm{s} \succeq \mathrm{s}$ for all states s
- transitive: i.e., if $\mathrm{s} \succeq \mathrm{t}$ and $\mathrm{t} \succeq \mathrm{w}$, then $\mathrm{s} \succeq \mathrm{w}$
- connected: for all states s, t, either $\mathrm{s} \succeq \mathrm{t}$ or $\mathrm{t} \succeq \mathrm{s}$

Why Impose These Conditions?

- Structure of preference ordering imposes certain "rationality requirements" (it is a weak ordering)
- E.g., why transitivity?
- Suppose you (strictly) prefer coffee to tea, tea to OJ, OJ to coffee
- If you prefer X to Y , you will trade me Y plus $\$ 1$ for X
- I can construct a "money pump" and extract arbitrary amounts of money from you

Utilities

- Rather than just ranking outcomes, we must quantify our degree of preference
- e.g., how much more important is $c h c$ than \sim mess
- A utility function $U: S \rightarrow \mathbb{R}$ associates a realvalued utility with each outcome.
- $U(s)$ measures your degree of preference for s
- Note: U induces a preference ordering \succeq_{U} over S defined as: $\mathrm{s} \succeq_{U} \mathrm{t}$ iff $U(s) \geq$ $U(t)$
- obviously \succeq_{U} will be reflexive, transitive, connected

Expected Utility

- Under conditions of uncertainty, each decision d induces a distribution $P r_{d}$ over possible outcomes
- $\operatorname{Pr}_{d}(s)$ is probability of outcome s under decision d
- The expected utility of decision d is defined
- The principle of maximum expected utility (MEU) states that the optimal decision under conditions of uncertainty is that with the greatest expected utility.

$$
E U(d)=\sum_{s \in S} \operatorname{Pr}_{d}(s) U(s)
$$

Decision Problems: Uncertainty

- A decision problem under uncertainty is:
- a set of decisions D
- a set of outcomes or states S
- an outcome function $\operatorname{Pr}: D \rightarrow \Delta(S)$
* $\Delta(S)$ is the set of distributions over S (e.g., Prd)
- a utility function U over S
- A solution to a decision problem under uncertainty is any $d^{*} \in D$ such that $E U\left(d^{*}\right) \succeq E U(d)$ for all $d \in D$
- Again, for single-shot problems, this is trivial

Expected Utility: Notes

- Note that this viewpoint accounts for both:
- uncertainty in action outcomes
- uncertainty in state of knowledge
- any combination of the two

Stochastic actions

Uncertain knowledge

Expected Utility: Notes

- Why MEU? Where do utilities come from?
- underlying foundations of utility theory tightly couple utility with action/choice
- a utility function can be determined by asking someone about their preferences for actions in specific scenarios (or "lotteries" over outcomes)
- Utility functions needn't be unique
o if I multiply U by a positive constant, all decisions have same relative utility
- if I add a constant to U, same thing
- U is unique up to positive affine transformation

So What are the Complications?

- Outcome space is large
- like all of our problems, states spaces can be huge
- don't want to spell out distributions like $P r_{d}$ explicitly
- Solution: Bayes nets (or related: influence diagrams)
- Decision space is large
- usually our decisions are not one-shot actions
- rather they involve sequential choices (like plans)
- if we treat each plan as a distinct decision, decision space is too large to handle directly
- Soln: use dynamic programming methods to construct optimal plans (actually generalizations of plans, called policies... like in game trees)

So What are the Complications?

- Decision networks (more commonly known as influence diagrams) provide a way of representing sequential decision problems
- basic idea: represent the variables in the problem as you would in a BN
- add decision variables - variables that you "control"
- add utility variables - how good different states are

Sample Decision Network

Decision Networks: Chance Nodes

- Chance nodes
- random variables, denoted by circles
- as in a BN, probabilistic dependence on parents

Decision Networks: Decision Nodes

- Decision nodes
- variables decision maker sets, denoted by squares
- parents reflect information available at time decision is to be made
- In example decision node: the actual values of Ch and Fev will be observed before the decision to take test must be made
- agent can make different decisions for each instantiation of parents (i.e., policies)

$$
\mathrm{BT} \epsilon\{\mathrm{bt}, \sim \mathrm{bt}\}
$$

Decision Networks: Decision Nodes

- Value node
- specifies utility of a state, denoted by a diamond
- utility depends only on state of parents of value node
- generally: only one value node in a decision network
- Utility depends only on disease and drug

U(fludrug, flu) $=20$
$U($ fludrug, mal $)=-300$
$U($ fludrug, none $)=-5$
$U($ maldrug, flu $)=-30$
$U($ maldrug, mal$)=10$
U (maldrug, none) $=-20$
$U($ no drug, flu $)=-10$
$U($ no drug, mal $)=-285$
$U($ no drug, none $)=30$

Decision Networks: Assumptions

- Decision nodes are totally ordered
- decision variables $D_{1}, D_{2}, \ldots, D_{n}$
- decisions are made in sequence
- e.g., BloodTst (yes,no) decided before Drug (fd,md,no)
- No-forgetting property
- any information available when decision D_{i} is made is available when decision D_{j} is made (for $i<j$)
- thus all parents of D_{i} are parents of D_{j}

Chills

Fever

Dashed arcs ensure the no-forgetting property

Policies

- Let $\operatorname{Par}\left(D_{i}\right)$ be the parents of decision node D_{i}
- $\operatorname{Dom}(\operatorname{Par}(D i))$ is the set of assignments to parents
- A policy δ is a set of mappings δ_{i}, one for each decision node D_{i}
- $\delta_{i}: \operatorname{Dom}\left(\operatorname{Par}\left(D_{i}\right)\right) \rightarrow\left(D_{i}\right)$
- δ_{i} associates a decision with each parent asst for D_{i}
- For example, a policy for BT might be:

$$
\begin{aligned}
\delta_{B T}(c, f) & =b t \\
\delta_{B T}(c, \sim f) & =\sim b t \\
\delta_{B T}(\sim c, f) & =b t \\
\delta_{B T}(\sim c, \sim f) & =\sim b t
\end{aligned}
$$

Value of a Policy

- Value of a policy δ is the expected utility given that decision nodes are executed according to δ
- Given associates \boldsymbol{x} to the set \boldsymbol{X} of all chance variables, let $\delta(\boldsymbol{x})$ denote the asst to decision variables dictated by δ
- e.g., asst to D_{1} determined by it's parents' asst in \boldsymbol{x}
- e.g., asst to D_{2} determined by it's parents' asst in \boldsymbol{x} along with whatever was assigned to D1
o etc.
- Value of δ :

$$
E U(\delta)=\sum_{\boldsymbol{X}} P(\boldsymbol{X}, \delta(\boldsymbol{X}) U(\boldsymbol{X}, \delta(\boldsymbol{X}))
$$

Optimal Policies

- An optimal policy is a policy δ^{*} such that $E U\left(\delta^{*}\right) \geq E U(\delta)$ for all policies δ
- We can use the dynamic programming principle yet again to avoid enumerating all policies
- We can also use the structure of the decision network to use variable elimination to aid in the computation

Computing the Best Policy

- We can work backwards as follows
- First compute optimal policy for Drug (last dec'n)
- for each asst to parents (C,F,BT,TR) and for each decision value ($\mathrm{D}=\mathrm{md}, \mathrm{fd}$, none $)$, compute the expected value of choosing that value of D
- set policy choice for each value of parents to be the value of D that has max value
- eg: $\delta_{D}(c, f, b t, p o s)=m d$

Computing the Best Policy

- Next compute policy for BT given policy $\delta_{D}(C, F, B T, T R)$ just determined for Drug
- since $\delta_{D}(C, F, B T, T R)$ is fixed, we can treat Drug as a normal random variable with deterministic probabilities
- i.e., for any instantiation of parents, value of Drug is fixed by policy δ_{D}
- this means we can solve for optimal policy for BT just as before
- only uninstantiated vars are random vars (once we fix its parents)

Computing the Best Policy

- How do we compute these expected values?
- suppose we have asst $<c, f, b t$, pos $>$ to parents of Drug
- we want to compute EU of deciding to set Drug $=m d$
- we can run variable elimination!
- Treat $C, F, B T, T R, D r$ as evidence
- this reduces factors (e.g., U restricted to $b t, m d$: depends on $D i s$)
- eliminate remaining variables (e.g., only Disease left)
- left with factor: $U()=\sum_{D i s} P(D i s \mid c, f, b t, p o s, m d) U(D i s)$
- We now know EU of doing $D r=m d$ when $c, f, b t, p o s$ true
- Can do same for $f d$, no to decide which is best

