Verbundbäume und Maximale Cliquen

Proseminar: Algorithmen auf Graphen Sommersemester '06

Norman Krell

Gliederung

- 1. Cliquenproblem
 - 1. Allgemeines
 - 2. Algorithmen
 - 3. Implementation
- 2. Hypergraphen
 - 1. Begriffe
 - 2. Eigenschaften
 - 3. Standard-Hypergraphen
- 3. Anwendungen
- 4. Quellen
- 5. Fragen

2

Cliquenproblem

Cliquenproblem

Allgemeines

Algorithmen Implementation

Hypergraphen

Anwendungen

Quellen

Fragen

- eng verwandt mit:
 - Independent Set
 - Vertex Cover
- NP-vollständig, NP-schwer
- Keine "guten"
 Approximationsalgorithmen bekannt

Cliquenproblem

Allgemeines

Algorithmen

Implementation

Hypergraphen

Anwendungen

Quellen

Fragen

Lösungsstrategie: Brute Force.

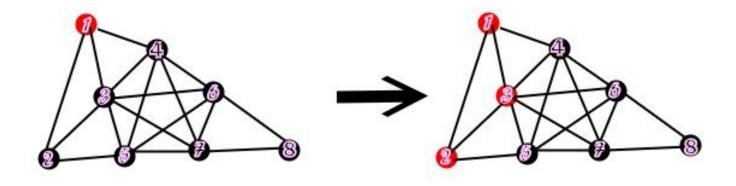
- keine Cliquen suchen deren Größe den max. Knotengrad übersteigt
- Knoten mit Grad < Cliquengröße können gelöscht werden

Verbesserungen

Cliquenproblem
Allgemeines
Algorithmen
Implementation

Hypergraphen Anwendungen Quellen Fragen • Heuristik: finden von mindestens einer maximalen Clique:

Knoten ist Clique mit Größe 1. also Cliquen vermischen, wenn Resultat Clique ist



Implementation

Cliquenproblem
Allgemeines
Algorithmen
Implementation

Hypergraphen Anwendungen Quellen Fragen

- Effektive Implementation mit Disjoint-set Datenstruktur:
 - Für jede Menge ein Baum (linked List bei einfacher, suboptimaler implementation)
 - MakeSet: erstellt eine 1-elementige Menge
 - Find: findet die Menge in der ein Knoten ist
 - Union: vereinigt 2 Mengen:

Cliquenproblem
Allgemeines
Algorithmen
Implementation

Hypergraphen Anwendungen Quellen Fragen

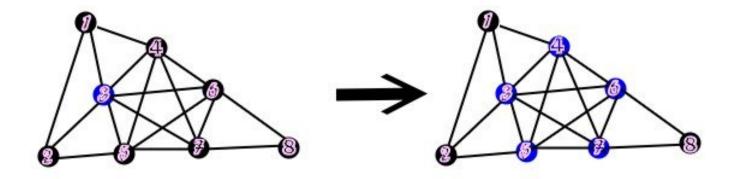
- Find-Verbesserung Path compression:
 Wird Find ausgeführt, wird jeder auf dem Weg besuchte Knoten an die Wurzel gehängt
- Union-Verbesserung Union by rank:
 Hängt die kleinere Menge von beiden an die
 Größere an

Cliquenproblem
Allgemeines
Algorithmen
Implementation

Hypergraphen Anwendungen Quellen Fragen

Variationen:

- Knoten nach Grad sortieren und mit absteigendem grad versuchen zu mischen
- Zufällig Knoten wählen, konstante Anzahl an Versuchen durchführen, bestes Resultat verwenden



Definition:

Cliquenproblem

Hypergraphen

Begriffe

Eigenschaften Standard-Hypergraphen

Anwendungen

Quellen

Fragen

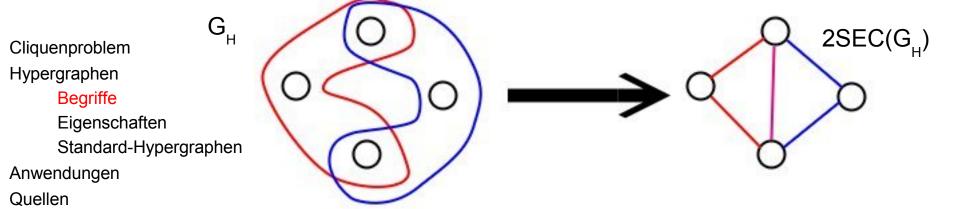
Ungerichtete Graphen

 Kanten verbinden beliebig viele Knoten

G=(V,H) ist ein endlicher Hypergraph, wenn gilt:

