4. The Extension Principle

How to extend a mapping of the form $\Phi: X^n \to Y$ to a mapping of the kind $\hat{\Phi}: F(X)^n \to F(Y)$?

Let *P* be a set of vague statements, which can be combined by the statements *and* and *or*. The mapping $acc:P \rightarrow [0,1]$ may assign an acceptance degree acc(a) to every statement $a \in P$. acc(a)=0 means that a is definitely false, acc(a)=1, on the other hand, that it is definitely true. However, if $acc(a) \in (0,1)$, then we can only speak of a *gradual truth* of the statement a.

If we combine two statements $a,b \in P$, their combination is rated according to the following scheme:

acc(a and b) = acc $(a \land b)$ = min{acc(a), acc(a)} acc(a or b) = acc $(a \lor b)$ = max{acc(a), acc(a)}

Remark 4.1

We define acc(,,for all $i \in I$ statement a_i holds") = inf{acc(a_i) $|i \in I$ } acc(,,there is a $i \in I$ such that a_i holds")= sup{acc(a_i) $|i \in I$ }

Example 4.3

Let X, Y be sets. $\phi: X \to Y$ How to extend ϕ to $\hat{\Phi}: F(X)^n \to F(Y)$?

Def. 4.4

Let $\phi: X^n \to Y$ be a mapping. The extension of ϕ is given by $\hat{\Phi}: F(X)^n \to F(Y)$ with $\hat{\Phi}(\mu_1, ..., \mu_n)(y) = \sup\{\min\{\mu_1(x_1), ..., \mu_n(x_n)\} | \Phi(x_1, ..., x_n) = y\}$

Def. 4.5 (arithmetic functions)

Other functions are defined in the same way.

Theorem 4.6

- a) μ_1, μ_2 fuzzy numbers $\Rightarrow \mu_1 + \mu_2, \mu_1 * \mu_2$, and $\mu_1 \mu_2$ are fuzzy numbers.
- b) μ_1, μ_2 fuzzy numbers $\Rightarrow \mu_1/\mu_2$ fuzzy numbers.
- c) $\mu_1 + I_{\{0\}} = \mu_1$
- $d) \quad \mu_1 {}^*I_{\{1\}} {=} \, \mu_1$

Theorem 4.7 (Minkowski operations)

a)
$$\mu_{\alpha} \oplus \mu'_{\alpha} = (\mu + \mu')_{\alpha} \quad (\alpha > 0)$$

b) $\{a\} \otimes \mu_{\alpha} = (a\mu)_{\alpha} \quad (\alpha > 0)$
where $A \oplus B = \{x + y | x \in A, y \in B\}$
 $A \otimes B = \{x^* y | x \in A, y \in B\}$