Computing Expected Utilities

- The preceding illustrates a general phenomenon
- computing expected utilities with BNs is quite easy
- utility nodes are just factors that can be dealt with using variable elimination

$$
\begin{aligned}
E U & =\sum_{A, B, C} P(A, B, C) U(B, C) \\
& =\sum_{A, B, C} P(C \mid B) P(B \mid A) P(A) U(B, C)
\end{aligned}
$$

- Just eliminate variables in the usual way

Optimizing Policies: Key Points

- If a decision node D has no decisions that follow it, we can find its policy by instantiating each of its parents and computing the expected utility of each decision for each parent instantiation
- no-forgetting means that all other decisions are instantiated (they must be parents)
- its easy to compute the expected utility using VE
- the number of computations is quite large: we run expected utility calculations (VE) for each parent instantiation together with each possible decision D might allow
- policy: choose max decision for each parent instant'n

Optimizing Policies: Key Points

- When a decision D node is optimized, it can be treated as a random variable
- for each instantiation of its parents we now know what value the decision should take
- just treat policy as a new CPT: for a given parent instantiation \boldsymbol{x}, D gets $\delta(\boldsymbol{x})$ with probability 1 (all other decisions get probability zero)
- If we optimize from last decision to first, at each point we can optimize a specific decision by (a bunch of) simple VE calculations
- it's successor decisions (optimized) are just normal nodes in the BNs (with CPTs)

Decision Network Notes

- Decision networks commonly used by decision analysts to help structure decision problems
- Much work put into computationally effective techniques to solve these
- common trick: replace the decision nodes with random variables at outset and solve a plain Bayes net (a subtle but useful transformation)
- Complexity much greater than BN inference
- we need to solve a number of BN inference problems
- one BN problem for each setting of decision node parents and decision node value

DBN-Decision Nets for Planning

Decision Network Notes

- In example on previous slide:
- we assume the state (of the variables at any stage) is fully observable * hence all time t vars point to time t decision
- this means the state at time t d-separates the decision at time $\mathrm{t}-1$ from the decision at time t-2
- so we ignore "no-forgetting" arcs between decisions
* once you know the state at time t , what you did at time $\mathrm{t}-1$ to get there is irrelevant to the decision at time $\mathrm{t}-1$
- If the state were not fully observable, we could not ignore the "no-forgetting" arcs

A Detailed Decision Net Example

- Setting: you want to buy a used car, but there's a good chance it is a "lemon" (i.e., prone to breakdown). Before deciding to buy it, you can take it to a mechanic for inspection. S/he will give you a report on the car, labelling it either "good" or "bad". A good report is positively correlated with the car being sound, while a bad report is positively correlated with the car being a lemon.
- The report costs $\$ 50$ however. So you could risk it, and buy the car without the report.
- Owning a sound car is better than having no car, which is better than owning a lemon.

Car Buyer's Network

Evaluate Last Decision: Buy (1)

- $E U(B \mid I, R)=\sum_{L} P(L \mid I, R, B) U(L, B)$
- $I=i, R=g$:

$$
\begin{aligned}
E U(\text { buy }) & =P(l \mid i, g) U(l, \text { buy })+P(\sim l \mid i, g) U(\sim l, \text { buy })-50 \\
& =.18 \cdot-600+.82 \cdot 1000-50=662 \\
E U(\sim \text { buy }) & =P(l \mid i, g) U(l, \sim b u y)+P(\sim l \mid i, g) U(\sim l, \sim \text { buy })-50 \\
& =-300-50=-350(-300 \text { indep. of lemon })
\end{aligned}
$$

- So optimal $\delta_{B u y}(i, g)=b u y$

Evaluate Last Decision: Buy (2)

- $I=i, R=b$:

$$
\begin{aligned}
E U(\text { buy }) & =P(l \mid i, b) U(l, \text { buy })+P(\sim l \mid i, b) U(\sim l, \text { buy })-50 \\
& =.89 \cdot-600+.11 \cdot 1000-50=-474 \\
E U(\sim \text { buy }) & =P(l \mid i, b) U(l, \sim \text { buy })+P(\sim l \mid i, b) U(\sim l, \sim \text { buy })-50 \\
& =-300-50=-350(-300 \text { indep. of lemon })
\end{aligned}
$$

- So optimal $\delta_{B u y}(i, b)=\sim$ buy

Evaluate Last Decision: Buy (3)

- $I=\sim i, R=g$ (note: no inspection cost subtracted):

$$
\begin{aligned}
E U(\text { buy }) & =P(l \mid \sim i, g) U(l, \text { buy })+P(\sim l \mid \sim i, g) U(\sim l, \text { buy }) \\
& =.5 \cdot-600+.5 \cdot 1000=200 \\
E U(\sim \text { buy }) & =P(l \mid \sim i, g) U(l, \sim \text { buy })+P(\sim l \mid \sim i, g) U(\sim l, \sim b u y)-50 \\
& =-300-50=-350(-300 \text { indep. of lemon })
\end{aligned}
$$

- So optimal $\delta_{B u y}(\sim i, g)=\sim$ buy
- So optimal policy for Buy is:
- $\delta_{B u y}(i, g)=b u y ; \delta_{B u y}(i, b)=\sim b u y ; \delta_{B u y}(\sim i, n)=b u y$
- Note: we don't bother computing policy for $(i, \sim n)$, $(\sim i, g)$, or $(\sim i, b)$, since these occur with probability 0

Evaluate First Decision: Inspect

- $E U(I)=\sum_{L, R} P(L, R \mid I) U\left(L, \boldsymbol{\delta}_{\boldsymbol{B u y}}(\boldsymbol{I}, \boldsymbol{R})\right)$
- where $P(R, L \mid I)=P(R \mid L, I) P(L \mid I)$

$$
\begin{aligned}
E U(i) & =.1 \cdot-600+.4 \cdot-300+.45 \cdot 1000+.05 \cdot-300-50 \\
& =237.5-50=187.5 \\
E U(\sim i) & =P(l \mid \sim i, n) U(l, \text { buy })+P(\sim l \mid \sim i, n) U(\sim l, \text { buy }) \\
& =.5 \cdot-600+.5 \cdot 1000=200
\end{aligned}
$$

- So optimal $\delta_{\text {Inspect }}(\sim i)=$ buy

	$P(R, L \mid I)$	$\boldsymbol{\delta}_{\boldsymbol{B u y}}$	$U\left(L, \boldsymbol{\delta}_{\boldsymbol{B u y}}\right)$
g, l	0.1	buy	$-600-50=-650$
$g, \sim l$	0.45	buy	$1000-50=950$
b, l	0.4	\sim buy	$-300-50=-350$
$b, \sim l$	0.05	\sim buy	$-300-50=-350$

Value of Information

- So optimal policy is: don't inspect, buy the car
- $\mathrm{EU}=200$
- Notice that the EU of inspecting the car, then buying it iff you get a good report, is 237.5 less the cost of the inspection (50). So inspection not worth the improvement in EU.
- But suppose inspection cost $\$ 25$: then it would be worth it $(E U=237.5-25=$ $212.5>E U(\sim i))$
- The expected value of information associated with inspection is 37.5 (it improves expected utility by this amount ignoring cost of inspection). How? Gives opportunity to change decision (\sim buy if bad).
- You should be willing to pay up to $\$ 37.5$ for the report

Slide of this section were taken from CSC 384 Lecture Slides ©2002-2003, C. Boutilier and P. Poupart

Influence Diagrams

Up to now, we used Bayesian networks for

- modeling (in)dependence relations between random/chance variables
- quantifying the strength of these relations by assigning (conditional) probabilities
- update these probabilities after evidence observations

However, in practical, this is only a part of a more complex task: decision making under uncertainty.

If a set of actions solves a problem, we have to choose one particular action based on predefined criteria, e.g. costs and/or gains.

Therefore, we will now augment the current framework with special nodes that serve these purposes.

Example: Observations and Actions

$T \ldots$ Temperature
A....Aspirine

- Rectangular nodes: intervening actions/decisions
- Triangular nodes: test actions/observations
- Observations may change probabilities of nodes that are causes:

Observing $T=37^{\circ} \mathrm{C}$ decreases probability of Fever and Flu (and, of course, Sleepy).

- The impact of intervening actions can only follow the direction of the (causal) edges:

Taking Aspirine (A) decreases the probability of Fever and Sleepy and may result in an alike observation for T. However, it cannot change the state for Flu since Aspirine only eases the pain and does not kill viruses.

