Fuzzy Systems

Prof. Dr. Rudolf Kruse, Christoph Doell

Assignment Sheet 4

Assignment 12 Fuzzy Set Operations

Let the following two fuzzy sets be given:

Compute and draw for each of the pairs
a) the complement of μ_{1} w.r.t. $U=[1,8]$ using the standard fuzzy negation,
b) the intersection of μ_{1} and μ_{2} using the standard fuzzy t-norm $\top_{\min }$,
c) the intersection of μ_{1} and μ_{2} using the algebraic product $\top_{\text {prod }}$,
d) the intersection of μ_{1} and μ_{2} using the Łukasiewicz t-norm $T_{\text {Euka }}$,
e) the union of μ_{1} and μ_{2} using the standard fuzzy t-conorm $\perp_{\max }$,
f) the union of μ_{1} and μ_{2} using the algebraic sum $\perp_{\text {sum }}$,
g) the union of μ_{1} and μ_{2} using the Łukasiewicz t-conorm $\perp_{\text {Euka }}$.

Assignment 13 Fuzzy Negation

In order to construct an involutive negation, one can use either a strictly monotonously increasing or decreasing generator function:

Theorem: $\sim:[0,1] \mapsto[0,1]$ is an involutive fuzzy negation if there exists a continuous function $g:[0,1] \mapsto \mathbb{R}$ that fulfills the following properties:
(i) $g(0)=0$.
(ii) g is strictly monotonously increasing.
(iii) $\sim a=g^{-1}(g(1)-g(a))$.

Theorem: $\sim:[0,1] \mapsto[0,1]$ is an involutive fuzzy negation if there exists a continuous function $f:[0,1] \mapsto \mathbb{R}$ that fulfills the following properties:
(i) $f(1)=0$.
(ii) f is strictly monotonously decreasing.
(iii) $\sim a=f^{-1}(f(0)-f(a))$.

Fuzzy Systems

Prof. Dr. Rudolf Kruse, Christoph Doell

Now, consider the class of increasing generator functions

$$
g_{\lambda}(a)=\frac{a}{\lambda+(1-\lambda) a} .
$$

Apply the given theorem, which allows to construct an involutive fuzzy negation from an arbitrary continuous and strictly increasing function g with $g(0)=0$. Draw the resulting fuzzy negation for several values of λ.

Assignment 14 Greatest t-norm

Motivate graphically that the Minimum is the greatest t-norm.
Draw a 3D-Plot for two fuzzy truth variables in $[0,1]$ and the corresponding output variable in $[0,1]$ as e.g. done on slide 8 of the lecture on fuzzy logic.
Start drawing the values necessary for fulfilling the crisp logic, then iteratively add the properties of t-norms and their graphical meanings in your drawing.

Assignment 15 Fuzzy Conjunction

Prove the following theorem which was given in the lecture:
Theorem: For all t-norms \top and all fuzzy truth values $a, b \in[0,1]$ it is

$$
\top_{-1}(a, b) \leq \top(a, b) \leq \top_{\min }(a, b),
$$

where $\top_{\min }(a, b)=\min \{a, b\}$ is the standard fuzzy conjunction and \top_{-1} is the so-called drastic product

$$
\top_{-1}(a, b)= \begin{cases}a & \text { if } b=1 \\ b & \text { if } a=1 \\ 0 & \text { otherwise } .\end{cases}
$$

