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General Idea of Association Analysis

◦ Infer knowledge from databases

◦ Model (experts’) knowledge

Association Rules

◦ Market basket analysis

◦ Generate rules that represent that knowledge

Bayesian Networks

◦ Probabilistic networks (graphs)

◦ Model (high-dimensional) distribution of attributes as combination of several
lower dimensional distributions that are easier to handle
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Association Rules and Frequent Item Sets
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Frequent Item Set Mining is a method for market basket analysis.

It aims at finding regularities in the shopping behavior of customers
of supermarkets, mail-order companies, on-line shops etc.

More specifically:
Find sets of products that are frequently bought together.

Possible applications of found frequent item sets:

� Improve arrangement of products in shelves, on a catalog’s pages.

� Support cross-selling (suggestion of other products), product bundling.

� Fraud detection, technical dependence analysis.

Often found patterns are expressed as association rules, for example:

If a customer buys bread and wine,
then she/he will probably also buy cheese.



Frequent Item Set Mining: Basic Notions
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Let A = {a1, . . . , am} be a set of items.

Items may be products, special equipment items, service options etc.

Any subset I ⊆ A is called an item set.

An item set may be any set of products that can be bought (together).

Let T = (t1, . . . , tn) with ∀i, 1 ≤ i ≤ n : ti ⊆ A

be a vector of transactions over A.

Each transaction is an item set, but some item sets may not appear in T .

Transactions need not be pairwise different: it may be ti = tk for i 6= k.

T may also be defined as a bag or multiset of transactions.

The set A may not be explicitely given, but only implicitely as A =
⋃n
i=1 ti.

A vector of transactions can list, for example, the sets of products bought
by the customers of a supermarket in a given period of time.



Frequent Item Set Mining: Basic Notions
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Let I ⊆ A be an item set and T a vector of transactions over A.

A transaction t ∈ T covers the item set I or
the item set I is contained in a transaction t ∈ T iff I ⊆ t.

The set KT (I) = {k ∈ {1, . . . , n} | I ⊆ tk} is called the cover of I w.r.t. T .

The cover of an item set is the index set of the transactions that cover it.

It may also be defined as a vector of all transactions that cover it
(which, however, is complicated to write in formally correct way).

The value sT (I) = |KT (I)| is called the (absolute) support of I w.r.t. T .

The value σT (I) =
1
n |KT (I)| is called the relative support of I w.r.t. T .

The support of I is the number or fraction of transactions that contain it.

Sometimes σT (I) is also called the (relative) frequency of I w.r.t. T .



Frequent Item Set Mining: Formal Definition
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Given:

a set A = {a1, . . . , am} of items,

a vector T = (t1, . . . , tn) of transactions over A,

a number smin ∈ IN, 0 < smin ≤ n or (equivalently)

a number σmin ∈ IR, 0 < σmin ≤ 1, the minimum support.

Desired:

the set of frequent item sets, that is,

the set FT (smin) = {I ⊆ A | sT (I) ≥ smin} or (equivalently)

the set ΦT (σmin) = {I ⊆ A | σT (I) ≥ σmin}.

Note that with the relations smin = ⌈nσmin⌉ and σmin =
1
nsmin

the two versions can easily be transformed into each other.



Frequent Item Sets: Example
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transaction vector

1: {a, d, e}
2: {b, c, d}
3: {a, c, e}
4: {a, c, d, e}
5: {a, e}
6: {a, c, d}
7: {b, c}
8: {a, c, d, e}
9: {c, b, e}
10: {a, d, e}

frequent item sets

0 items 1 item 2 items 3 items

∅: 100% {a}: 70% {a, c}: 40% {a, c, d}: 30%
{b}: 30% {a, d}: 50% {a, c, e}: 30%
{c}: 70% {a, e}: 60% {a, d, e}: 40%
{d}: 60% {b, c}: 30%
{e}: 70% {c, d}: 40%

{c, e}: 40%
{d, e}: 40%

The minimum support is smin = 3 or σmin = 0.3 = 30% in this example.

There are 25 = 32 possible item sets over A = {a, b, c, d, e}.

There are 16 frequent item sets (but only 10 transactions).



Properties of the Support of an Item Set
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A brute force approach that enumerates all possible item sets, determines
their support, and discards infrequent item sets is usually infeasible:

The number of possible item sets grows exponentially with the number of items.

A typical supermarket has thousands of different products.

Idea: Consider the properties of the support, in particular:

∀I : ∀J ⊇ I : KT (J) ⊆ KT (I).

This property holds, since ∀t : ∀I : ∀J ⊇ I : J ⊆ t → I ⊆ t.

Each additional item is another condition a transaction has to satisfy.
Transactions that do not satisfy this condition are removed from the cover.

It follows:
∀I : ∀J ⊇ I : sT (I) ≥ sT (J).

That is: If an item set is extended, its support cannot increase.

One also says that support is anti-monotone or downward closed.



Properties of the Support of an Item Set
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From ∀I : ∀J ⊇ I : sT (I) ≥ sT (J) it follows

∀smin : ∀I : ∀J ⊇ I : sT (I) < smin → sT (J) < smin.

That is: No superset of an infrequent item set can be frequent.

This property is often referred to as the Apriori Property.

Rationale: Sometimes we can know a priori, that is, before checking its support
by accessing the given transaction vector, that an item set cannot be frequent.

Of course, the contraposition of this implication also holds:

∀smin : ∀I : ∀J ⊆ I : sT (I) ≥ smin → sT (J) ≥ smin.

That is: All subsets of a frequent item set are frequent.

This suggests a compressed representation of the set of frequent item sets.



Maximal Item Sets
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Consider the set of maximal (frequent) item sets:

MT (smin) = {I ⊆ A | sT (I) ≥ smin ∧ ∀J ⊃ I : sT (J) < smin}.

That is: An item set is maximal if it is frequent,
but none of its proper supersets is frequent.

Since with this definition we know that

∀smin : ∀I : I ∈ MT (smin) ∨ ∃J ⊃ I : sT (J) ≥ smin

it follows (can easily be proven by successively extending the item set I)

∀smin : ∀I : I ∈ FT (smin) → ∃J ∈ MT (smin) : I ⊆ J.

That is: Every frequent item set has a maximal superset.

Therefore:
∀smin : FT (smin) =

⋃

I∈MT (smin)

2I



Maximal Frequent Item Sets: Example
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transaction vector

1: {a, d, e}
2: {b, c, d}
3: {a, c, e}
4: {a, c, d, e}
5: {a, e}
6: {a, c, d}
7: {b, c}
8: {a, c, d, e}
9: {c, b, e}
10: {a, d, e}

frequent item sets

0 items 1 item 2 items 3 items

∅: 100% {a}: 70% {a, c}: 40% {a, c, d}: 30%
{b}: 30% {a, d}: 50% {a, c, e}: 30%
{c}: 70% {a, e}: 60% {a, d, e}: 40%
{d}: 60% {b, c}: 30%
{e}: 70% {c, d}: 40%

{c, e}: 40%
{d, e}: 40%

The maximal item sets are:

{b, c}, {a, c, d}, {a, c, e}, {a, d, e}.

Every frequent item set is a subset of at least one of these sets.



Limits of Maximal Item Sets
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The set of maximal item sets captures the set of all frequent item sets,
but then we know only the support of the maximal item sets.

About the support of a non-maximal frequent item set we only know:

∀smin : ∀I ∈ FT (smin)−MT (smin) : sT (I) ≥ max
J∈MT (smin),J⊃I

sT (J).

This relation follows immediately from ∀I : ∀J ⊇ I : sT (I) ≥ sT (J),
that is, an item set cannot have a lower support than any of its supersets.

Note that we have generally

∀smin : ∀I ∈ FT (smin) : sT (I) ≥ max
J∈MT (smin),J⊇I

sT (J).

Question: Can we find a subset of the set of all frequent item sets,
which also preserves knowledge of all support values?



Closed Item Sets
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Consider the set of closed (frequent) item sets:

CT (smin) = {I ⊆ A | sT (I) ≥ smin ∧ ∀J ⊃ I : sT (J) < sT (I)}.

That is: An item set is closed if it is frequent,
but none of its proper supersets has the same support.