Knotenmenge V ist endlich

Die Menge der Hyperkanten H ist eine Menge von beliebigen Teilmengen aus V



2-Section-Graph

Fragen

2SEC(G_H(V,H)) ist Graph G(V,E), mit genau dann, wenn ein h aus H ab enthält

Cliquenproblem

Hypergraphen

Begriffe

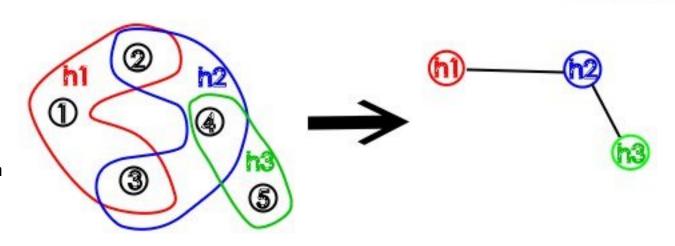
Eigenschaften

Standard-Hypergraphen

Anwendungen

Quellen

Fragen



Line Graph

 $L(G_H(V,H))$ ist Graph G(H,E), mit der Eigenschaft:

G ist Durchschnittsgraph von H,

d.h. $ab \in E \Leftrightarrow a \cap b \neq \emptyset$

für alle Paare verschiedener $a, b \in H$

Cliquenproblem

Hypergraphen

Begriffe

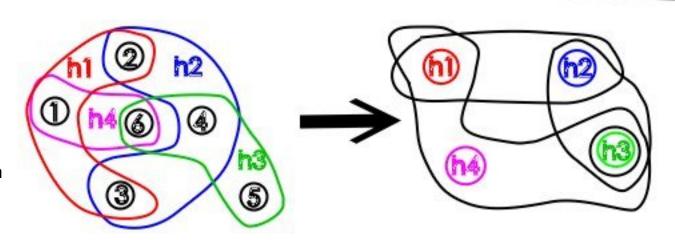
Eigenschaften

Standard-Hypergraphen

Anwendungen

Quellen

Fragen



Dualer Hypergraph

zu $G_H(V,H)$ dualer Hypergraph $G_H^* = (H,H^*)$

nat Knoten H bestehend aus Hyperkanten und hat Hyperkanten H* bestehend aus Hyperkanten aus G₁, die Knoten gemeinsam haben

