13. Fuzzy Cluster Analysis

- Classification of a given dataset $X = \{x_1, ..., x_n\}$ into c clusters.
- The membership degree of datum x_i to cluster c_i is u_{ij} .
- A cluster is defined by its prototype β_i .
- Minimization of the following objective function:

$$J(X, U, \beta) = \sum_{i=1}^{c} \sum_{j=1}^{n} u_{ij}^{m} d^{2} (\beta_{i}, x_{j})$$

with respect to

$$\sum_{i=1}^{c} u_{ij} = 1 \qquad \forall \ j \in \{1, ..., n\},$$
$$\sum_{j=1}^{n} u_{ij} > 0 \qquad \forall \ i \in \{1, ..., c\}$$

Computation of a Classification

A classification is obtained by alternating optimization:

Let $X = \{x_1, x_2, ..., x_n\}$ be a dataset and c the number of clusters.

Choose c, ε.

Initialize the membership degrees uij of data to clusters.

REPEAT

Compute the clusters $\beta = \{\beta_1, ..., \beta_c\}$ to minimize the given objective function J(X,U, β).

Compute the membership degrees $U=\{u_{11},...,u_{cn}\}$ based on the new clusters.

UNTIL the change of membership degrees U is less than ε .

Fuzzy C-Means Algorithm

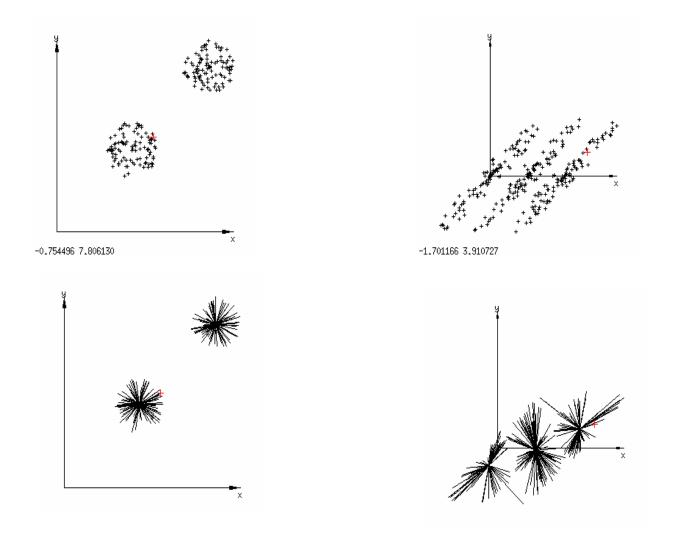
• Computation of clusters and membership degrees:

$$c_{i} = \frac{\sum_{j=1}^{n} u_{ij} x_{j}}{\sum_{j=1}^{n} u_{ij}} \qquad u_{ij} = \frac{1}{\sum_{k=1}^{c} \left(\frac{d^{2}(c_{i}, x_{k})}{d^{2}(c_{i}, x_{j})}\right)^{\frac{1}{m-1}}}$$

- shape of all clusters is equal (common: spherical clusters)
- size of all clusters is equal
- widely used

Fuzzy C-Means algorithm searches for equally large clusters in form of (hyper)balls

Examples



Fuzzy Cluster Analysis

- Fuzzy C-Means: simple, looks for spherical clusters of same size, uses Euclidean distance
- Gustafson & Kessel: looks for hyper-ellipsoidal clusters of same size, distance via matrices
- Gath & Geva: looks for hyper-ellipsoidal clusters of arbitrary size, distance via matrices
- Axis-parallel variations exist that use diagonal matrices (computationally less expensive and less loss of information when rules are created)

Improvement by Gustafson and Kessel

Transformation of the distance function d for each cluster with a symmetric, positive definite matrix A_i .

$$d^{2}(\beta_{i}, \mathbf{x}_{j}) = (\mathbf{c}_{i} - \mathbf{x}_{j})^{\mathrm{T}} \mathbf{A}_{i}(\mathbf{c}_{i} - \mathbf{x}_{j})$$

Computation of A_i

$$\mathbf{A}_{i} = (\rho_{i} \operatorname{det}(\mathbf{S}_{i}))^{\frac{1}{p}} \mathbf{S}_{i}^{-1}$$
$$\mathbf{S}_{i} = \sum_{j=1}^{n} u_{ij}^{m} (\mathbf{x}_{j} - \mathbf{c}_{i}) (\mathbf{x}_{j} - \mathbf{c}_{i})^{T}$$

 $det(A_i) = \rho$ avoids the trivial solution $A_i = 0$.

