6. Fuzzy Relations

Example 6.1

{ $(x_1, x_2) \in X^2 | x_1 = x_2$ } equality $\mu: X \times X \rightarrow [0,1]$, for all $x \in X$: $\mu(x,x) = 1$, fuzzy equality

Def. 6.2

A fuzzy relation *R* on X×Y is defined by a membership function $\mu_R : X \times Y \rightarrow [0,1]$.

Example 6.3 S={s₁, s₂, s₃, s₄}, H={h₁, h₂, h₃}

Crisp Relation

	h_1	h_2	h ₃
\mathbf{S}_1	1	0	0
s ₂	0	1	0
S ₃	0	1	1
S_4	0	0	1

Fuzzy Relation:

		h_1	h_2	h ₃
	s_1	1	0.2	0
μ_R	s_2	0.1	1	0
	S_3	0	1	1
	S_4	0	0.3	1

Def 6.4

If A is a fuzzy set on X and B is a fuzzy set on Y, then we define the fuzzy cartesian product $C=A\otimes B$ by:

 $\mu_C: X \times Y \rightarrow [0,1]$, where $\mu_C(a,b) = \min(\mu_A(a), \mu_B(b))$.

Remark 6.5

- a) Every fuzzy cartesian product is a fuzzy relation.
- b) Not any fuzzy relation R on X×Y is the cartesian product of 2 fuzzy sets A on X and B on Y. There are fuzzy sets A and B with $R \subseteq A \otimes B$
- c) Every method defined for fuzzy sets can be studied for fuzzy relations as well. (Intersection, operator definition etc.)

Definition 6.6

- a) $R \subseteq X \times Y, S \subseteq Y \times Z$: $R \bullet S \subseteq X \times Z$ Concatenation of R and S, $(x,z) \in R \bullet S \iff \exists y \in Y : \{(x,y) \in R \text{ and } (y,z) \in S\}$
- b) $R \subseteq X \times Y : R^{-1} \subseteq Y \times X$ inverse of R, $(x,y) \in R \Leftrightarrow (y,x) \in R^{-1}$
- c) Let R be a fuzzy relation on X×Y, S a fuzzy relation on Y×Z, then the concatenation of R and S R•S is a fuzzy relation on X×Z, defined by:

 $\mu_{R\bullet S}(x,z) = \sup_{y \in Y} \{ \min(\mu_R(x,y), \mu_S(y,z)) \}$

d)
$$\mu_{R^{-1}}: Y \times X \to [0,1], \ \mu_{R^{-1}}(y,x) = \mu_{R}(x,y)$$

Example 6.7

$$\mu_R = \begin{pmatrix} 1 & 0,2 & 0 \\ 0,1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0,3 & 1 \end{pmatrix}, \ \mu_S = \begin{pmatrix} 1 & 0 \\ 0,9 & 1 \\ 0 & 0,9 \end{pmatrix} \qquad \qquad \mu_{R \bullet S} = \begin{pmatrix} 1 & 0,2 \\ 0,9 & 1 \\ 0,9 & 1 \\ 0,3 & 0,9 \end{pmatrix}$$

Theorem 6.8

a)
$$(\mu_{R\bullet S})_{\alpha} = (\mu_R)_{\alpha} \bullet (\mu_S)_{\alpha} \quad \alpha \ge 0$$

b)
$$(R \bullet S) \bullet I = R \bullet (S \bullet I)$$

c)
$$R \bullet (S \cup T) = (R \bullet S) \cup (R \bullet T)$$

d)
$$R \bullet (S \cap T) \subseteq (R \bullet S) \cap (R \bullet T)$$

e)
$$(R \bullet S)^{-1} = S^{-1} \bullet R^{-1}$$

f)
$$(R \cup S)^{-1} = R^{-1} \cup S^{-1}, (R \cap S)^{-1} = R^{-1} \cap S^{-1}$$

g)
$$(R^{-1})^{-1} = R$$

h)
$$R \subseteq S \Rightarrow \{R \bullet T \subseteq S \bullet T, T \bullet R \subseteq T \bullet S\}$$

Def. 6.9

Let R be a fuzzy relation on $X_1 \times X_2 \times X_3$. $\pi_1 R$ is a projection from R on X_1 , with $\mu_{\pi_1 R}(a) \coloneqq \sup_{\substack{(x_1, x_2, x_3) \in X_1 \times X_2 \times X_3 : \pi_1 R(x_1, x_2, x_3) = a \\ \mu_{\pi_1 R}(a) \coloneqq \sup_{x_2 \in X_2, x_3 \in X_3} \{\mu_R(a, x_2, x_3)\}$

Def. 6.10

Let R be a fuzzy relation on $X_1 \times X_2$. $\hat{\pi}_3 R$ is a cylindical extension from R on $X_1 \times X_2 \times X_3$, with $\mu_{\hat{\pi}_3 R}(x_1, x_2, x_3) \coloneqq \mu_R(x_1, x_2)$

Def. 6.11

A fuzzy relation $R \subseteq X_1 \times X_2 \times ... \times X_n$ is separable, if $R = \pi_1 R \otimes \pi_2 R \otimes ... \otimes \pi_n R$ holds.

Example 6.12

Fuzzy Relation