Example: Utilities

Mildew Fungus Infestation (dt. Mehltau-Befall)

Before the harvest, a farmer checks the state of his crop and decides whether to apply a fungi treatment or not.

- Q - Quality of the crop
- M - Mildew infestation severity
- H - Harvest quality
- A - Action to be taken
- $\mathrm{M}^{*}-\quad$ Mildew infestation after action A
- U - Utility function of the harvest (i.e. the benefit)
- C - Utility functon of the action (i.e. the treatment costs)
- edges leading to chance nodes
- edges leading to decision nodes
- edges leading to utility nodes

Example: Utilities (2)

- Diamond-shaped nodes: utility functions (costs/benefits)
- Given the quality of the crops and the mildew state, which action maximizes the benefit?
- $C(\mathrm{~A})<0$
- $U(\mathrm{H}) \geq 0$
- Expected total utility of action $\mathrm{A}=a$:

$$
\mathrm{E}(U(a \mid q, m))=C(a)+\sum_{h} U(h) \cdot P(h \mid a, q, m)
$$

Single-Action Models

A single-action model consists of

- a Bayesian network representing the chance nodes
- one decision (action) node
- a set of utility nodes
- decision nodes can affect chance and utility nodes
- utility nodes can be affected by chance and decision nodes

Single-Action Models (2)

Given n utility nodes U_{1}, \ldots, U_{n} and assuming they all depend on only one respective chance node X_{i}, the total expected utility given a decision $D=d$ and (chance node) evidence e is defined as:
vskip-2mm

$$
\mathrm{E}(U(d \mid e))=\sum_{i=1}^{n} \sum_{x \in \operatorname{dom}\left(X_{i}\right)} U_{1}\left(x_{1}\right) \cdot P\left(x_{1} \mid d, e\right)
$$

The optimal decision d^{*} is then chosen:

$$
d^{*}=\underset{d \in \operatorname{dom}(D)}{\arg \max } \mathrm{E}(U(d \mid e))
$$

Influence Diagrams

An influence diagram consists of a directed acyclic graph over chance nodes, decision nodes and utility nodes that obey the following structural properties:

- there is a directed path comprising all decision nodes
- utility nodes cannot have children
- decision and chance nodes are discrete
- utility nodes do not have states
- chance nodes are assigned potential tables given their parents (including decision nodes)
- each utility node U gets assigned a real-valued utility function over its parents

$$
U: \underset{X \in \operatorname{parents}(U)}{X} \operatorname{dom}(X) \rightarrow \mathbb{R}
$$

Influence Diagrams (2)

- Links into decision nodes carry no quantitative information, they only introduce a temporal ordering.
- The required path between the decision nodes induces a temporal partition of the chance nodes:
If there are n decision nodes, then for $1 \leq i<n$ the set I_{i} represents all chance nodes that have to be observed after decision D_{i} but before decision D_{i+1}.
- I_{0} is the set of chance nodes to be observed before any decision.
- I_{n} is the set of chance nodes that are not observed.

Influence Diagrams (3)

(A)

Influence Diagrams (3)

(A)

(B)
(E)
(D)
D_{1}
(F)
(I)
(L)

(J)
(H)

$\left\langle\widehat{\left.V_{1}\right\rangle}\right.$

$$
D_{3}
$$

Influence Diagrams (3)

Influence Diagrams (3)

Influence Diagrams (3)

Influence Diagrams (3)

d-Separation in Influence Diagrams

To be able to use the d-separation, we need to preprocess the graphical structure of an influence diagram as follows:

- remove all utility nodes (and the edges towards them)
- remove edges that point to decision nodes

For example: $\quad C \Perp T \mid B \quad$ or $\quad\{A, T\} \Perp D_{2} \mid \emptyset$.

Chain Rule

The semantics of an influence diagram disallow some probabilities:

- $P(D)$ for a decision node D has no meaning
- $P(A \mid D)$ has no meaning unless a decision $d \in \operatorname{dom}(D)$ has been chosen

Given an influence diagram G with U_{C} being the set of chance nodes and U_{D} being the set of decision nodes, we can factorize P as follows:

$$
P\left(U_{C} \mid U_{D}\right)=\prod_{X \in U_{C}} P(X \mid \operatorname{parents}(X))
$$

Solutions to Influence Diagrams

- Given: an influence diagram
- Desired: a strategy which decision(s) to make

Policy

A policy for decision D_{i} is a mapping σ_{i}, which for any configuration of the past of D_{i} yields a decision for D_{i}, i. e.

$$
\sigma_{i}\left(I_{0}, D_{1}, I_{1}, \ldots, D_{i-1}, I_{i-1}\right) \in \operatorname{dom}\left(D_{i}\right)
$$

Strategy

A strategy for an influence diagram is a set of policies, one for each decision node.

Solution

A solution to an influence diagram is a strategy maximizing the expected utility.

Solutions to Influence Diagrams (2)

Assume, we are given an influence diagram G over $U=U_{C} \cup U_{D}$ and U_{V}.

- $U_{C} \ldots$ set of chance nodes
- $U_{D} \ldots$ set of decision nodes and
- $U_{V}=\left\{V_{i}\right\} \ldots$ set of utility nodes

Further, we know the following temporal order:

$$
I_{0} \prec D_{1} \prec I_{1} \prec \cdots \prec D_{n} \prec I_{n}
$$

The total utility V be defined as the sum of all utility nodes: $V=\sum_{i} V_{i}$

Solutions to Influence Diagrams (3)

- An optimal policy for D_{i} is

$$
\sigma_{i}\left(I_{0}, D_{1}, \ldots, I_{i-1}\right)=\arg \max _{d_{i}} \sum_{I_{i}} \max _{d_{i+1}} \cdots \max _{d_{n}} \sum_{I_{n}} P\left(U_{C} \mid U_{D}\right) \cdot V
$$

where $d_{x} \in \operatorname{dom}\left(D_{x}\right)$.

- The expected utility from following policy σ_{i} (and acting optimally in the future) is

$$
\rho_{i}\left(I_{0}, D_{1}, \ldots, I_{i-1}\right)=\frac{\max _{d_{i}} \sum_{I_{i}} \max _{d_{i+1}} \cdots \max _{d_{n}} \sum_{I_{n}} P\left(U_{C} \mid U_{D}\right) \cdot V}{P\left(I_{0}, \ldots, I_{i-1} \mid D_{1}, \ldots, D_{i-1}\right)}
$$

where $d_{x} \in \operatorname{dom}\left(D_{x}\right)$.

Solutions to Influence Diagrams (4)

- An optimal strategy yields the maximum expected utility of

$$
\operatorname{MEU}(G)=\sum_{I_{0}} \max _{d_{1}} \sum_{I_{1}} \max _{d_{2}} \cdots \max _{d_{n}} \sum_{I_{n}} P\left(U_{C} \mid U_{D}\right) \cdot V
$$

- $\sum_{I_{i}}$ means (sum-)marginalizing over all nodes in I_{i}
- max means taking the maximum over all $d_{i} \in \operatorname{dom}\left(D_{i}\right)$ and thus (max-)marginalizing over D_{i}
- Everytime I_{i} is marginalized out, the result is used to determine a policy for D_{i}.
- Marginalization in reverse temporal order
- \Rightarrow use simplification techniques from the Bayesian network realm to simplify the joint probability distribution $P\left(U_{C} \mid U_{D}\right)$

Example

Example (2)

For D_{2} we can read from the graph:

$$
I_{0}=\emptyset \quad I_{1}=\{T\} \quad I_{2}=\{A, B, C\}
$$

Thus, σ_{2} can be solved to the following strategy:

$\sigma_{2}\left(\emptyset, D_{1},\{T\}\right)$	$d_{1}^{(1)}$	$d_{1}^{(2)}$
y	$d_{2}^{(1)}$	$d_{2}^{(1)}$
n	$d_{2}^{(2)}$	$d_{2}^{(2)}$

$\rho_{2}\left(\emptyset, D_{1},\{T\}\right)$	$d_{1}^{(1)}$	$d_{1}^{(2)}$
y	9.51	11.29
n	10.34	8.97

Finally, $\sigma_{1}=d_{1}^{(2)}$ and $\operatorname{MEU}(G)=10.58$.

Frameworks of Imprecision and Uncertainty

Problems with Probability Theory

Representation of Ignorance (dt. Unwissen)

- We are given a die with faces $1, \ldots, 6$

What is the certainty of showing up face i ?