Since with this definition we know that

∀smin : ∀I : I ∈ CT (smin) ∨ ∃J ⊃ I : sT (J) = sT (I)

it follows (can easily be proven by successively extending the item set I)

∀smin : ∀I : I ∈ FT (smin) → ∃J ∈ CT (smin) : I ⊆ J.

That is: Every frequent item set has a closed superset.

Therefore:
∀smin : FT (smin) =

⋃

I∈CT (smin)

2I



Closed Item Sets
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However, not only has every frequent item set a closed superset,
but it has a closed superset with the same support:

∀smin : ∀I : I ∈ FT (smin) → ∃J ⊇ I : J ∈ CT (smin) ∧ sT (J) = sT (I).

(Proof: see the considerations on the next slide)

The set of all closed item sets preserves knowledge of all support values:

∀smin : ∀I ∈ FT (smin) : sT (I) = max
J∈CT (smin),J⊇I

sT (J).

Note that the weaker statement

∀smin : ∀I ∈ FT (smin) : sT (I) ≥ max
J∈CT (smin),J⊇I

sT (J)

follows immediately from ∀I : ∀J ⊇ I : sT (I) ≥ sT (J), that is,
an item set cannot have a lower support than any of its supersets.



Closed Item Sets
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Alternative characterization of closed item sets:

I closed ⇔ sT (I) ≥ smin ∧ I =
⋂

k∈KT (I)

tk.

Reminder: KT (I) = {k ∈ {1, . . . , n} | I ⊆ tk} is the cover of I w.r.t. T .

This is derived as follows: since ∀k ∈ KT (I) : I ⊆ tk, it is obvious that

∀smin : ∀I ∈ FT (smin) : I ⊆
⋂

k∈KT (I)

tk,

If I ⊂
⋂

k∈KT (I)
tk, it is not closed, since

⋂

k∈KT (I)
tk has the same support.

On the other hand, no superset of
⋂

k∈KT (I)
tk has the cover KT (I).

Note that the above characterization allows us to construct the (uniquely deter-
mined) closed superset of a frequent item set that has the same support.



Closed Frequent Item Sets: Example
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transaction vector

1: {a, d, e}
2: {b, c, d}
3: {a, c, e}
4: {a, c, d, e}
5: {a, e}
6: {a, c, d}
7: {b, c}
8: {a, c, d, e}
9: {c, b, e}
10: {a, d, e}

frequent item sets

0 items 1 item 2 items 3 items

∅: 100% {a}: 70% {a, c}: 40% {a, c, d}: 30%
{b}: 30% {a, d}: 50% {a, c, e}: 30%
{c}: 70% {a, e}: 60% {a, d, e}: 40%
{d}: 60% {b, c}: 30%
{e}: 70% {c, d}: 40%

{c, e}: 40%
{d, e}: 40%

All frequent item sets are closed with the exception of {b} and {d, e}.

{b} is a subset of {b, c}, both have support 30%.
{d, e} is a subset of {a, d, e}, both have a support of 40%.



Types of Frequent Item Sets
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Frequent Item Set
Any frequent item set (support is higher than the minimal support):

I frequent ⇔ sT (I) ≥ smin

Closed Item Set
A frequent item set is called closed if no superset has the same support:

I closed ⇔ sT (I) ≥ smin ∧ ∀J ⊃ I : sT (J) < sT (I)

Maximal Item Set
A frequent item set is called maximal if no superset is frequent:

I maximal ⇔ sT (I) ≥ smin ∧ ∀J ⊃ I : sT (J) < smin

Obvious relations between these types of item sets:

� All maximal and all closed item sets are frequent.

� All maximal item sets are closed.



Types of Frequent Item Sets: Example
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0 items 1 item 2 items 3 items

∅+: 100% {a}+: 70% {a, c}+: 40% {a, c, d}+∗: 30%
{b}: 30% {a, d}+: 50% {a, c, e}+∗: 30%
{c}+: 70% {a, e}+: 60% {a, d, e}+∗: 40%
{d}+: 60% {b, c}+∗: 30%
{e}+: 70% {c, d}+: 40%

{c, e}+: 40%
{d, e}: 40%

Frequent Item Set
Any frequent item set (support is higher than the minimal support).

Closed Item Set (marked with +)
A frequent item set is called closed if no superset has the same support.

Maximal Item Set (marked with ∗)
A frequent item set is called maximal if no superset is frequent.



Searching for Frequent Item Sets
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We know that it suffices to find the closed item sets together with their support.

The characterization of closed item sets by

I closed ⇔ sT (I) ≥ smin ∧ I =
⋂

k∈KT (I)

tk

suggests to find them by forming all possible intersections of the transactions
and checking their support.

However, approaches using this idea are not competitive with other methods.

If the support of all frequent item sets is needed, it can be clumsy and tedious to
compute the support of a non-closed frequent item set with

∀smin : ∀I ∈ FT (smin)− CT (smin) : sT (I) = max
J∈CT (smin),J⊃I

sT (J).

In order to find the closed sets one may have to visit many frequent sets anyway.



Finding the Frequent Item Sets
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Idea: Use the properties
of the support to organize
the search for all frequent
item sets, especially

∀I : ∀J ⊃ I :

sT (I) < smin

→ sT (J) < smin.

Since these properties re-
late the support of an item
set to the support of its
subsets and supersets,
it is reasonable to orga-
nize the search based on
the subset lattice of the
set A, the set of all items.

A subset lattice for five items {a, b, c, d, e}:

a b c d e

ab ac ad ae bc bd be cd ce de

abc abd abe acd ace ade bcd bce bde cde

abcd abce abde acde bcde

abcde Hasse diagram



Subset Lattice and Frequent Item Sets
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transaction vector

1: {a, d, e}
2: {b, c, d}
3: {a, c, e}
4: {a, c, d, e}
5: {a, e}
6: {a, c, d}
7: {b, c}
8: {a, c, d, e}
9: {c, b, e}
10: {a, d, e}

Blue boxes are frequent
item sets, white boxes
infrequent item sets.

subset lattice with frequent item sets (smin = 3):

a b c d e

ab ac ad ae bc bd be cd ce de

abc abd abe acd ace ade bcd bce bde cde

abcd abce abde acde bcde

abcde



Subset Lattice and Closed Item Sets
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transaction vector

1: {a, d, e}
2: {b, c, d}
3: {a, c, e}
4: {a, c, d, e}
5: {a, e}
6: {a, c, d}
7: {b, c}
8: {a, c, d, e}
9: {c, b, e}
10: {a, d, e}

Red boxes are closed
item sets, white boxes
infrequent item sets.

subset lattice with closed item sets (smin = 3):

a b c d e

ab ac ad ae bc bd be cd ce de

abc abd abe acd ace ade bcd bce bde cde

abcd abce abde acde bcde

abcde



Subset Lattice and Maximal Item Sets
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transaction vector

1: {a, d, e}
2: {b, c, d}
3: {a, c, e}
4: {a, c, d, e}
5: {a, e}
6: {a, c, d}
7: {b, c}
8: {a, c, d, e}
9: {c, b, e}
10: {a, d, e}

Red boxes are maximal
item sets, white boxes
infrequent item sets.

subset lattice with maximal item sets (smin = 3):

a b c d e

ab ac ad ae bc bd be cd ce de

abc abd abe acd ace ade bcd bce bde cde

abcd abce abde acde bcde

abcde
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The Apriori Algorithm

[Agrawal and Srikant 1994]



Searching for Frequent Item Sets
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One possible scheme for the search:

Determine the support of the one element item sets
and discard the infrequent items.

Form candidate item sets with two items (both items must be frequent),
determine their support, and discard the infrequent item sets.

Form candidate item sets with three items (all pairs must be frequent),
determine their support, and discard the infrequent item sets.

Continue by forming candidate item sets with four, five etc. items
until no candidate item set is frequent.

This is the general scheme of the Apriori Algorithm.

It is based on two main steps: candidate generation and pruning.

All frequent item set mining algorithms are based on these steps in some form.



