11. Sugeno - Takagi Controller

Rules: L₁, ..., L_n L_i: <u>if</u> x₁ is $\mu_{i,1}$ <u>and</u> x₂ is $\mu_{i,2}$ <u>and</u> ... <u>and</u> x_p is $\mu_{i,p}$ <u>then</u> y_i = c_{0,i} + c_{1,i} x₁ + ... + c_{p,i} x_p

Matching degree for input $(x_1^0, ..., x_p^0)$ and rule L_i

 $\mathbf{W}_{i} = \boldsymbol{\mu}_{i,1}(\mathbf{X}_{1}^{0}) \wedge \ldots \wedge \boldsymbol{\mu}_{i,p}(\mathbf{X}_{p}^{0})$

Output for (x_1^0, x_p^0)

$$\mathbf{y}^{0} = \sum_{i=1}^{p} \mathbf{w}_{i} \cdot \mathbf{y}_{i}^{0} / \sum_{i=1}^{p} \mathbf{w}_{i}$$
, $\mathbf{y}_{i}^{0} = \mathbf{c}_{0,i} + \dots + \mathbf{c}_{p,i} \mathbf{x}_{p}^{0}$

Examples

Example 9.1 Computation of several fuzzy rules

Definition 11.2 Sugeno-Takagi Fuzzy Control A Sugeno Fuzzy Controller consists of a set of rules R_i, i=1,...,k : R_i : if x_1 is A_{i1} and if x_2 is A_{i2} and ... and if x_n is A_{in} then $y=f_i(x_1, x_2, ..., x_n)$ where A_{ii} are fuzzy sets and $f_i(x_1, x_2, ..., x_n)$ is linear. $f_i(x_1,x_2,...,x_n) = a_1x_1 + a_2x_2 + ... + a_nx_n + a_{n+1}$ The output is computed by $y = \frac{\sum_{i=1}^{k} \alpha_i f_i(x_1, \dots, x_n)}{\sum_{i=1}^{k} \alpha_i}$

where $\alpha_i \in [0,1]$ is the degree at which the antecedent of rule R_i holds.

 α_i is computed as in Mamdani Fuzzy Control.

