6. Fuzzy Relations

Example 6.1

$\left\{\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \in \mathrm{X}^{2} \mid \mathrm{x}_{1}=\mathrm{x}_{2}\right\} \quad$ equality
$\mu: X \times X \rightarrow[0,1]$, for all $x \in X: \mu(x, x)=1$, fuzzy equality

Def. 6.2

A fuzzy relation R on $\mathrm{X} \times \mathrm{Y}$ is defined by a membership function $\mu_{R}: \mathrm{X} \times \mathrm{Y} \rightarrow[0,1]$.

Example 6.3

$\mathrm{S}=\left\{\mathrm{s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3}, \mathrm{~s}_{4}\right\}, \mathrm{H}=\left\{\mathrm{h}_{1}, \mathrm{~h}_{2}, \mathrm{~h}_{3}\right\}$

Crisp Relation

	h_{1}	$\mathrm{~h}_{2}$	$\mathrm{~h}_{3}$
$\mathrm{~s}_{1}$	1	0	0
$\mathrm{~s}_{2}$	0	1	0
$\mathrm{~s}_{3}$	0	1	1
$\mathrm{~s}_{4}$	0	0	1

Fuzzy Relation:
μ_{R}

	h_{1}	$\mathrm{~h}_{2}$	$\mathrm{~h}_{3}$
$\mathrm{~s}_{1}$	1	0.2	0
$\mathrm{~s}_{2}$	0.1	1	0
$\mathrm{~s}_{3}$	0	1	1
$\mathrm{~s}_{4}$	0	0.3	1

Def 6.4

If A is a fuzzy set on X and B is a fuzzy set on Y, then we define the fuzzy cartesian product $\mathrm{C}=\mathrm{A} \otimes \mathrm{B}$ by:
$\mu_{\mathrm{C}}: \mathrm{X} \times \mathrm{Y} \rightarrow[0,1]$, where $\mu_{\mathrm{C}}(\mathrm{a}, \mathrm{b})=\min \left(\mu_{\mathrm{A}}(\mathrm{a}), \mu_{\mathrm{B}}(\mathrm{b})\right)$.

Remark 6.5

a) Every fuzzy cartesian product is a fuzzy relation.
b) Not any fuzzy relation R on $\mathrm{X} \times \mathrm{Y}$ is the cartesian product of 2 fuzzy sets A on X and B on Y. There are fuzzy sets A and B with $R \subseteq A \otimes B$
c) Every method defined for fuzzy sets can be studied for fuzzy relations as well. (Intersection, operator definition etc.)

Definition 6.6

a) $\mathrm{R} \subseteq \mathrm{X} \times \mathrm{Y}, \mathrm{S} \subseteq \mathrm{Y} \times \mathrm{Z}$:
$R \bullet S \subseteq X \times Z$ Concatenation of R and S, $(x, z) \in R \bullet S \Leftrightarrow \exists y \in Y:\{(x, y) \in R$ and $(y, z) \in S\}$
b) $R \subseteq X \times Y: R^{-1} \subseteq Y \times X$ inverse of R, $(\mathrm{x}, \mathrm{y}) \in \mathrm{R} \Leftrightarrow(\mathrm{y}, \mathrm{x}) \in \mathrm{R}^{-1}$
c) Let R be a fuzzy relation on $X \times Y$, S a fuzzy relation on $Y \times Z$, then the concatenation of R and $S R \bullet S$ is a fuzzy relation on $X \times Z$, defined by:
$\mu_{\mathrm{R} \bullet \mathrm{S}}(\mathrm{x}, \mathrm{z})=\sup _{\mathrm{y} \in \mathrm{Y}}\left\{\min \left(\mu_{\mathrm{R}}(\mathrm{x}, \mathrm{y}), \mu_{\mathrm{S}}(\mathrm{y}, \mathrm{z})\right\}\right.$
d) $\mu_{\mathrm{R}^{-1}}: \mathrm{Y} \times \mathrm{X} \rightarrow[0,1], \mu_{\mathrm{R}^{-1}}(\mathrm{y}, \mathrm{x})=\mu_{\mathrm{R}}(\mathrm{x}, \mathrm{y})$

Example 6.7

$$
\mu_{R}=\left(\begin{array}{ccc}
1 & 0,2 & 0 \\
0,1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0,3 & 1
\end{array}\right), \mu_{S}=\left(\begin{array}{cc}
1 & 0 \\
0,9 & 1 \\
0 & 0,9
\end{array}\right) \quad \mu_{R \bullet S}=\left(\begin{array}{cc}
1 & 0,2 \\
0,9 & 1 \\
0,9 & 1 \\
0,3 & 0,9
\end{array}\right)
$$

Theorem 6.8
a) $\left(\mu_{R \bullet S}\right)_{\alpha}=\left(\mu_{R}\right)_{\alpha} \bullet\left(\mu_{S}\right)_{\alpha} \quad \alpha \geq 0$
b) $(\mathrm{R} \bullet \mathrm{S}) \bullet \mathrm{I}=\mathrm{R} \bullet(\mathrm{S} \bullet \mathrm{I})$
c) $R \bullet(S \cup T)=(R \bullet S) \cup(R \bullet T)$
d) $R \bullet(S \cap T) \subseteq(R \bullet S) \cap(R \bullet T)$
e) $(R \bullet S)^{-1}=S^{-1} \bullet R^{-1}$
f) $(\mathrm{R} \cup \mathrm{S})^{-1}=\mathrm{R}^{-1} \cup \mathrm{~S}^{-1},(\mathrm{R} \cap \mathrm{S})^{-1}=\mathrm{R}^{-1} \cap \mathrm{~S}^{-1}$
g) $\left(R^{-1}\right)^{-1}=R$
h) $\mathrm{R} \subseteq \mathrm{S} \Rightarrow\{\mathrm{R} \bullet \mathrm{T} \subseteq \mathrm{S} \bullet \mathrm{T}, \mathrm{T} \bullet \mathrm{R} \subseteq \mathrm{T} \bullet \mathrm{S}\}$

Def. 6.9

Let R be a fuzzy relation on $X_{1} \times X_{2} \times X_{3}$.
$\pi_{1} \mathrm{R}$ is a projection from R on X_{1}, with

$$
\begin{aligned}
\mu_{\pi_{1} R}(a):= & \sup _{\left(x_{1}, x_{2}, x_{3}\right) \in X_{1} \times X_{2} \times X_{3}: \pi_{1} R\left(x_{1}, x_{2}, x_{3}\right)=a}\left\{\mu_{R}\left(x_{1}, x_{2}, x_{3}\right)\right\} \\
\mu_{\pi_{1} R}(a):= & \sup _{x_{2} \in X_{2}, x_{3} \in X_{3}}\left\{\mu_{R}\left(a, x_{2}, x_{3}\right)\right\}
\end{aligned}
$$

Def. 6.10

Let R be a fuzzy relation on $X_{1} \times X_{2}$.
$\hat{\pi}_{3} R$ is a cylindical extension from R on $\mathrm{X}_{1} \times \mathrm{X}_{2} \times \mathrm{X}_{3}$, with
$\mu_{\hat{\pi}_{3} R}\left(x_{1}, x_{2}, x_{3}\right):=\mu_{R}\left(x_{1}, x_{2}\right)$

Def. 6.11

A fuzzy relation $R \subseteq X_{1} \times X_{2} \times \ldots \times X_{n}$ is separable, if $R=\pi_{1} R \otimes \pi_{2} R \otimes \ldots \otimes \pi_{n} R$ holds.

Example 6.12

Fuzzy Relation