The Apriori Algorithm 1
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function apriori (A, T, smin) (∗ Apriori algorithm ∗)

begin

k := 1; (∗ initialize the item set size ∗)

Ek :=
⋃

a∈A{{a}}; (∗ start with single element sets ∗)

Fk := prune(Ek, T, smin); (∗ and determine the frequent ones ∗)

while Fk 6= ∅ do begin (∗ while there are frequent item sets ∗)

Ek+1 := candidates(Fk); (∗ create item sets with one item more ∗)

Fk+1 := prune(Ek+1, T, smin); (∗ and determine the frequent ones ∗)

k := k + 1; (∗ increment the item counter ∗)

end;

return
⋃k
j=1 Fj ; (∗ return the frequent item sets ∗)

end (∗ apriori ∗)



The Apriori Algorithm 2
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function candidates (Fk) (∗ generate candidates with k + 1 items ∗)

begin

E := ∅; (∗ initialize the set of candidates ∗)

forall f1, f2 ∈ Fk (∗ traverse all pairs of frequent item sets ∗)

with f1 = {a1, . . . , ak−1, ak} (∗ that differ only in one item and ∗)

and f2 = {a1, . . . , ak−1, a
′
k} (∗ are in a lexicographic order ∗)

and ak < a′k do begin (∗ (the order is arbitrary, but fixed) ∗)

f := f1 ∪ f2 = {a1, . . . , ak−1, ak, a
′
k}; (∗ union has k + 1 items ∗)

if ∀a ∈ f : f − {a} ∈ Fk (∗ only if all subsets are frequent, ∗)

then E := E ∪ {f}; (∗ add the new item set to the candidates ∗)

end; (∗ (otherwise it cannot be frequent) ∗)

return E; (∗ return the generated candidates ∗)

end (∗ candidates ∗)



The Apriori Algorithm 3
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function prune (E, T, smin) (∗ prune infrequent candidates ∗)

begin

forall e ∈ E do (∗ initialize the support counters ∗)

sT (e) := 0; (∗ of all candidates to be checked ∗)

forall t ∈ T do (∗ traverse the transactions ∗)

forall e ∈ E do (∗ traverse the candidates ∗)

if e ⊆ t (∗ if transaction contains the candidate, ∗)

then sT (e) := sT (e) + 1; (∗ increment the support counter ∗)

F := ∅; (∗ initialize the set of frequent candidates ∗)

forall e ∈ E do (∗ traverse the candidates ∗)

if sT (e) ≥ smin (∗ if a candidate is frequent, ∗)

then F := F ∪ {e}; (∗ add it to the set of frequent candidates ∗)

return F ; (∗ return the pruned set of candidates ∗)

end (∗ prune ∗)



Searching for Frequent Item Sets
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The Apriori algorithm searches the subset lattice top-down level by level.

Collecting the frequent item sets of size k in a set Fk has drawbacks:
A frequent item set of size k + 1 can be formed in

j =
k(k + 1)

2

possible ways. (For infrequent item sets the number may be smaller.)

As a consequence, the candidate generation step may carry out a lot of
redundant work, since it suffices to generate each candidate item set once.

Question: Can we reduce or even eliminate this redundant work?

More generally:
How can we make sure that any candidate item set is generated at most once?

Idea: Assign to each item set a unique parent item set,
from which this item set is to be generated.



Searching for Frequent Item Sets
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A core problem is that an item set of size k (that is, with k items)
can be generated in k! different ways (on k! paths in the Hasse diagram),
because in principle the items may be added in any order.

If we consider an item by item process of building an item set
(which can be imagined as a levelwise traversal of the lattice),
there are k possible ways of forming an item set of size k
from item sets of size k − 1 by adding the remaining item.

It is obvious that it suffices to consider each item set at most once in order
to find the frequent ones (infrequent item sets need not be generated at all).

Question: Can we reduce or even eliminate this variety?

More generally:
How can we make sure that any candidate item set is generated at most once?

Idea: Assign to each item set a unique parent item set,
from which this item set is to be generated.



Searching for Frequent Item Sets
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We have to search the item subset lattice / its Hasse diagram.

Assigning unique parents turns the Hasse diagram into a tree.

Traversing the resulting tree explores each item set exactly once.

Subset lattice (Hasse diagram) and a possible tree for five items:



Searching with Unique Parents
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Principle of a Search Algorithm based on Unique Parents:

Base Loop:

� Traverse all one-element item sets (their unique parent is the empty set).

� Recursively process all one-element item sets that are frequent.

Recursive Processing:

For a given frequent item set I :

� Generate all extensions J of I by one item (that is, J ⊃ I , |J | = |I| + 1)
for which the item set I is the chosen unique parent.

� For all J : if J is frequent, process J recursively, otherwise discard J .

Questions:

� How can we formally assign unique parents?

� How can we make sure that we generate only those extensions
for which the item set that is extended is the chosen unique parent?



Unique Parents and Prefix Trees
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Item sets sharing the same longest proper prefix
are siblings, because they have the same unique parent.

This allows us to represent the unique parent tree as a prefix tree or trie.

Canonical parent tree and corresponding prefix tree for five items:



Apriori: Levelwise Search
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1: {a, d, e}
2: {b, c, d}
3: {a, c, e}
4: {a, c, d, e}
5: {a, e}
6: {a, c, d}
7: {b, c}
8: {a, c, d, e}
9: {c, b, e}
10: {a, d, e}

a: 7 b: 3 c: 7 d: 6 e: 7

Example transaction database with 5 items and 10 transactions.

Minimum support: 30%, i.e., at least 3 transactions must contain the item set.

All one item sets are frequent → full second level is needed.



Apriori: Levelwise Search
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1: {a, d, e}
2: {b, c, d}
3: {a, c, e}
4: {a, c, d, e}
5: {a, e}
6: {a, c, d}
7: {b, c}
8: {a, c, d, e}
9: {c, b, e}
10: {a, d, e}

a: 7 b: 3 c: 7 d: 6 e: 7

b: 0 c: 4 d: 5 e: 6 c: 3 d: 1 e: 1 d: 4 e: 4 e: 4

a b c d

Determining the support of item sets: For each item set traverse the database and
count the transactions that contain it (highly inefficient).

Better: Traverse the tree for each transaction and find the item sets it contains
(efficient: can be implemented as a simple doubly recursive procedure).



Apriori: Levelwise Search
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1: {a, d, e}
2: {b, c, d}
3: {a, c, e}
4: {a, c, d, e}
5: {a, e}
6: {a, c, d}
7: {b, c}
8: {a, c, d, e}
9: {c, b, e}
10: {a, d, e}

a: 7 b: 3 c: 7 d: 6 e: 7

b: 0 c: 4 d: 5 e: 6 c: 3 d: 1 e: 1 d: 4 e: 4 e: 4

a b c d

Minimum support: 30%, i.e., at least 3 transactions must contain the item set.

Infrequent item sets: {a, b}, {b, d}, {b, e}.

The subtrees starting at these item sets can be pruned.



Apriori: Levelwise Search
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1: {a, d, e}
2: {b, c, d}
3: {a, c, e}
4: {a, c, d, e}
5: {a, e}
6: {a, c, d}
7: {b, c}
8: {a, c, d, e}
9: {c, b, e}
10: {a, d, e}

a: 7 b: 3 c: 7 d: 6 e: 7

b: 0 c: 4 d: 5 e: 6 c: 3 d: 1 e: 1 d: 4 e: 4 e: 4

d: ? e: ? e: ? d: ? e: ? e: ?

a b c d

c d c d

Generate candidate item sets with 3 items (parents must be frequent).

Before counting, check whether the candidates contain an infrequent item set.

� An item set with k items has k subsets of size k − 1.