The Gustafson-Kessel algorithm searches for hyper ellipsoidal clusters of fixed size.

Improvement by Gath and Geva

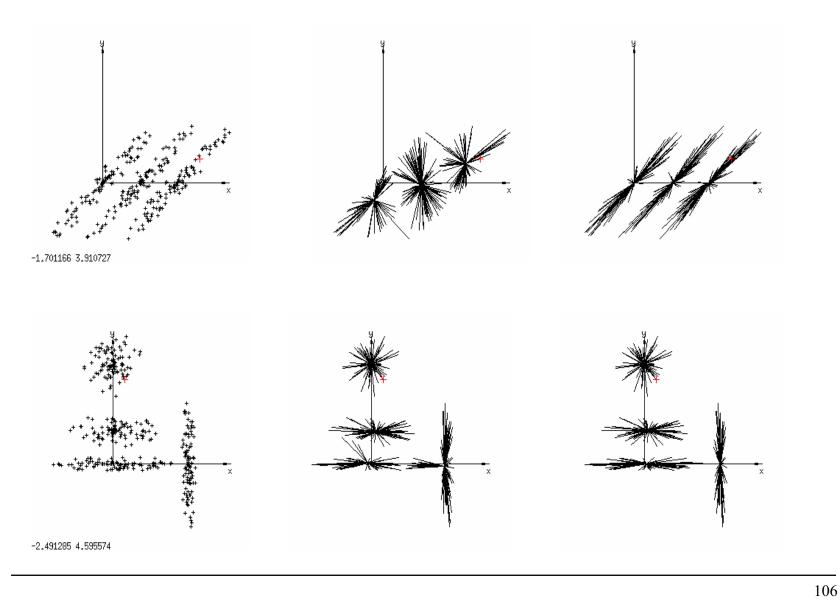
Idea: The dataset is interpreted as a realization of a collection of p-dimensional normal distributions.

The distance of a datum to a cluster is inversely proportional to the a-posterior possibility that a datum is the realization of the i^{th} normal distribution.

$$d^{2}(\boldsymbol{\beta}_{i,\mathbf{X}_{j}}) = \frac{\sum_{i=1}^{c} \sum_{j=1}^{n} \boldsymbol{u}_{ij}^{m}}{\sum_{j=1}^{n} \boldsymbol{u}_{ij}^{m}} \sqrt{\det \mathbf{C}_{i}} \exp\left(\frac{(\mathbf{X}_{j} - \mathbf{c}_{i})\mathbf{C}_{i}^{-1}(\mathbf{X}_{j} - \mathbf{c}_{i})^{\mathrm{T}}}{2}\right)$$

The algorithm searches for hyper ellipsoidal clusters of arbitrary size.

Examples



Noisy data and Outliers

Approaches to deal with noisy data:

 Possibilistic clustering Noisy data and outliers can be assigned to none cluster Neglection of restriction:

$$\sum_{i=1}^{c} u_{ij} = 1 \quad \forall j \in \{1, \dots, n\}$$

• Noise cluster

Noisy data and outliers are assigned to an extra cluster.

• Combination of noise clustering and possibilistic clustering

Possibilistic Cluster Analysis

Minimization of the following objective function:

$$J(\mathbf{X}, U, \beta) = \sum_{i=1}^{c} \sum_{j=1}^{n} u_{ij}^{m} d^{2} (\beta_{i}, \mathbf{x}_{j}) + \sum_{i=1}^{c} \eta_{i} \sum_{j=1}^{n} (1 - u_{ij}^{m})^{m}$$

with respect to

$$\sum_{j=1}^{n} u_{ij} > 0 \quad \forall \ i \in \{1, ..., c\}$$

Computation of membership degrees:

$$u_{ij} = \frac{1}{1 + \frac{d^2 \left(\beta_{i}, \mathbf{x}_{j}\right)^{\frac{1}{m-1}}}{\eta_{i}}}$$

Cluster Validity

Judgement of classification by validity measures.