- Conduct a statistical survey (roll the die 10000 times) and estimate the relative frequency: $P(\{i\})=\frac{1}{6}$
- Use subjective probabilities (which is often the normal case): We do not know anything (especially and explicitly we do not have any reason to assign unequal probabilities), so the most plausible distribution is a uniform one.
\Rightarrow Problem: Uniform distribution because of ignorance or extensive statistical tests
- Experts analyze aircraft shapes: 3 aircraft types A, B, C "It is type A or B with 90% certainty. About C, I don't have any clue and I do not want to commit myself. No preferences for A or B."
\Rightarrow Problem: Propositions hard to handle with Bayesian theory

Modeling Imprecise Data

" $A \subseteq X$ being an imprecise date" means: the true value x_{0} lies in A but there are no preferences on A.
$\Omega \quad$ set of possible elementary events
$\Theta=\{\xi\} \quad$ set of observers
$\lambda(\xi) \quad$ importance of observer ξ
Some elementary event from Ω occurs and every observer $\xi \in O$ shall announce which elementary events she personally considers possible. This set is denoted by $\Gamma(\xi) \subseteq \Omega$. $\Gamma(\xi)$ is then an imprecise date.
$\lambda: 2^{\Theta} \rightarrow[0,1] \quad$ probability measure (interpreted as importance measure)
$\left(\Theta, 2^{\Theta}, \lambda\right) \quad$ probability space
$\Gamma: \Theta \rightarrow 2^{\Omega} \quad$ set-valued mapping

Imprecise Data (2)

Let $A \subseteq \Omega$:
a) $\Gamma^{*}(A) \stackrel{\text { Def }}{=}\{\xi \in \Theta \mid \Gamma(\xi) \cap A \neq \emptyset\}$
b) $\Gamma_{*}(A) \stackrel{\text { Def }}{=}\{\xi \in \Theta \mid \Gamma(\xi) \neq \emptyset$ and $\Gamma(\xi) \subseteq A\}$

Remarks:
a) If $\xi \in \Gamma^{*}(A)$, then it is plausible for ξ that the occurred elementary event lies in A.
b) If $\xi \in \Gamma_{*}(A)$, then it is certain for ξ that the event lies in A.
c) $\{\xi \mid \Gamma(\xi) \neq \emptyset\}=\Gamma^{*}(\Omega)=\Gamma_{*}(\Omega)$

Let $\lambda\left(\Gamma^{*}(\Omega)\right)>0$. Then we call

$$
P^{*}(A)=\frac{\lambda\left(\Gamma^{*}(A)\right)}{\lambda\left(\Gamma^{*}(\Omega)\right)} \quad \text { the upper, and } \quad P_{*}(A)=\frac{\lambda\left(\Gamma_{*}(A)\right)}{\lambda\left(\Gamma_{*}(\Omega)\right)} \quad \text { the lower }
$$

probability w.r.t. λ and Γ.

Example

$$
\begin{aligned}
& \Theta=\{a, b, c, d\} \quad \lambda: a \mapsto 1 / 6 \\
& \Omega=\{1,2,3\} \\
& \Gamma^{*}(\Omega)=\{a, b, d\} \\
& \lambda\left(\Gamma^{*}(\Omega)\right)={ }^{4} / 6 \\
& \begin{aligned}
\Gamma: \quad & \mapsto\{1\} \\
b & \mapsto\{2\} \\
c & \mapsto \emptyset \\
d & \mapsto\{2,3\}
\end{aligned}
\end{aligned}
$$

One can consider $P^{*}(A)$ and $P_{*}(A)$ as upper and lower probability bounds.

Imprecise Data (3)

Some properties of probability bounds:
a) $P^{*}: 2^{\Omega} \rightarrow[0,1]$
b) $0 \leq P_{*} \leq P^{*} \leq 1, \quad P_{*}(\emptyset)=P^{*}(\emptyset)=0, \quad P_{*}(\Omega)=P^{*}(\Omega)=1$
c) $A \subseteq B \quad \Rightarrow \quad P^{*}(A) \leq P^{*}(B) \quad$ and $\quad P_{*}(A) \leq P_{*}(B)$
d) $A \cap B=\emptyset \quad \nRightarrow \quad P^{*}(A)+P^{*}(B)=P^{*}(A \cup B)$
e) $P_{*}(A \cup B) \geq P_{*}(A)+P_{*}(B)-P_{*}(A \cap B)$
f) $P^{*}(A \cup B) \leq P^{*}(A)+P^{*}(B)-P^{*}(A \cap B)$
g) $P_{*}(A)=1-P^{*}(\Omega \backslash A)$

Imprecise Data (4)

One can prove the following generalized equation:

$$
P_{*}\left(\bigcup_{i=1}^{n} A_{i}\right) \geq \sum_{\emptyset \neq I: I \subseteq\{1, \ldots, n\}}(-1)^{|I|+1} \cdot P_{*}\left(\bigcap_{i \in I} A_{i}\right)
$$

These set functions also play an important role in theoretical physics (capacities, Choquet, 1955). Shafer did generalize these thoughts and developed a theory of belief functions.

Belief Revision

How is new knowledge incoporated?
Every observer announces the location of the ship in form of a subset of all possible ship locations. Given these set-valued mappings, we can derive upper and lower probabilities with the help of the observer importance measure. Let us assume the ship is certainly at sea.

How do the upper/lower probabilities change?

Example

a) Geometric Conditioning
(observers that give partial or full wrong information are discarded)

$$
\begin{aligned}
& P_{*}(A \mid B)=\frac{\lambda(\{\xi \in \Theta \mid \Gamma(\xi) \subseteq A \text { and } \Gamma(\xi) \subseteq B\})}{\lambda(\{\xi \in \Theta \mid \Gamma(\xi) \subseteq B\})}=\frac{P_{*}(A \cap B)}{P_{*}(B)} \\
& P^{*}(A \mid B)=\frac{\lambda(\{\xi \in \Theta \mid \Gamma(\xi) \subseteq B \text { and } \Gamma(\xi) \cap A \neq \emptyset\})}{\lambda(\{\xi \in \Theta \mid \Gamma(\xi) \subseteq B\})}=\frac{P^{*}(A \cup \bar{B})-P^{*}(\bar{B})}{1-P^{*}(\bar{B})}
\end{aligned}
$$

Belief Revision (2)

b) Data Revision
(the observed data is modified such that they fit the certain information)

$$
\begin{aligned}
\left(P_{*}\right)_{B}(A) & =\frac{P_{*}(A \cup \bar{B})-P_{*}(\bar{B})}{1-P_{*}(B)} \\
\left(P^{*}\right)_{B}(A) & =\frac{P^{*}(A \cap B)}{P^{*}(B)}
\end{aligned}
$$

These two concepts have different semantics. There are several more belief revision concepts.

Combination of Random Sets

Let $\left(\Omega, 2^{\Omega}\right)$ be a space of events. Further be $\left(O_{1}, 2^{O_{1}}, \lambda_{1}\right)$ and $\left(O_{2}, 2^{O_{2}}, \lambda_{2}\right)$ spaces of independent observers.

We call $\left(O_{1} \times O_{2}, \lambda_{1} \cdot \lambda_{2}\right)$ the product space of observers and

$$
\Gamma: O_{1} \times O_{2} \rightarrow 2^{\Omega}, \Gamma\left(x_{1}, x_{2}\right)=\Gamma_{1}\left(x_{1}\right) \cap \Gamma_{2}\left(x_{2}\right)
$$

the combined observer function.
We obtain with

$$
\left(P_{L}\right)_{*}(A)=\frac{\left(\lambda_{1} \cdot \lambda_{2}\right)\left(\left\{\left(x_{1}, x_{2}\right) \mid \Gamma\left(x_{1}, x_{2}\right) \neq \emptyset \wedge \Gamma\left(x_{1}, x_{2}\right) \sqsubseteq A\right\}\right)}{\left(\lambda_{1} \cdot \lambda_{2}\right)\left(\left\{\left(x_{1}, x_{2} \mid \Gamma\left(x_{1}, x_{2}\right) \neq \emptyset\right)\right\}\right)}
$$

the lower probability of A that respects both observations.