� The parent is only one of these subsets.
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1: {a, d, e}
2: {b, c, d}
3: {a, c, e}
4: {a, c, d, e}
5: {a, e}
6: {a, c, d}
7: {b, c}
8: {a, c, d, e}
9: {c, b, e}
10: {a, d, e}

a: 7 b: 3 c: 7 d: 6 e: 7

b: 0 c: 4 d: 5 e: 6 c: 3 d: 1 e: 1 d: 4 e: 4 e: 4

d: ? e: ? e: ? d: ? e: ? e: ?

a b c d

c d c d

The item sets {b, c, d} and {b, c, e} can be pruned, because

� {b, c, d} contains the infrequent item set {b, d} and

� {b, c, e} contains the infrequent item set {b, e}.
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1: {a, d, e}
2: {b, c, d}
3: {a, c, e}
4: {a, c, d, e}
5: {a, e}
6: {a, c, d}
7: {b, c}
8: {a, c, d, e}
9: {c, b, e}
10: {a, d, e}

a: 7 b: 3 c: 7 d: 6 e: 7

b: 0 c: 4 d: 5 e: 6 c: 3 d: 1 e: 1 d: 4 e: 4 e: 4

d: 3 e: 3 e: 4 d: ? e: ? e: 2

a b c d

c d c d

Only the remaining four item sets of size 3 are evaluated.
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1: {a, d, e}
2: {b, c, d}
3: {a, c, e}
4: {a, c, d, e}
5: {a, e}
6: {a, c, d}
7: {b, c}
8: {a, c, d, e}
9: {c, b, e}
10: {a, d, e}

a: 7 b: 3 c: 7 d: 6 e: 7

b: 0 c: 4 d: 5 e: 6 c: 3 d: 1 e: 1 d: 4 e: 4 e: 4

d: 3 e: 3 e: 4 d: ? e: ? e: 2

a b c d

c d c d

Minimum support: 30%, i.e., at least 3 transactions must contain the item set.

Infrequent item set: {c, d, e}.
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1: {a, d, e}
2: {b, c, d}
3: {a, c, e}
4: {a, c, d, e}
5: {a, e}
6: {a, c, d}
7: {b, c}
8: {a, c, d, e}
9: {c, b, e}
10: {a, d, e}

a: 7 b: 3 c: 7 d: 6 e: 7

b: 0 c: 4 d: 5 e: 6 c: 3 d: 1 e: 1 d: 4 e: 4 e: 4

d: 3 e: 3 e: 4 d: ? e: ? e: 2

e: ?

a b c d

c d c d

d

Generate candidate item sets with 4 items (parents must be frequent).

Before counting, check whether the candidates contain an infrequent item set.
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1: {a, d, e}
2: {b, c, d}
3: {a, c, e}
4: {a, c, d, e}
5: {a, e}
6: {a, c, d}
7: {b, c}
8: {a, c, d, e}
9: {c, b, e}
10: {a, d, e}

a: 7 b: 3 c: 7 d: 6 e: 7

b: 0 c: 4 d: 5 e: 6 c: 3 d: 1 e: 1 d: 4 e: 4 e: 4

d: 3 e: 3 e: 4 d: ? e: ? e: 2

e: ?

a b c d

c d c d

d

The item set {a, c, d, e} can be pruned,
because it contains the infrequent item set {c, d, e}.

Consequence: No candidate item sets with four items.

Fourth access to the transaction database is not necessary.
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Idea: Optimize the organization of the counters and the child pointers.

Direct Indexing:

Each node is a simple vector (array) of counters.

An item is used as a direct index to find the counter.

Advantage: Counter access is extremely fast.

Disadvantage: Memory usage can be high due to “gaps” in the index space.

Sorted Vectors:

Each node is a vector (array) of item/counter pairs.

A binary search is necessary to find the counter for an item.

Advantage: Memory usage may be smaller, no unnecessary counters.

Disadvantage: Counter access is slower due to the binary search.
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Hash Tables:

Each node is a vector (array) of item/counter pairs (closed hashing).

The index of a counter is computed from the item code.

Advantage: Faster counter access than with binary search.

Disadvantage: Higher memory usage than sorted vectors (pairs, fill rate).
The order of the items cannot be exploited.

Child Pointers:

The deepest level of the item set tree does not need child pointers.

Fewer child pointers than counters are needed.

→ It pays to represent the child pointers in a separate array.

The sorted array of item/counter pairs can be reused for a binary search.
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Items are coded as consecutive integers starting with 0
(needed for the direct indexing approach).

The size and the number of the “gaps” in the index space
depends on how the items are coded.

Idea: It is plausible that frequent item sets consist of frequent items.

� Sort the items w.r.t. their frequency (group frequent items).

� Sort descendingly: Prefix tree has fewer nodes.

� Sort ascendingly: There are fewer and smaller index “gaps”.

� Empirical evidence: sorting ascendingly is better.

Extension: Sort items w.r.t. the sum of the sizes
of the transacions that cover them.

� Empirical evidence: Better than simple item frequencies.
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The items in a transaction are sorted (ascending item codes).

Processing a transaction is then a doubly recursive procedure.
To process a transaction for a node of the item set tree:

◦ Go to the child corresponding to the first item in the transaction and
count the remainder of the transaction recursively for that child.

(In the currently deepest level of the tree we increment the counter
corresponding to the item instead of going to the child node.)

◦ Discard the first item of the transaction and
process it recursively for the node itself.

Optimizations:

◦ Directly skip all items preceding the first item in the node.

◦ Abort the recursion if the first item is beyond the last one in the node.

◦ Abort the recursion if a transaction is too short to reach the deepest level.
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Direct Representation:

Each transaction is represented as an array of items.

The transactions are stored in a simple list.

Organization as a Prefix Tree:

The items in each transaction are sorted.

Transactions with the same prefix are grouped together.

Advantage: a common prefix is processed only once.

Gains from this organization depend on how the items are coded:

◦ Common transaction prefixes are more likely
if the items are sorted with descending frequency.
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Basic Processing Scheme

Breadth-first/levelwise traversal of the subset lattice.

Candidates are formed by merging item sets that differ in only one item.

Support counting is done with a doubly recursive procedure.

Advantages

“Perfect” pruning of infrequent candidate item sets (with infrequent subsets).

Disadvantages

Can require a lot of memory (since all frequent item sets are represented).

Support counting takes very long for large transactions.

Software

http://www.borgelt.net/apriori.html
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In contrast to the levelwise search of the Apriori algorithm,
the Eclat Algorithm executes a depth-first search in the prefix tree.

This depth-first search can also be seen as a divide-and-conquer scheme:

� Let the item order be a < b < c . . ..

� Restrict the transaction vector to those transactions that contain a.
This is the conditional database for the prefix a.

Recursively search this conditional database for frequent item sets
and add the prefix a to all frequent item sets found in the recursion.

� Remove the item a from the transactions in the full transaction vector.
This is the conditional database for item sets without a.

Recursively search this conditional database for frequent item sets.

With this scheme only frequent one-element item sets have to be determined.
Larger item sets result from adding possible prefixes.
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a b c d e

ab ac ad ae bc bd be cd ce de

abc abd abe acd ace ade bcd bce bde cde

abcd abce abde acde bcde

abcde

a b c d

b c d c d d

c d d d

d
split into subproblems w.r.t. item a

blue : item set consisting of only item a.
green: item sets containing item a (and at least one other item).
red : item sets not containing item a (but at least one other item).

green: database with transactions containing a.
red : database with all transactions, but with item a removed.
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a b c d e

ab ac ad ae bc bd be cd ce de

abc abd abe acd ace ade bcd bce bde cde

abcd abce abde acde bcde

abcde

a b c d

b c d c d d

c d d d

d
split into subproblems w.r.t. item b

blue : item sets {a} and {a, b}.
green: item sets containing items a and b (and at least one other item).
red : item sets containing item a, but not item b.

green: database with transactions containing a and b.
red : database with transactions containing a, but with b removed.
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a b c d e

ab ac ad ae bc bd be cd ce de

abc abd abe acd ace ade bcd bce bde cde

abcd abce abde acde bcde

abcde

a b c d

b c d c d d

c d d d

d
split into subproblems w.r.t. item b

blue : item set consisting of only item b.
green: item sets containing item b, but not item a.
red : item sets containing neither item a nor item b.

green: database with transactions containing b, but not a.
red : database with all transactions, but with a and b removed.
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The Eclat Algorithm

[Zaki, Parthasarathy, Ogihara, and Li 1997]
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The item sets are checked in lexicographic order
(depth-first traversal of the prefix tree).

Eclat generates more candidate item sets than Apriori,
because it does not store the support of all visited item sets.

Eclat uses a vertical transaction representation
(see next slide for details).