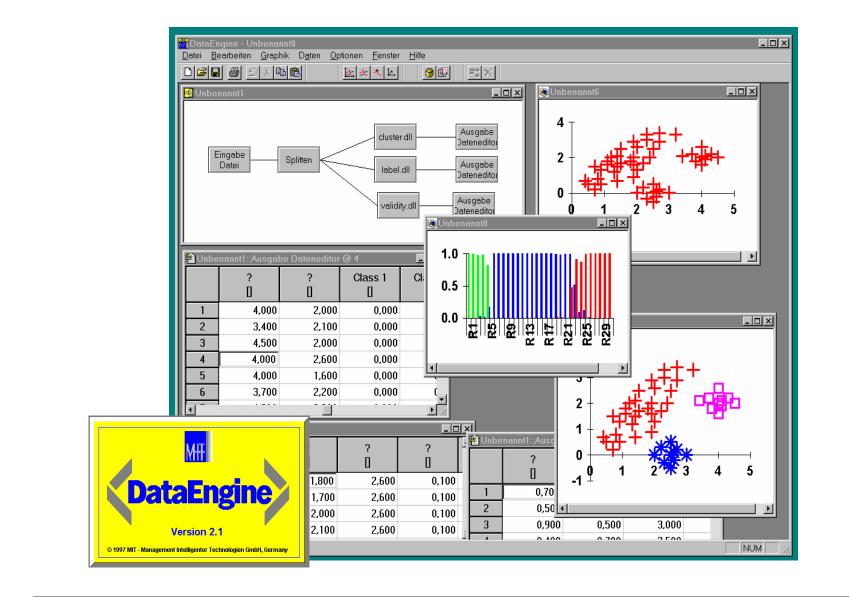
To determine the number of clusters, the algorithm is executed several times with a changing number of clusters. The best solution is chosen. Validity measures are based on several criteria, e.g.:

- membership degrees should be nearly 0 or 1, e.g. partition coefficient (PC), PC = $\frac{1}{n} \sum_{i=1}^{c} \sum_{j=1}^{n} u_{ij}^{2}$
- compactness of clusters,

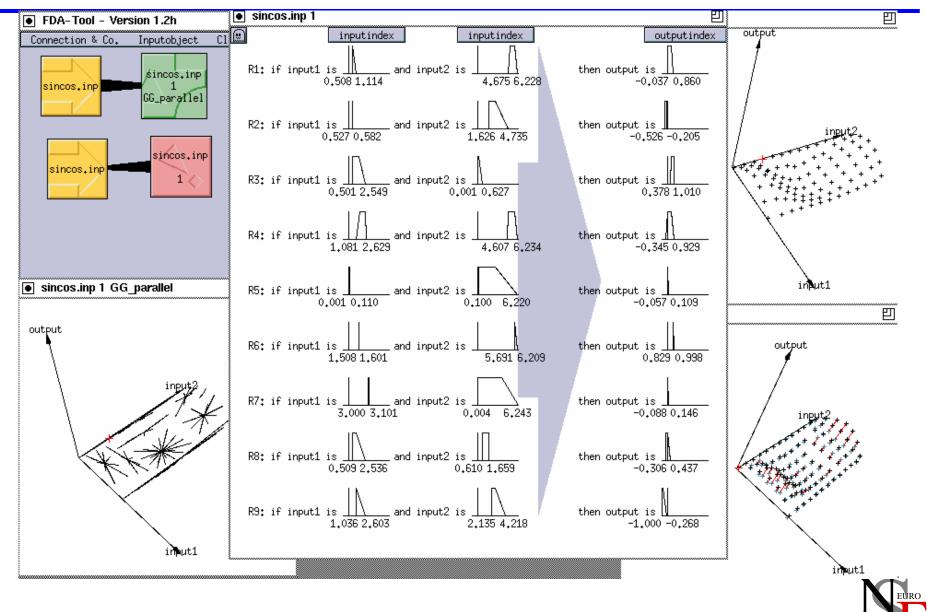
e.g. average partition density (APD), APD = $\frac{1}{c} \sum_{i=1}^{c} \frac{\sum_{j \in Y_i} u_{ij}}{\sqrt{\det(A_i)}}$ where $Y_i = \{j \in \aleph, j \le n | (\mathbf{c}_i - \mathbf{x}_j)^T \mathbf{A}_i (\mathbf{c}_i - \mathbf{x}_j) < 1\}$

- separation of clusters,
- ...

Fuzzy-Clusteranalyse mit Data Engine



FCLUSTER: Tool for Fuzzy Cluster Analysis



111

Resources

F. Höppner, F. Klawonn, R.Kruse, T. Runkler:

Fuzzy Cluster Analysis

Wiley, Chichester, 1999, ISBN: 0-471-98864-2

Software Tools:

http://www.fuzzy-clustering.de