Example

Combination:

$$
O_{1} \times O_{2}=\{\overline{a c}, \overline{b c}, \overline{a d}, \overline{b d}\}
$$

$$
\begin{aligned}
\lambda: & \{\overline{a c}\} \\
\{\overline{a d}\} & \mapsto 1 / 6 \\
\{\overline{b c}\} & \mapsto 1 / 6 \\
\{\overline{b d}\} & \mapsto 1 / 6
\end{aligned}
$$

$$
\begin{aligned}
\Gamma: & \overline{a c}
\end{aligned}>\{1\}
$$

$$
\Gamma_{*}(\Omega)=\left\{\left(x_{1}, x_{2}\right) \mid \Gamma\left(x_{1}, x_{2}\right) \neq \emptyset\right\}
$$

$$
=\{\overline{a c}, \overline{a d}, \overline{b d}\}
$$

$$
\lambda\left(\Gamma_{*}(\Omega)\right)=4 / 6
$$

$$
\begin{aligned}
& \Omega=\{1,2,3\} \quad \lambda_{1}:\{a\} \mapsto{ }^{1 / 3} \quad \lambda_{2}:\{c\} \mapsto 1 / 2 \\
& \{b\} \mapsto{ }^{2} / 3 \quad \lambda_{2}:\{d\} \mapsto{ }^{1 / 2} \\
& O_{1}=\{a, b\} \quad \Gamma_{1}: \quad a \mapsto\{1,2\} \\
& b \mapsto\{2,3\} \\
& \begin{aligned}
\Gamma_{2}: & c
\end{aligned} \quad \mapsto\{1\}, 子 \begin{aligned}
d & \mapsto\{2,3\}
\end{aligned}
\end{aligned}
$$

Example (2)

A	$m_{1}(A)$	$\left(P_{*}\right)_{\Gamma_{1}}(A)$	$m_{2}(A)$	$\left(P_{*}\right)_{\Gamma_{2}}(A)$	$m(A)$	$\left(P_{*}\right)_{\Gamma}(A)$
\emptyset	0	0	0	0	0	0
$\{1\}$	0	0	$1 / 2$	$1 / 2$	$1 / 4=1 / 6 / 4 / 6$	$1 / 4$
$\{2\}$	0	0	0	0	$1 / 4$	$1 / 4$
$\{3\}$	0	0	0	0	0	0
$\{1,2\}$	$1 / 3$	$1 / 3$	0	$1 / 2$	0	$1 / 2$
$\{1,3\}$	0	0	0	$1 / 2$	0	$1 / 4$
$\{2,3\}$	$2 / 3$	$2 / 3$	$1 / 2$	$1 / 2$	$1 / 2$	$3 / 4$
$\{1,2,3\}$	0	1	0	1	0	1

Imprecise Probabilities

Let x_{0} be the true value but assume there is no information about $P(A)$ to decide whether $x_{0} \in A$. There are only probability boundaries.

Let \mathcal{L} be a set of probability measures. Then we call

$$
\begin{array}{ll}
\left(P_{\mathcal{L}}\right)_{*}: 2^{\Omega} \rightarrow[0,1], A \mapsto \inf \{P(A) \mid P \in \mathcal{L}\} & \text { the lower and } \\
\left(P_{\mathcal{L}}\right)^{*}: 2^{\Omega} \rightarrow[0,1], A \mapsto \sup \{P(A) \mid P \in \mathcal{L}\} & \text { the upper }
\end{array}
$$

probability of A w.r.t. \mathcal{L}.
a) $\left(P_{\mathcal{L}}\right)_{*}(\emptyset)=\left(P_{\mathcal{L}}\right)^{*}(\emptyset)=0 ; \quad\left(P_{\mathcal{L}}\right)_{*}(\Omega)=\left(P_{\mathcal{L}}\right)^{*}(\Omega)=1$
b) $0 \leq\left(P_{\mathcal{L}}\right)_{*}(A) \leq\left(P_{\mathcal{L}}\right)^{*}(A) \leq 1$
c) $\left(P_{\mathcal{L}}\right)^{*}(A)=1-\left(P_{\mathcal{L}}\right)_{*}(\bar{A})$
d) $\left(P_{\mathcal{L}}\right)_{*}(A)+\left(P_{\mathcal{L}}\right)_{*}(B) \leq\left(P_{\mathcal{L}}\right)_{*}(A \cup B)$
e) $\left(P_{\mathcal{L}}\right) *(A \cap B)+\left(P_{\mathcal{L}}\right)_{*}(A \cup B) \nsupseteq\left(P_{\mathcal{L}}\right)_{*}(A)+\left(P_{\mathcal{L}}\right)_{*}(B)$

Belief Revision

Let $B \subseteq \Omega$ and \mathcal{L} a class of probabilities. The we call

$$
\begin{array}{ll}
A \subseteq \Omega:\left(P_{\mathcal{L}}\right)_{*}(A \mid B)=\inf \{P(A \mid B) \mid P \in \mathcal{L} \wedge P(B)>0\} & \text { the lower and } \\
A \subseteq \Omega:\left(P_{\mathcal{L}}\right)^{*}(A \mid B)=\sup \{P(A \mid B) \mid P \in \mathcal{L} \wedge P(B)>0\} & \text { the upper }
\end{array}
$$

conditional probability of A given B.
A class \mathcal{L} of probability measures on $\Omega=\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ is of type 1 , iff there exist functions R_{1} and R_{2} from 2^{Ω} into $[0,1]$ with:

$$
\mathcal{L}=\left\{P \mid \forall A \subseteq \Omega: R_{1}(A) \leq P(A) \leq R_{2}(A)\right\}
$$

Belief Revision (2)

Intuition: P is determined by $P\left(\left\{\omega_{i}\right\}\right), i=1, \ldots, n$ which corresponds to a point in \mathbb{R}^{n} with coordinates $\left(P\left(\left\{\omega_{1}\right\}\right), \ldots, P\left(\left\{\omega_{n}\right\}\right)\right)$.

If \mathcal{L} is type 1 , it holds true that:

$$
\begin{aligned}
& \mathcal{L} \Leftrightarrow\left\{\left(r_{1}, \ldots, r_{n}\right) \in \mathbb{R}^{n} \mid \exists P: \forall A \subseteq \Omega:\right. \\
&\left(P_{\mathcal{L}}\right) *(A) \leq P(A) \leq\left(P_{\mathcal{L}}\right)^{*}(A) \\
&\left.\quad \text { and } r_{i}=P\left(\left\{\omega_{i}\right\}\right), i=1, \ldots, n\right\}
\end{aligned}
$$

Example

$$
\begin{aligned}
& \Omega=\left\{\omega_{1}, \omega_{2}, \omega_{3}\right\} \\
& \mathcal{L}=\left\{P \left\lvert\, \frac{1}{2} \leq P\left(\left\{\omega_{1}, \omega_{2}\right\}\right) \leq 1\right., \quad \frac{1}{2} \leq P\left(\left\{\omega_{2}, \omega_{3}\right\}\right) \leq 1, \quad \frac{1}{2} \leq P\left(\left\{\omega_{1}, \omega_{3}\right\}\right) \leq 1\right\}
\end{aligned}
$$

general restriction:

$$
0 \leq P\left(\left\{\omega_{i}\right\}\right) \leq 1
$$

$$
P\left(\left\{\omega_{1}\right\}\right)+P\left(\left\{\omega_{2}\right\}\right)+P\left(\left\{\omega_{3}\right\}\right)=1
$$

Let $A_{1}=\left\{\omega_{1}, \omega_{2}\right\}, A_{2}=\left\{\omega_{2}, \omega_{3}\right\}, A_{3}=\left\{\omega_{1}, \omega_{3}\right\}$

$$
\begin{array}{r}
P_{*}\left(A_{1}\right)+P_{*}\left(A_{2}\right)+P_{*}\left(A_{3}\right)-P_{*}\left(A_{1} \cap A_{2}\right)-P_{*}\left(A_{2} \cap A_{3}\right)-P_{*}\left(A_{1} \cap A_{3}\right)+P_{*}\left(A_{1} \cap A_{2} \cap A_{3}\right) \\
=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}-0-0-0+0=\frac{3}{2}>1=P\left(A_{1} \cup A_{2} \cup A_{3}\right)
\end{array}
$$

Belief Revision (3)

If \mathcal{L} is type 1 and $\left(P_{\mathcal{L}}\right)^{*}(A \cup B) \geq\left(P_{\mathcal{L}}\right)^{*}(A)+\left(P_{\mathcal{L}}\right)^{*}(B)-\left(P_{\mathcal{L}}\right)^{*}(A \cap B)$, then

$$
\left(P_{\mathcal{L}}\right)^{*}(A \mid B)=\frac{\left(P_{\mathcal{L}}\right)^{*}(A \cap B)}{\left(P_{\mathcal{L}}\right)^{*}(A \cap B)+\left(P_{\mathcal{L}}\right)_{*}(B \cap \bar{A})}
$$

and

$$
\left(P_{\mathcal{L}}\right)_{*}(A \mid B)=\frac{\left(P_{\mathcal{L}}\right)_{*}(A \cap B)}{\left(P_{\mathcal{L}}\right)_{*}(A \cap B)+\left(P_{\mathcal{L}}\right)^{*}(B \cap \bar{A})}
$$