No subset tests and no subset generation is needed for the support computation.
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The Apriori algorithm uses a horizontal transaction representation:
each transaction is an array of the contained items.

� Note that the alternative prefix tree organization
is still an essentially horizontal representation.

The Eclat algorithm uses a vertical transaction representation:

� For each item a transaction list is created.

� The transaction list of item a indicates the transactions that contain it,
that is, it represents its cover KT ({a}).

� Advantage: the transaction list for a pair of items can be computed by
intersecting the transaction lists of the individual items.

� Generally, a vertical transaction representation can exploit

∀I, J ⊆ A : KT (I ∪ J) = KT (I) ∩KT (J).
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1: {a, d, e}
2: {b, c, d}
3: {a, c, e}
4: {a, c, d, e}
5: {a, e}
6: {a, c, d}
7: {b, c}
8: {a, c, d, e}
9: {c, b, e}
10: {a, d, e}

a: 7 b: 3 c: 7 d: 6 e: 7

Form a transaction list for each item. Here: bit vector representation.

◦ grey: item is contained in transaction

◦ white: item is not contained in transaction

Transaction database is needed only once (for the single item transaction lists).
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1: {a, d, e}
2: {b, c, d}
3: {a, c, e}
4: {a, c, d, e}
5: {a, e}
6: {a, c, d}
7: {b, c}
8: {a, c, d, e}
9: {c, b, e}
10: {a, d, e}

a: 7 b: 3 c: 7 d: 6 e: 7

b: 0 c: 4 d: 5 e: 6

a

Intersect the transaction list for item a

with the transaction lists of all other items (conditional database).

Count the number of set bits (number of containing transactions).

The item set {a, b} is infrequent and can be pruned.
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1: {a, d, e}
2: {b, c, d}
3: {a, c, e}
4: {a, c, d, e}
5: {a, e}
6: {a, c, d}
7: {b, c}
8: {a, c, d, e}
9: {c, b, e}
10: {a, d, e}

a: 7 b: 3 c: 7 d: 6 e: 7

b: 0 c: 4 d: 5 e: 6

a

Intersect the transaction list for item a

with the transaction lists of all other items (conditional database).

Count the number of set bits (number of containing transactions).

The item set {a, b} is infrequent and can be pruned.
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1: {a, d, e}
2: {b, c, d}
3: {a, c, e}
4: {a, c, d, e}
5: {a, e}
6: {a, c, d}
7: {b, c}
8: {a, c, d, e}
9: {c, b, e}
10: {a, d, e}

a: 7 b: 3 c: 7 d: 6 e: 7

b: 0 c: 4 d: 5 e: 6

d: 3 e: 3

a

c

Intersect the transaction list for {a, c}
with the transaction lists of {a, x}, x ∈ {d, e}.

Result: Transaction lists for the item sets {a, c, d} and {a, c, e}.
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1: {a, d, e}
2: {b, c, d}
3: {a, c, e}
4: {a, c, d, e}
5: {a, e}
6: {a, c, d}
7: {b, c}
8: {a, c, d, e}
9: {c, b, e}
10: {a, d, e}

a: 7 b: 3 c: 7 d: 6 e: 7

b: 0 c: 4 d: 5 e: 6

d: 3 e: 3

e: 2

a

c

d

Intersect the transaction list for {a, c, d} and {a, c, e}.

Result: Transaction list for the item set {a, c, d, e}.

With Apriori this item set could be pruned before counting,
because it was known that {c, d, e} is infrequent.
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1: {a, d, e}
2: {b, c, d}
3: {a, c, e}
4: {a, c, d, e}
5: {a, e}
6: {a, c, d}
7: {b, c}
8: {a, c, d, e}
9: {c, b, e}
10: {a, d, e}

a: 7 b: 3 c: 7 d: 6 e: 7

b: 0 c: 4 d: 5 e: 6

d: 3 e: 3

e: 2

a

c

d

Intersect the transaction list for {a, c, d} and {a, c, e}.

Result: Transaction list for the item set {a, c, d, e}.

With Apriori this item set could be pruned before counting,
because it was known that {c, d, e} is infrequent.
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1: {a, d, e}
2: {b, c, d}
3: {a, c, e}
4: {a, c, d, e}
5: {a, e}
6: {a, c, d}
7: {b, c}
8: {a, c, d, e}
9: {c, b, e}
10: {a, d, e}

a: 7 b: 3 c: 7 d: 6 e: 7

b: 0 c: 4 d: 5 e: 6

e: 4d: 3 e: 3

a

d

Backtrack to the second level of the search tree and
intersect the transaction list for {a, d} and {a, e}.

Result: Transaction list for {a, d, e}.



Eclat: Depth-First Search

Rudolf Kruse Intelligent Data Analysis 64

1: {a, d, e}
2: {b, c, d}
3: {a, c, e}
4: {a, c, d, e}
5: {a, e}
6: {a, c, d}
7: {b, c}
8: {a, c, d, e}
9: {c, b, e}
10: {a, d, e}

a: 7 b: 3 c: 7 d: 6 e: 7

c: 4 d: 5 e: 6 c: 3 d: 1 e: 1

d: 3 e: 3 e: 4

b

Backtrack to the first level of the search tree and
intersect the transaction list for b with the transaction lists for c, d, and e.

Result: Transaction lists for the item sets {b, c}, {b, d}, and {b, e}.

Only one item set with sufficient support → prune all subtrees.
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1: {a, d, e}
2: {b, c, d}
3: {a, c, e}
4: {a, c, d, e}
5: {a, e}
6: {a, c, d}
7: {b, c}
8: {a, c, d, e}
9: {c, b, e}
10: {a, d, e}

a: 7 b: 3 c: 7 d: 6 e: 7

c: 4 d: 5 e: 6 c: 3 d: 1 e: 1

d: 3 e: 3 e: 4

b

Backtrack to the first level of the search tree and
intersect the transaction list for b with the transaction lists for c, d, and e.

Result: Transaction lists for the item sets {b, c}, {b, d}, and {b, e}.

Only one item set with sufficient support → prune all subtrees.
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1: {a, d, e}
2: {b, c, d}
3: {a, c, e}
4: {a, c, d, e}
5: {a, e}
6: {a, c, d}
7: {b, c}
8: {a, c, d, e}
9: {c, b, e}
10: {a, d, e}

a: 7 b: 3 c: 7 d: 6 e: 7

c: 4 d: 5 e: 6 c: 3 d: 4 e: 4

d: 3 e: 3 e: 4

c

Backtrack to the first level of the search tree and
intersect the transaction list for c with the transaction lists for d and e.

Result: Transaction lists for the item sets {c, d} and {c, e}.



Eclat: Depth-First Search

Rudolf Kruse Intelligent Data Analysis 67

1: {a, d, e}
2: {b, c, d}
3: {a, c, e}
4: {a, c, d, e}
5: {a, e}
6: {a, c, d}
7: {b, c}
8: {a, c, d, e}
9: {c, b, e}
10: {a, d, e}

a: 7 b: 3 c: 7 d: 6 e: 7

c: 4 d: 5 e: 6 c: 3 d: 4 e: 4

d: 3 e: 3 e: 4 e: 2

c

d

Intersect the transaction list for {c, d} and {c, e}.

Result: Transaction list for {c, d, e}.

Infrequent item set: {c, d, e}.
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1: {a, d, e}
2: {b, c, d}
3: {a, c, e}
4: {a, c, d, e}
5: {a, e}
6: {a, c, d}
7: {b, c}
8: {a, c, d, e}
9: {c, b, e}
10: {a, d, e}

a: 7 b: 3 c: 7 d: 6 e: 7

c: 4 d: 5 e: 6 c: 3 d: 4 e: 4

d: 3 e: 3 e: 4 e: 2

c

d

Intersect the transaction list for {c, d} and {c, e}.

Result: Transaction list for {c, d, e}.

Infrequent item set: {c, d, e}.
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1: {a, d, e}
2: {b, c, d}
3: {a, c, e}
4: {a, c, d, e}
5: {a, e}
6: {a, c, d}
7: {b, c}
8: {a, c, d, e}
9: {c, b, e}
10: {a, d, e}

a: 7 b: 3 c: 7 d: 6 e: 7

c: 4 d: 5 e: 6 c: 3 d: 4 e: 4 e: 4

d: 3 e: 3 e: 4

d

Backtrack to the first level of the search tree and
intersect the transaction list for d with the transaction list for e.