Cliquenproblem

Hypergraphen

Begriffe

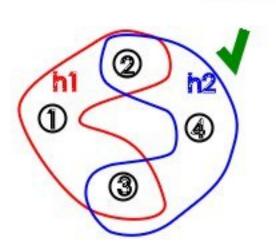
Eigenschaften

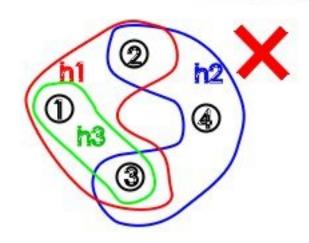
Standard-Hypergraphen

Anwendungen

Quellen

Fragen





Reduziertheit

keine Hyperkante enthällt eine andere

Cliquenproblem

Hypergraphen

Begriffe

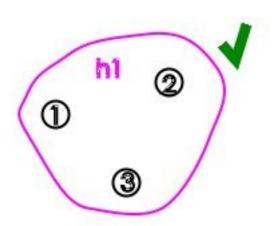
Eigenschaften

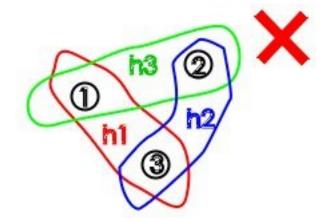
Standard-Hypergraphen

Anwendungen

Quellen

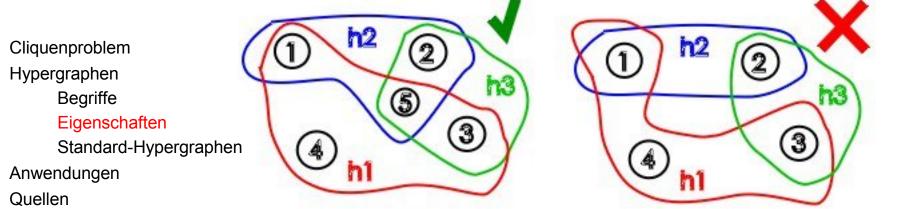
Fragen





Konformität

jede Clique im zugehörigen 2-Section-Graph ist in einer Hyperkante enthalten



Helly-Eigenschaft

Fragen

erfüllt, wenn aus der Menge aller Hyperkanten jede Teilfamilie von paarweise nicht disjunkten Hyperkanten einen nicht leeren Gesammtdurchschnitt hat

Standard Hypergraphen

Cliquenproblem

Hypergraphen

Begriffe

Standard-Hypergraphen $N(G)=(V, \{N_{R}[v]: v \in V\})$

Anwendungen

Quellen

Fragen

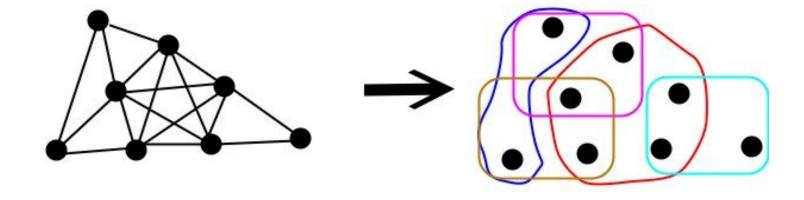
Cliquen-Hypergraph

C(G)=

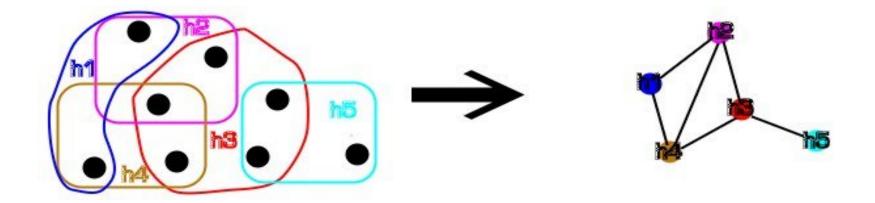
(V, {C_i: C_i ist eine max. Clique in G})

Nachbarschafts-Hypergraph

Cliquenhypergraph



Cliquenhypergraph



2

Sätze:

- (G_H*)* ist isomorph zu G_H
- L(G_H) ist isomorph zu 2SEC(G_H)
- Es gillt Konformität von $H \Leftrightarrow H^*$ hat die Helly-Eigenschaft
- Jeder konforme, reduzierte Hypergraph G_H ist der Cliquen-Hypergraph eines geeigneten Graphen: 2SEC(G_H)

Anwendungen

Cliquenproblem
Hypergraphen
Anwendungen
Quellen
Fragen

- Identifizieren von Stuerhinterziehung in den USA
- Modellieren von Zellularen Strukturen
- Chemieinformatik (bei MCS)

Ausblick

Cliquenproblem
Hypergraphen
Anwendungen
Quellen
Fragen

- · Viel Forschung auf den beiden Gebieten
- Auf Perfekten Graphen ist das Cliquenproblem in polynomieller Zeit lösbar.
- Es sieht danach aus, als das Problem ob ein Graph ein Perfekter Graph ist, oder nicht, in polynomieller Zeit entschieden werden kann^[6]!

Quellen

Cliquenproblem Hypergraphen Anwendungen Quellen

Fragen

- [1] Graphen und Algorithmen A. Brandstädt (Stuttgart: Teubner 1994) ISBN: 3-519-02131-5
- [2] http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve &db=PubMed&list_uids=12816568&dopt=Abstract
- [3] http://www2.toki.or.id/book/AlgDesignManual/BOOK/BOOK **4/NODF172 HTM**
- [4] http://en.wikipedia.org/wiki/Maximum_clique_problem
- [5] http://en.wikipedia.org/wiki/Union-find_algorithm
- [6] http://www.cs.concordia.ca/~chvatal/perfect/problems.html