Let \mathcal{L} be a class of type 1 . \mathcal{L} is of type 2 , iff

$$
\left(P_{\mathcal{L}}\right)_{*}\left(A_{1} \cup \cdots \cup A_{n}\right) \geq \sum_{I: \emptyset \neq I \subseteq\{1, \ldots, n\}}(-1)^{|I|+1} \cdot\left(P_{\mathcal{L}}\right) *\left(\bigcap_{i \in I} A_{i}\right)
$$

Fuzzy Sets

Classical description of concepts/properties:
Example: concept "two-digit number"
a) as a set: $\{10,11, \ldots, 99\}=M$
b) as predicate two-digit $(x)= \begin{cases}\text { true } & \text { if } 10 \leq x \leq 99 \\ \text { false else }\end{cases}$

Connection between a) and b):

$$
M=\{x \in \mathbb{N} \mid \text { two-digit }(x)\} ; \quad \text { two-digit }(x) \Leftrightarrow x \in M
$$

Both concepts are not suited for defining concepts like:

- "large"
- "old"
- "heavy"

Example

"Set" of sizes (in cm) at which a child would be regarded "tall".

The saltus at 110 cm from 0 to 1 is not intuitive. Therefore:

membership degree function

Fuzzy Sets

A fuzzy set over a basic set X is a mapping

$$
\mu_{X}: X \rightarrow[0,1]
$$

$\mu_{X}(x) \in[0,1]$ is the degree of membership of x to the fuzzy set μ_{X}.

Operations on Fuzzy Sets

Combination of concepts like "tall", "approx. $110 \mathrm{~cm} ", \ldots$
a) The child is "tall" and "approx. 110 cm (tall)"
b) The child is "tall" or "approx. 110 cm (tall)"
c) The child is not "tall"

a) $\hat{=}$ Intersection: \quad classical: $\quad x \in A \cap B \Leftrightarrow x \in A \wedge x \in B$
b) $\hat{=}$ Union:
c) $\widehat{=}$ Complement: classical: $\quad x \in A \cup B$
$\Leftrightarrow x \in A \vee x \in B$
classical: $\quad x \in \bar{A} \quad \Leftrightarrow \neg(x \in A)$
Postulate:

$$
\mu_{\text {tall } \wedge \text { approx. }} 110 \mathrm{~cm}(x)=\mu_{\text {tall }}(x) \top \mu_{\text {approx. }} 110 \mathrm{~cm}(x)
$$

I. e., we need a mapping $T:[0,1]^{2} \rightarrow[0,1]$

Generalized Conjunction, t-Norm

A t-norm is a mapping $T:[0,1]^{2} \rightarrow[0,1]$ with
(T1) $\top(a, 1)=a$
(T2) $a \leq a^{\prime} \Rightarrow \mathrm{\top}(a, b) \leq \top\left(a^{\prime}, b\right)$
(T3) $\mathrm{\top}(a, b)=\mathrm{\top}(b, a)$
(T4) $\mathrm{T}(\mathrm{T}(a, b), c)=\mathrm{T}(a, \mathrm{~T}(b, c)$
Examples:

$$
\begin{aligned}
& \min \{a, b\}, a \cdot b, \max \{a+b-1,0\} \\
& \text { largest t-norm, the only idempotent t-norm (i.e., } \mathrm{T}(a, a)=a) \\
& \quad 0 \leq \mathrm{T}(0,0) \stackrel{(\mathrm{T} 2)}{\leq} \mathrm{T}(1,0) \stackrel{(\mathrm{T} 3)}{=} \mathrm{T}(0,1) \stackrel{(\mathrm{T} 1)}{=} 0 ; \quad \mathrm{T}(1,1) \stackrel{(\mathrm{T} 1)}{=} 1
\end{aligned}
$$

Reasonable claim: $\mu_{\text {tall }}(x) \top \mu_{\text {tall }}(x)=\mu_{\text {tall }}(x) \Rightarrow \top$ idempotent

t-Norms / Fuzzy Conjunctions

standard conjunction:
algebraic product:
Łukasiewicz:
drastic product:

$$
\begin{aligned}
\top_{\min }(a, b) & =\min \{a, b\} \\
\top_{\operatorname{prod}}(a, b) & =a \cdot b \\
\top_{\text {Euka }}(a, b) & =\max \{0, a+b-1\} \\
\top_{-1}(a, b) & = \begin{cases}a, & \text { if } b=1, \\
b, & \text { if } a=1, \\
0, & \text { otherwise } .\end{cases}
\end{aligned}
$$

Example

$X=\left\{c_{1}, c_{2}, c_{3}\right\}$
$\mu_{\text {cheap }}$
$\mu_{\text {fast }}$
$\mu_{\text {goodvalue }}$

Set of computers
Fuzzy set of cheap computers
Fuzzy set of fast computers
$\mu_{\text {cheap }} \top \mu_{\text {fast }}$

Computer	Price	Speed	$\mu_{\text {cheap }}$	$\mu_{\text {fast }}$	$\mu_{\text {goodvalue }}\left(T=T_{\text {min }}\right)$	$\left(T=T_{\text {prod }}\right)$
c_{1}	2000	20	1.0	0.4	0.4	0.40
c_{2}	2500	40	0.6	0.8	0.6	0.48
c_{3}	2500	50	0.6	0.9	0.6	0.54

Generalized Disjunction, t-Conorm

A t-conorm is a mapping $\perp:[0,1]^{2} \rightarrow[0,1]$ with
(S1) $\perp(a, 0)=a$
(S2) $a \leq a^{\prime} \Rightarrow \perp(a, b) \leq \perp\left(a^{\prime}, b\right)$
(S3) $\perp(a, b)=\perp(b, a)$
(S4) $\perp(\perp(a, b), c)=\perp(a, \perp(b, c)$

Examples:
$\max \{a, b\}, a+b-a \cdot b, \min \{a+b, 1\}$
smallest t-conorm, the only idempotent t-conorm (i.e., $\perp(a, a)=a$)

t-Conorms / Fuzzy Disjunctions

standard disjunction:
algebraic sum:
Łukasiewicz:
drastic sum:

$$
\begin{aligned}
\perp_{\max }(a, b) & =\max \{a, b\} \\
\perp_{\text {sum }}(a, b) & =a+b-a \cdot b \\
\perp_{\text {Euka }}(a, b) & =\min \{1, a+b\} \\
\perp_{-1}(a, b) & = \begin{cases}a, & \text { if } b=0 \\
b, & \text { if } a=0 \\
1, & \text { otherwise }\end{cases}
\end{aligned}
$$

$\perp_{\text {max }}$

$\perp_{\text {sum }}$

$\perp_{\text {Łuka }}$

Generalized Negation

A negation operator is a mapping $\sim:[0,1] \rightarrow[0,1]$ with
(N1) $\sim 0=1$
(N2) $a \leq b \quad \Rightarrow \quad \sim b \leq \sim a$
(N3) $\sim(\sim a)=a$
From (N1) and (N3) follows: $\quad \sim 1=0$

Relation between t-norms and t-conorms:
\top t-norm $\Leftrightarrow \perp_{\sim}$ t-conorm: $\perp_{\sim}(a, b)=\sim(T(\sim a, \sim b))(a \vee b \hat{=} \neg(\neg a \wedge \neg b))$
\perp t-conorm $\Leftrightarrow \mathrm{T}_{\sim}$ t-norm: $\quad \mathrm{T}_{\sim}(a, b)=\sim(\perp(\sim a, \sim b))(a \wedge b \hat{=} \neg(\neg a \vee \neg b))$

Fuzzy Negations

standard negation:
threshold negation:

$$
\begin{array}{ll}
\sim a & =1-a \\
\sim(a ; \theta) & = \begin{cases}1, & \text { if } x \leq \theta, \\
0, & \text { otherwise } .\end{cases} \\
\sim a & =\frac{1}{2}(1+\cos \pi a) \\
\sim(a ; \lambda) & =\frac{1-a}{1+\lambda a} \\
\sim(a ; \lambda) & =\left(1-a^{\lambda}\right)^{\frac{1}{\lambda}}
\end{array}
$$