Result: Transaction list for the item set {d, e}.

With this step the search is finished.
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Bit Matrices

Represent transactions as a bit matrix:

� Each column corresponds to an item.

� Each row corresponds to a transaction.

Normal and sparse representation of bit matrices:

� Normal: one memory bit per matrix bit, zeros represented.

� Sparse: lists of column indices of set bits (transaction lists).

Which representation is preferable depends on
the ratio of set bits to cleared bits.

Item Coding

Sorting the item descendingly w.r.t. their frequency (individual or transaction size
sum) leads to a better structure of the search tree.
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Basic Processing Scheme

Depth-first traversal of the prefix tree.

Data is represented as lists of transaction ids (one per item).

Support counting is done by intersecting lists of transaction ids.

Advantages

Depth-first search reduces memory requirements.

Usually (considerably) faster than Apriori.

Disadvantages

Difficult to execute for modern processors (branch prediction).

Software

http://www.borgelt.net/eclat.html
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General problem of frequent item set mining:

The number of frequent item sets, even the number of closed or maximal item
sets, can exceed the number of transactions in the database by far.

Therefore: Additional filtering is necessary to find
the ’‘relevant” or “interesting” frequent item sets.

General idea: Compare support to expectation.

� Item sets consisting of items that appear frequently
are likely to have a high support.

� However, this is not surprising:
we expect this even if the occurrence of the items is independent.

� Additional filtering should remove item sets with a support
close to the support expected from an independent occurrence.
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Full Independence

Evaluate item sets with

̺fi(I) =
sT (I) · n

|I|−1

∏

a∈I sT ({a})
=

p̂T (I)
∏

a∈I p̂T ({a})
.

an require a minimum value for this measure.
(p̂T is the probability estimate based on T .)

Assumes full independence of the items in order
to form an expectation about the support of an item set.

Advantage: Can be computed from only the support of the item set
and the support values of the individual items.

Disadvantage: If some item set I scores high on this measure,
then all J ⊃ I are also likely to score high,
even if the items in J − I are independent of I .
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Incremental Independence

Evaluate item sets with

̺ii(I) = min
a∈I

n sT (I)

sT (I − {a}) · sT ({a})
= min

a∈I

p̂T (I)

p̂T (I − {a}) · p̂T ({a})
.

an require a minimum value for this measure.
(p̂T is the probability estimate based on T .)

Advantage: If I contains independent items,
the minimum ensures a low value.

Disadvantages: We need to know the support values of all subsets I − {a}.

If there exist high scoring independent subsets I1 and I2
with |I1| > 1, |I2| > 1, I1 ∩ I2 = ∅ and I1 ∪ I2 = I ,
the item set I still receives a high evaluation.
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Subset Independence

Evaluate item sets with

̺si(I) = min
J⊂I,J 6=∅

n sT (I)

sT (I − J) · sT (J)
= min

J⊂I,J 6=∅

p̂T (I)

p̂T (I − J) · p̂T (J)
.

an require a minimum value for this measure.
(p̂T is the probability estimate based on T .)

Advantage: Detects all cases where a decomposition is possible
and evaluates them with a low value.

Disadvantages: We need to know the support values of all proper subsets J .

Improvement: Use incremental independence and in the minimum consider
only items {a} for which I − {a} has been evaluated high.

This captures subset independence “incrementally”.
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Algorithms for frequent item set mining differ in:

� the traversal order of the prefix tree:
(breadth-first/levelwise versus depth-first traversal)

� the transaction representation:
horizontal (item arrays) versus vertical (transaction lists)
versus specialized data structures like FP-trees

� the types of frequent item sets found:
frequent versus closed versus maximal item sets
(additional pruning methods for closed and maximal item sets)

Additional filtering is necessary to reduce the size of the output.



Association Rules: Basic Notions

Rudolf Kruse Intelligent Data Analysis 77

Often found patterns are expressed as association rules, for example:

If a customer buys bread and wine,
then she/he will probably also buy cheese.

Formally, we consider rules of the form X → Y ,
with X,Y ⊆ A and X ∩ Y = ∅.

Support of a Rule X → Y :

Either: ςT (X → Y ) = σT (X ∪ Y ) (more common: rule is correct)

Or: ςT (X → Y ) = σT (X) (more plausible: rule is applicable)

Confidence of a Rule X → Y :

cT (X → Y ) =
σT (X ∪ Y )

σT (X)
=

sT (X ∪ Y )

sT (X)
=

sT (I)

sT (X)

The confidence can be seen as an estimate of P (Y | X).
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Given:

a set A = {a1, . . . , am} of items,

a vector T = (t1, . . . , tn) of transactions over A,

a real number ςmin, 0 < ςmin ≤ 1, the minimum support,

a real number cmin, 0 < cmin ≤ 1, the minimum confidence.

Desired:

the set of all association rules, that is, the set

R = {R : X → Y | ςT (R) ≥ ςmin ∧ cT (R) ≥ cmin}.

General Procedure:

Find the frequent item sets.

Construct rules and filter them w.r.t. ςmin and cmin.
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Which minimum support has to be used for finding the frequent item sets
depends on the definition of the support of a rule:

� If ςT (X → Y ) = σT (X ∪ Y ),

then σmin = ςmin or equivalently smin = ⌈nςmin⌉.

� If ςT (X → Y ) = σT (X),

then σmin = ςmincmin or equivalently smin = ⌈nςmincmin⌉.

After the frequent item sets have been found,
the rule construction then traverses all frequent item sets I and
splits them into disjoint subsets X and Y (X ∩ Y = ∅ and X ∪ Y = I),
thus forming rules X → Y .

� Filtering rules w.r.t. confidence is always necessary.

� Filtering rules w.r.t. support is only necessary if ςT (X → Y ) = σT (X).
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From ∀I : ∀J ⊆ I : sT (I) ≤ sT (J) it obviously follows

∀X, Y : ∀a ∈ X :
sT (X ∪ Y )

sT (X)
≥

sT (X ∪ Y )

sT (X − {a})

and therefore

∀X,Y : ∀a ∈ X : cT (X → Y ) ≥ cT (X − {a} → Y ∪ {a}).

That is: Moving an item from the antecedent to the consequent
cannot increase the confidence of a rule.

As an immediate consequence we have

∀X,Y : ∀a ∈ X : cT (X → Y ) < cmin → cT (X − {a} → Y ∪ {a}) < cmin.

That is: If a rule fails to meet the minimum confidence,
no rules over the same item set and with
a larger consequent need to be considered.
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function rules (F); (∗ — generate association rules ∗)
R := ∅; (∗ initialize the set of rules ∗)
forall f ∈ F do begin (∗ traverse the frequent item sets ∗)

m := 1; (∗ start with rule heads (consequents) ∗)
Hm :=

⋃

i∈f{{i}}; (∗ that contain only one item ∗)
repeat (∗ traverse rule heads of increasing size ∗)

forall h ∈ Hm do (∗ traverse the possible rule heads ∗)

if
sT (f)

sT (f−h)
≥ cmin (∗ if the confidence is high enough, ∗)

then R := R ∪ {[(f − h) → h]}; (∗ add rule to the result ∗)
else Hm := Hm − {h}; (∗ otherwise discard the head ∗)

Hm+1 := candidates(Hm); (∗ create heads with one item more ∗)
m := m + 1; (∗ increment the head item counter ∗)

until Hm = ∅ or m ≥ |f |; (∗ until there are no more rule heads ∗)
end; (∗ or antecedent would become empty ∗)
return R; (∗ return the rules found ∗)

end; (∗ rules ∗)
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function candidates (Fk) (∗ generate candidates with k + 1 items ∗)

begin

E := ∅; (∗ initialize the set of candidates ∗)

forall f1, f2 ∈ Fk (∗ traverse all pairs of frequent item sets ∗)

with f1 = {a1, . . . , ak−1, ak} (∗ that differ only in one item and ∗)

and f2 = {a1, . . . , ak−1, a
′
k} (∗ are in a lexicographic order ∗)

and ak < a′k do begin (∗ (the order is arbitrary, but fixed) ∗)

f := f1 ∪ f2 = {a1, . . . , ak−1, ak, a
′
k}; (∗ union has k + 1 items ∗)

if ∀a ∈ f : f − {a} ∈ Fk (∗ only if all subsets are frequent, ∗)

then E := E ∪ {f}; (∗ add the new item set to the candidates ∗)

end; (∗ (otherwise it cannot be frequent) ∗)

return E; (∗ return the generated candidates ∗)

end (∗ candidates ∗)
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transaction vector

1: {a, d, e}
2: {b, c, d}
3: {a, c, e}
4: {a, c, d, e}
5: {a, e}
6: {a, c, d}
7: {b, c}
8: {a, c, d, e}
9: {c, b, e}
10: {a, d, e}

frequent item sets

0 items 1 item 2 items 3 items

∅: 100% {a}: 70% {a, c}: 40% {a, c, d}: 30%
{b}: 30% {a, d}: 50% {a, c, e}: 30%
{c}: 70% {a, e}: 60% {a, d, e}: 40%
{d}: 60% {b, c}: 30%
{e}: 70% {c, d}: 40%

{c, e}: 40%
{d, e}: 40%

The minimum support is smin = 3 or σmin = 0.3 = 30% in this example.

There are 25 = 32 possible item sets over A = {a, b, c, d, e}.

There are 16 frequent item sets (but only 10 transactions).
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Example: I = {a, c, e}, X = {c, e}, Y = {a}.

cT (c, e → a) =
sT ({a, c, e})

sT ({c, e})
=

30%

40%
= 75%

Minimum confidence: 80%

association support of support of confidence
rule all items antecedent

b → c: 30% 30% 100%
d → a: 50% 60% 83.3%
e → a: 60% 70% 85.7%
a → e: 60% 70% 85.7%
d, e → a: 40% 40% 100%
a, d → e: 40% 50% 80%
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The two rule support definitions are not equivalent:

transaction vector

1: {a, c, e}
2: {b, d}
3: {b, c, d}
4: {a, e}
5: {a, b, c, d}
6: {c, e}
7: {a, b, d}
8: {a, c, d}

two association rules

association support of support of confidence
rule all items antecedent

a → c 3 (37.5%) 5 (62.5%) 67.7%
b → d 4 (50.0%) 4 (50.0%) 100.0%

Let the minimum confidence be cmin = 65%.

For ςT (R) = σ(X ∪ Y ) and 3 < ςmin ≤ 4 only the rule b → d is generated,
but not the rule a → c.

For ςT (R) = σ(X) there is no value ςmin that generates only the rule b → d,
but not at the same time also the rule a → c.
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Simple Measures

General idea: Compare p̂T (Y | X) = cT (X → Y )
and p̂T (Y ) = cT ( ∅ → Y ) = σT (Y ).

(Absolute) confidence difference to prior:

dT (R) = |cT (X → Y )− σT (Y )|

(Absolute) difference of confidence quotient to 1:

qT (R) =

∣
∣
∣
∣
∣
1−min

{

cT (X → Y )

σT (Y )
,

σT (Y )

cT (X → Y )

}∣
∣
∣
∣
∣

Confidence to prior ratio (lift):

lT (R) =
cT (X → Y )

σT (Y )
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More Sophisticated Measures

Consider the 2× 2 contingency table or the estimated probability table:

X 6⊆ t X ⊆ t

Y 6⊆ t n00 n01 n0.

Y ⊆ t n10 n11 n1.

n.0 n.1 n..

X 6⊆ t X ⊆ t

Y 6⊆ t p00 p01 p0.

Y ⊆ t p10 p11 p1.

p.0 p.1 1

n.. is the total number of transactions.
n1. is the number of transactions to which the rule is applicable.
n11 is the number of transactions for which the rule is correct.

It is pij =
nij
n..

, pi. =
ni.
n..
, p.j =

n.j
n..

for i, j = 1, 2.

General idea: Use measures for the strength of dependence of X and Y .



An Information-theoretic Evaluation Measure

Rudolf Kruse Intelligent Data Analysis 88

Information Gain (Kullback and Leibler 1951, Quinlan 1986)

Based on Shannon Entropy H = −
n∑

i=1

pi log2 pi (Shannon 1948)

Igain(X, Y ) = H(Y ) − H(Y |X)

=

︷ ︸︸ ︷

−
kY∑

i=1

pi. log2 pi. −

︷ ︸︸ ︷

kX∑

j=1

p.j



−
kY∑

i=1

pi|j log2 pi|j





H(Y ) Entropy of the distribution of Y

H(Y |X) Expected entropy of the distribution of Y
if the value of the X becomes known

H(Y )−H(Y |X) Expected entropy reduction or information gain
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χ2 Measure

Compares the actual joint distribution
with a hypothetical independent distribution.

Uses absolute comparison.

Can be interpreted as a difference measure.

χ2(X, Y ) =
kX∑

i=1

kY∑

j=1

n..
(pi.p.j − pij)

2

pi.p.j

Side remark: Information gain can also be interpreted as a difference measure.

Igain(X, Y ) =
kX∑

j=1

kY∑

i=1

pij log2
pij

pi.p.j
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χ2 Measure

Compares the actual joint distribution
with a hypothetical independent distribution.

Uses absolute comparison.

Can be interpreted as a difference measure.

χ2(X, Y ) =
kX∑

i=1

kY∑

j=1

n..
(pi.p.j − pij)

2

pi.p.j

For kX = kY = 2 (as for rule evaluation) the χ2 measure simplifies to

χ2(X,Y ) = n..
(p1. p.1 − p11)

2

p1.(1− p1.)p.1(1− p.1)
= n..

(n1.n.1 − n..n11)
2

n1.(n.. − n1.)n.1(n.. − n.1)
.
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Association Rule Induction is a Two Step Process

� Find the frequent item sets (minimum support).

� Form the relevant association rules (minimum confidence).

Generating the Association Rules

� Form all possible association rules from the frequent item sets.

� Filter “interesting” association rules
based on minimum support and minimum confidence.

Filtering the Association Rules

� Compare rule confidence and consequent support.

� Information gain

� χ2 measure
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Probabilistic Dependency Networks
(Bayes Networks)
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Observation: The stronger I press the accelerator pedal, the faster the car drives.
Explanation: Correlation! Causality!

Observation: Patients who go to the doctor more frequently die sooner. Explanation:
Correlation! Causality? Not directly – one explanation may be the health status of
patients. Both frequency of doctor visits and death depend on the health status.

Question: How to model dependencies or even causality?
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Converging Connection

A B

C

Meal quality

A quality of ingredients

B cook’s skill

C meal quality

If C is not instantiated (i. e., no value specified/observed), A and B are marginally
independent.

After instantiation (observation) of C the variables A and B become conditionally
dependent given C.

Evidence can only be transferred over a converging connection if the variable in
between (or one of its successors) is initialized.
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Converging Connection (cont.)

A B

C

D

Meal quality

A quality of ingredients

B cook’s skill

C meal quality

D restaurant success

If nothing is known about the restaurant success or meal quality or both, the
cook’s skills and quality of the ingredients are unrelated, thas is, independent.

However, if we observe that the restaurant has no success, we can infer that the
meal quality might be bad.

If we further learn that the ingredients quality is high, we will conclude that the
cook’s skills must be low, thus rendering both variables dependent.
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Diverging Connection

A B

C

Diagnosis

A body temperature

B cough

C disease

If C is unknown, knowledge about A ist relevant for B and vice versa, i. e. A and
B are marginally dependent.

However, if C is observed, A and B become conditionally independent given C.

A influences B via C. If C is known it in a way blocks the information from
flowing from A to B, thus rendering A and B (conditionally) independent.
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Serial Connection

A B

C

Accidents

A rain

B accident risk

C road conditions

Analog scenario to case 2

A influences C and C influences B. Thus, A influences B.
If C is known, it blocks the path between A and B.
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In a wide variety of application fields two main problems need to be addressed over
and over:

How can (expert) knowledge of complex domains be efficiently rep-
resented?