Reasoning with Uncertainty Module (RUM)

Motivation:

$$
\text { modus ponens (mp): } \quad \frac{A \rightarrow B, A}{B}, \quad \text { modus tollens (mt): } \quad \frac{A \rightarrow B, \neg B}{\neg A}
$$

Generalization of mp and mt on $[0,1]$-valued propositions, e.g.:

$$
\mu_{\text {tall }}(x) \xrightarrow{0.8} \mu_{\text {heavy }}(x), \mu_{\text {tall }}(x) \geq 0.9 \quad \Rightarrow \quad \mu_{\text {heavy }} \geq ?
$$

Reasoning with Uncertainty Module (2)

Modus Ponens:
【』 fulfillment degree

- Given: $\llbracket A \rightarrow B \rrbracket \geq \gamma ; \llbracket A \rrbracket \geq \alpha$
- Desired: $\llbracket B \rrbracket \geq \beta=\beta(\gamma, \alpha)$
- $\llbracket B \rrbracket \geq \llbracket A \wedge(A \rightarrow B) \rrbracket=\mathrm{T}(\llbracket A \rrbracket, \llbracket A \rightarrow B \rrbracket) \geq \mathrm{T}(\alpha, \gamma)=\beta$

Modus Tollens:

- Given: $\llbracket B \rrbracket \leq \beta, \llbracket A \rightarrow B \rrbracket \geq \gamma$
- Desired: $\llbracket A \rrbracket \leq \alpha=\alpha(\beta, \gamma)$
- $\llbracket \neg A \rrbracket \geq \llbracket \neg B \wedge(A \rightarrow B) \rrbracket=\top(\sim(/ B /), \llbracket A \rightarrow B \rrbracket) \geq T(\sim(\beta), \gamma)$
$\Rightarrow \llbracket A \rrbracket=\llbracket \neg \neg A \rrbracket=\sim(\llbracket \neg A \rrbracket) \leq \sim(T(\sim(\beta), \gamma))=\perp(\beta, \sim(\gamma))$

Possibility Theory

- The best-known calculus for handling uncertainty is, of course, probability theory.
- An less well-known, but noteworthy alternative is possibility theory.
[Dubois and Prade 1988]
- In the interpretation we consider here, possibility theory can handle uncertain and imprecise information, while probability theory, at least in its basic form, was only designed to handle uncertain information.
- Types of imperfect information:
- Imprecision: disjunctive or set-valued information about the obtaining state, which is certain: the true state is contained in the disjunction or set.
- Uncertainty: precise information about the obtaining state (single case), which is not certain: the true state may differ from the stated one.
- Vagueness: meaning of the information is in doubt: the interpretation of the given statements about the obtaining state may depend on the user.

Possibility Theory: Axiomatic Approach

Definition: Let Ω be a (finite) sample space.
A possibility measure Π on Ω is a function $\Pi: 2^{\Omega} \rightarrow[0,1]$ satisfying

1. $\Pi(\emptyset)=0$ and
2. $\forall E_{1}, E_{2} \subseteq \Omega: \Pi\left(E_{1} \cup E_{2}\right)=\max \left\{\Pi\left(E_{1}\right), \Pi\left(E_{2}\right)\right\}$.

- Similar to Kolmogorov's axioms of probability theory.
- From the axioms follows $\Pi\left(E_{1} \cap E_{2}\right) \leq \min \left\{\Pi\left(E_{1}\right), \Pi\left(E_{2}\right)\right\}$.
- Attributes are introduced as random variables (as in probability theory).
- $\Pi(A=a)$ is an abbreviation of $\Pi(\{\omega \in \Omega \mid A(\omega)=a\})$
- If an event E is possible without restriction, then $\Pi(E)=1$.

If an event E is impossible, then $\Pi(E)=0$.

Possibility Theory and the Context Model

Interpretation of Degrees of Possibility

[Gebhardt and Kruse 1993]

- Let Ω be the (nonempty) set of all possible states of the world, ω_{0} the actual (but unknown) state.
- Let $C=\left\{c_{1}, \ldots, c_{n}\right\}$ be a set of contexts (observers, frame conditions etc.) and $\left(C, 2^{C}, P\right)$ a finite probability space (context weights).
- Let $\Gamma: C \rightarrow 2^{\Omega}$ be a set-valued mapping, which assigns to each context the most specific correct set-valued specification of ω_{0}. The sets $\Gamma(c)$ are called the focal sets of Γ.
- Γ is a random set (i.e., a set-valued random variable) [Nguyen 1978]. The basic possibility assignment induced by Γ is the mapping

$$
\begin{aligned}
\pi: \Omega & \rightarrow[0,1] \\
\pi(\omega) & \mapsto P(\{c \in C \mid \omega \in \Gamma(c)\}) .
\end{aligned}
$$

Example: Dice and Shakers

tetrahedron $1-4$

octahedron
$1-8$
1-10
$1-12$

numbers	degree of possibility
$1-4$	$\frac{1}{5}+\frac{1}{5}+\frac{1}{5}+\frac{1}{5}+\frac{1}{5}=1$
$5-6$	$\frac{1}{5}+\frac{1}{5}+\frac{1}{5}+\frac{1}{5}=\frac{4}{5}$
$7-8$	$\frac{1}{5}+\frac{1}{5}+\frac{1}{5}=\frac{3}{5}$
$9-10$	$\frac{1}{5}+\frac{1}{5}=\frac{2}{5}$
$11-12$	$\frac{1}{5}=\frac{1}{5}$

From the Context Model to Possibility Measures

Definition: Let $\Gamma: C \rightarrow 2^{\Omega}$ be a random set.
The possibility measure induced by Γ is the mapping

$$
\begin{aligned}
\Pi: 2^{\Omega} & \rightarrow[0,1], \\
E & \mapsto P(\{c \in C \mid E \cap \Gamma(c) \neq \emptyset\}) .
\end{aligned}
$$

Problem: From the given interpretation it follows only:

$$
\forall E \subseteq \Omega: \quad \max _{\omega \in E} \pi(\omega) \leq \Pi(E) \leq \min \left\{1, \sum_{\omega \in E} \pi(\omega)\right\} .
$$

	1	2	3	4	5
$c_{1}: \frac{1}{2}$			\bullet		
$c_{2}: \frac{1}{4}$		\bullet	\bullet	\bullet	
$c_{3}: \frac{1}{4}$	\bullet	\bullet	\bullet	\bullet	\bullet
π	0	$\frac{1}{2}$	1	$\frac{1}{2}$	$\frac{1}{4}$

	1	2	3	4	5
$c_{1}: \frac{1}{2}$			\bullet		
$c_{2}: \frac{1}{4}$	\bullet	\bullet			
$c_{3}: \frac{1}{4}$				\bullet	\bullet
π	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{4}$

From the Context Model to Possibility Measures (cont.)

Attempts to solve the indicated problem:

- Require the focal sets to be consonant:

Definition: Let $\Gamma: C \rightarrow 2^{\Omega}$ be a random set with $C=\left\{c_{1}, \ldots, c_{n}\right\}$. The focal sets $\Gamma\left(c_{i}\right), 1 \leq i \leq n$, are called consonant, iff there exists a sequence $c_{i_{1}}, c_{i_{2}}, \ldots, c_{i_{n}}, 1 \leq i_{1}, \ldots, i_{n} \leq n, \forall 1 \leq j<k \leq n: i_{j} \neq i_{k}$, so that

$$
\Gamma\left(c_{i_{1}}\right) \subseteq \Gamma\left(c_{i_{2}}\right) \subseteq \ldots \subseteq \Gamma\left(c_{i_{n}}\right)
$$

\rightarrow mass assignment theory [Baldwin et al. 1995]
Problem: The "voting model" is not sufficient to justify consonance.

- Use the lower bound as the "most pessimistic" choice. [Gebhardt 1997]

Problem: Basic possibility assignments represent negative information, the lower bound is actually the most optimistic choice.

- Justify the lower bound from decision making purposes.

From the Context Model to Possibility Measures (cont.)

- Assume that in the end we have to decide on a single event.
- Each event is described by the values of a set of attributes.
- Then it can be useful to assign to a set of events the degree of possibility of the "most possible" event in the set.