How can inferences be carried out within these representations?

How can such representations be (automatically) extracted from
collected data?
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Available information

“Engine type e1 can only be combined with transmission t2 or t5.”

“Transmission t5 requires crankshaft c2.”

“Convertibles have the same set of radio options as SUVs.”

Possible questions/inferences:

“Can a station wagon with engine e4 be equipped with tire set y6?”

“Supplier S8 failed to deliver on time. What production line
has to be modified and how?”

“Are there any peculiarities within the set of cars that suffered
an aircondition failure?”
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Available information:

“Malaria is much less likely than flu.”

“Flu causes cough and fever.”

“Nausea can indicate malaria as well as flu.”

“Nausea never indicated pneunomia before.”

Possible questions/inferences

“The patient has fever. How likely is he to have malaria?”

“How much more likely does flu become if we can exclude malaria?”
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Both scenarios share some severe problems:

Large Data Space
It is intractable to store all value combinations, i. e. all car part combinations or
inter-disease dependencies.

(Example: VW Bora has 10200 theoretical value combinations∗)

Sparse Data Space
Even if we could handle such a space, it would be extremely sparse, i. e. it would
be impossible to find good estimates for all the combinations.

(Example: with 100 diseases and 200 symptoms, there would be about 1062 dif-
ferent scenarios for which we had to estimate the probability.∗)

∗ The number of particles in the observable universe is estimated to be between 1078 and 1085.
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Given: A large (high-dimensional) distribution δ representing the
domain knowledge.

Desired: A set of smaller (lower-dimensional) distributions {δ1, . . . , δs}
(maybe overlapping) from which the original δ could be
reconstructed with no (or as few as possible) errors.

With such a decomposition we can draw any conclusions from {δ1, . . . , δs} that
could be inferred from δ — without, however, actually reconstructing it.
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Let us consider a car configuration is described by three attributes:

� Engine E, dom(E) = {e1, e2, e3}

� Breaks B, dom(B) = {b1, b2, b3}

� Tires T , dom(T ) = {t1, t2, t3, t4}

Therefore the set of all (theoretically) possible car configurations is:

Ω = dom(E)× dom(B)× dom(T )

Since not all combinations are technically possible (or wanted by marketing) a set
of rules is used to cancel out invalid combinations.
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Possible car configurations
Every cube designates a valid
value combination.

10 car configurations in our model.

Different colors are intended to
distinguish the cubes only.
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2-D projections
Is it possible to reconstruct δ from
the δi?



Example: Reconstruction of δ with δBE and δET
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Example: Reconstruction of δ with δBE and δET
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Decomposition by using Conditional Independencies
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A B

C

D

Meal quality

A quality of ingredients

B cook’s skill

C meal quality

D restaurant success

P (A,B,C,D) =
P (A) · P (B)
P (C|A,B) · P (D|C)

If nothing is known about the restaurant success or meal quality or both, the
cook’s skills and quality of the ingredients are unrelated, that is, independent.

However, if we observe that the restaurant has no success, we can infer that the
meal quality might be bad.

If we further learn that the ingredients quality is high, we will conclude that the
cook’s skills must be low, thus rendering both variables dependent.
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Bayes Networks are directed acyclic graphs (DAGs) where the nodes represent proposi-
tions or variables and the directed edges model a direct causal dependence between the
connected nodes. The strength of dependence is defined by conditional probabilities.

X1

X2 X3

X4 X5

X6

In general (according chain rule):

P (X1, . . . , X6) = P (X6 | X5, . . . , X1)·

P (X5 | X4, . . . , X1)·

P (X4 | X3, X2, X1)·

P (X3 | X2, X1)·

P (X2 | X1)·

P (X1)
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Bayes Networks are directed acyclic graphs (DAGs) where the nodes represent proposi-
tions or variables and the directed edges model a direct causal dependence between the
connected nodes. The strength of dependence is defined by conditional probabilities.

X1

X2 X3

X4 X5

X6

According graph (independence structure):

P (X1, . . . , X6) = P (X6 | X5)·

P (X5 | X2, X3)·

P (X4 | X2)·

P (X3 | X1)·

P (X2 | X1)·

P (X1)
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Nomenclature for the next slides:

• X1, . . . , Xn Variables
(properties, attributes, random variables, propositions)

• Ω1, . . . ,Ωn respective finite domains
(also designated with dom(Xi))

• Ω =
n

×
i=1

Ωi Universe of Discourse (tuples that characterize objects
described by X1, . . . , Xn)

• Ωi = {x
(1)
i , . . . , x

(ni)
i } n = 1, . . . , n, ni ∈ N
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A Bayes Networks (V,E, P ) consists of a set V = {X1, . . . , Xn} of random
variables and a set E of directed edges between the variables.

Each variable has a finite set of mutual exclusive and collectively exhaustive states.

The variables in combination with the edges form a directed, acyclic graph.

Each variable with parent nodes B1, . . . , Bm is assigned a
potential table P (A | B1, . . . , Bm).

Note, that the connections between the nodes not necessarily express a causal
relationship.

For every belief network, the following equation holds:

P (V ) =
∏

v∈V :P (c(v))>0

P (v | c(v))

with c(v) being the parent nodes of v.
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Qualitative knowledge:

Metastatic cancer is a possible cause of brain tumor, and is also an ex-
planation for increased total serum calcium. In turn, either of these could
explain a patient falling into a coma. Severe headache is also possibly
associated with a brain tumor.

Special case:

The patient has heavy headache.

Query:

Will the patient fall into coma?



Example: Choice of State Space
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Attribute Possible Values

A metastatic cancer dom(A) = {a1, a2} ·1 = existing

B increased total serum calcium dom(B) = {b1, b2} ·2 = notexisting

C brain tumor dom(C) = {c1, c2}

D coma dom(D) = {d1, d2}

E severe headache dom(E) = {e1, e2}

Exhaustive state space:

Ω = dom(A)× dom(B)× dom(C)× dom(D)× dom(E)

Marginal and conditional probabilities have to be specified!



Example: Qualitative Knowledge
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P (e1 | c1) = 0.8
}

headaches common, but more common if tumor present
P (e1 | c2) = 0.6

P (d1 | b1, c1) = 0.8






coma rare but common, if either cause is present
P (d1 | b1, c2) = 0.8
P (d1 | b2, c1) = 0.8
P (d1 | b2, c2) = 0.05

P (b1 | a1) = 0.8
}

increased calcium uncommon,
but common consequence of metastasesP (b1 | a2) = 0.2

P (c1 | a1) = 0.2
}

brain tumor rare, and uncommon consequence of metastases
P (c1 | a2) = 0.05

P (a1) = 0.2 } incidence of metastatic cancer in relevant clinic



Propagation on Cliques (1)
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Marginal distributions in the HUGIN tool.



Propagation on Cliques (2)
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Conditional marginal distributions with evidence E = e1



Summary
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Summary

◦ Knowledge about conditional dependencies can be modelled as graphs.

◦ Problems arise, of the resulting graph is not acyclic (evidence can be propa-
gated in several ways).

◦ Evidence propagation (not covered here) still easily possible with hyper-tree
structure. (More on that in the lecture on Bayesian Networks next winter
semester)



Bayesian Networks for Fault Analysis
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Explorative Data Analysis
Intuitive views on the data

Application-drivven pattern selection

Extracting patterns from dependency models (Baysian Networks)

Focus in temporal changes in patters
Visualization of changes

Identifying interesting patterns with linguistic descriptions



Data Analysis at Daimler
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Exploratory Data Analysis
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Visual Local Pattern Discovery
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Temporal Changes
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Patterns (describing failed vehicles) do not arise out of a sudden.

Rather: Evolvement as time progresses.

Management decisions: Again, it takes time to see an effect.

Therefore: Consider the temporal changes of pattern properties.



Linguistic Descriptions
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Problem: Pattern finding algorithms return large number of results.

Assessing the patterns manually would be infeasible.

Approach: Use linguistic concepts to reduce the number of retrieved patterns.

Example:
Return only rules with

� approximately unchanged lift and

� slightly increasing support



Example: Before
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Example: After
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