Example:

Possibility Distributions

Definition: Let $X=\left\{A_{1}, \ldots, A_{n}\right\}$ be a set of attributes defined on a (finite) sample space Ω with respective domains $\operatorname{dom}\left(A_{i}\right), i=1, \ldots, n$. A possibility distribution π_{X} over X is the restriction of a possibility measure Π on Ω to the set of all events that can be defined by stating values for all attributes in X. That is, $\pi_{X}=\left.\Pi\right|_{\mathcal{E}_{X}}$, where

$$
\begin{gathered}
\mathcal{E}_{X}=\left\{E \in 2^{\Omega} \mid \exists a_{1} \in \operatorname{dom}\left(A_{1}\right): \ldots \exists a_{n} \in \operatorname{dom}\left(A_{n}\right):\right. \\
\left.E \hat{=} \bigwedge_{A_{j} \in X} A_{j}=a_{j}\right\} \\
=\left\{E \in 2^{\Omega} \mid \exists a_{1} \in \operatorname{dom}\left(A_{1}\right): \ldots \exists a_{n} \in \operatorname{dom}\left(A_{n}\right):\right. \\
\left.E=\left\{\omega \in \Omega \mid \bigwedge_{A_{j} \in X} A_{j}(\omega)=a_{j}\right\}\right\}
\end{gathered}
$$

- Corresponds to the notion of a probability distribution.
- Advantage of this formalization: No index transformation functions are needed for projections, there are just fewer terms in the conjunctions.

A Possibility Distribution

all numbers in parts per 1000

	$\square \square \square \square$			
large	40	70	20	70
medium	60	80	70	70
small	80	90	40	40

- The numbers state the degrees of possibility of the corresp. value combination.

Reasoning

all numbers in parts per 1000

		s	
m	l		
\triangle	20	70	70
\square	40	60	20
	10	10	10

	$\square \square \square \square$			
large	0	0	0	70
medium	0	0	0	70
small	0	0	0	40

- Using the information that the given object is green.

Possibilistic Decomposition

- As for relational and probabilistic networks, the three-dimensional possibility distribution can be decomposed into projections to subspaces, namely:
- the maximum projection to the subspace color \times shape and
- the maximum projection to the subspace shape \times size.
- It can be reconstructed using the following formula:

$$
\begin{aligned}
& \forall i, j, k: \pi\left(a_{i}^{(\text {color })}, a_{j}^{(\text {shape })}, a_{k}^{(\text {size })}\right) \\
&= \min \left\{\pi\left(a_{i}^{(\text {color })}, a_{j}^{(\text {shape })}\right), \pi\left(a_{j}^{(\text {shape })}, a_{k}^{(\text {size })}\right)\right\} \\
&= \min \left\{\max _{k} \pi\left(a_{i}^{(\text {color })}, a_{j}^{(\text {shape })}, a_{k}^{(\text {size })}\right)\right. \\
&\left.\max _{i} \pi\left(a_{i}^{(\text {color })}, a_{j}^{(\text {shape })}, a_{k}^{(\text {size })}\right)\right\}
\end{aligned}
$$

- Note the analogy to the probabilistic reconstruction formulas.

Reasoning with Projections

Again the same result can be obtained using only projections to subspaces (maximal degrees of possibility):

This justifies a graph representation:

Conditional Possibility and Independence

Definition: Let Ω be a (finite) sample space, Π a possibility measure on Ω, and $E_{1}, E_{2} \subseteq \Omega$ events. Then

$$
\Pi\left(E_{1} \mid E_{2}\right)=\Pi\left(E_{1} \cap E_{2}\right)
$$

is called the conditional possibility of E_{1} given E_{2}.

Definition: Let Ω be a (finite) sample space, Π a possibility measure on Ω, and A, B, and C attributes with respective domains $\operatorname{dom}(A), \operatorname{dom}(B)$, and $\operatorname{dom}(C)$. A and B are called conditionally possibilistically independent given C, written $A \Perp_{\Pi} B \mid C$, iff

$$
\begin{aligned}
& \forall a \in \operatorname{dom}(A): \forall b \in \operatorname{dom}(B): \forall c \in \operatorname{dom}(C): \\
& \quad \Pi(A=a, B=b \mid C=c)=\min \{\Pi(A=a \mid C=c), \Pi(B=b \mid C=c)\} .
\end{aligned}
$$

- Similar to the corresponding notions of probability theory.

Possibilistic Evidence Propagation

$$
\begin{aligned}
& \pi\left(B=b \mid A=a_{\text {obs }}\right) \\
& =\pi\left(\underset{a \in \operatorname{dom}(A)}{\bigvee} A=a, B=b, \bigvee_{c \in \operatorname{dom}(C)}^{\bigvee} C=c \mid A=a_{\mathrm{obs}}\right) \\
& \text { A: color } \\
& B \text { : shape } \\
& C \text { : size } \\
& \stackrel{(1)}{=} \max _{a \in \operatorname{dom}(A)}\left\{\max _{c \in \operatorname{dom}(C)}\left\{\pi\left(A=a, B=b, C=c \mid A=a_{\text {obs }}\right)\right\}\right\} \\
& \stackrel{(2)}{=} \max _{a \in \operatorname{dom}(A)}\left\{\max _{c \in \operatorname{dom}(C)}\left\{\min \left\{\pi(A=a, B=b, C=c), \pi\left(A=a \mid A=a_{\mathrm{obs}}\right)\right\}\right\}\right\} \\
& \stackrel{(3)}{=} \max _{a \in \operatorname{dom}(A)}\left\{\max _{c \in \operatorname{dom}(C)}\{\min \{\pi(A=a, B=b), \pi(B=b, C=c) \text {, }\right. \\
& \left.\left.\left.\pi\left(A=a \mid A=a_{\text {obs }}\right)\right\}\right\}\right\} \\
& =\max _{a \in \operatorname{dom}(A)}\left\{\operatorname { m i n } \left\{\pi(A=a, B=b), \pi\left(A=a \mid A=a_{\text {obs }}\right)\right.\right. \text {, } \\
& \underbrace{\left.\max _{c \in \operatorname{dom}(C)}\{\pi(B=b, C=c)\}\right\}}_{=\pi(B=b) \geq \pi(A=a, B=b)}\} \\
& =\max _{a \in \operatorname{dom}(A)}\left\{\min \left\{\pi(A=a, B=b), \pi\left(A=a \mid A=a_{\text {obs }}\right)\right\}\right\}
\end{aligned}
$$

References

References

[Baldwin et. al 1995]
J.F. Baldwin, T.P. Martin, and B.W. Pilsworth.

FRIL - Fuzzy and Evidential Reasoning in Artificial Intelligence. Research Studies Press/J. Wiley \& Sons, Taunton/Chichester, United Kingdom, 1995
[Borgelt et al. 2009]
Christian Borgelt, Matthias Steinbrecher and Rudolf Kruse.
Graphical Models - Representations for Learning, Reasoning and
Data Mining, 2nd edition, John Wiley \& Sons Ltd, United Kingdom, 2009
[Castillo et al. 1997]
Enrique Castillo, José Manuel Gutiérrez and Ali S. Hadi.
Expert Systems and Probabilistic Network Models, Springer Verlag, 1997
[Cooper and Herskovits 1992]
Gregory F. Cooper and Edward Herskovits.
A Bayesian Method for the Induction of Probabilistic Networks from Data, Machine Learning, Volume 9, pp. 309-347, 1992

References

[Dubois and Prade 1988]
D. Dubois and H. Prade.

Possibility Theory. Plenum Press, New York, NY, USA, 1988
[Gebhardt 1997]
J. Gebhardt.

Learning from Data: Possibilistic Graphical Models. Habilitation Thesis, University of Braunschweig, Germany, 1997
[Gebhardt and Kruse 1993]
J. Gebhardt and R. Kruse.

The Context Model - An Integrating View of Vagueness and Uncertainty. Int. Journal of Approximate Reasoning 9:283-314, North-Holland, Amsterdam, Netherlands, 1993

References

[Kruse et. al 1991]
Rudolf Kruse, Erhard Schwecke and Jochen Heinsohn.
Uncertainty and Vagueness in Knowledge Based Systems, Springer Verlag, 1991
[Laplace 1812]
P.S. Laplace

Théorie analytique des probabilités. Paris: Veuve Courcier, 1812
[Nguyen 1978]
H.T. Nguyen.

On Random Sets and Belief Functions. Journal of Mathematical Analysis and Applications 65:531-542. Academic Press, San Diego, CA, USA, 1978

Homepages

- Otto-von-Guericke-University of Magdeburg http://www.uni-magdeburg.de/
- School of Computer Science http://www.cs.uni-magdeburg.de/
- Computational Intelligence Group http://fuzzy.cs.uni-magdeburg.de/

