
Rudolf Kruse Intelligent Data Analysis 1

Classification

Rudolf Kruse Intelligent Data Analysis 2

Bayes Classifiers

Bayes Classifiers

Rudolf Kruse Intelligent Data Analysis 3

Probabilistic Classification and Bayes’ Rule

Naive Bayes Classifiers

� Derivation of the classification formula

� Probability estimation and Laplace correction

� Simple examples of naive Bayes classifiers

� A naive Bayes classifier for the Iris data

Full Bayes Classifiers

� Derivation of the classification formula

� Comparison to naive Bayes classifiers

� A simple example of a full Bayes classifier

� A full Bayes classifier for the Iris data

Summary

Probabilistic Classification

Rudolf Kruse Intelligent Data Analysis 4

A classifier is an algorithm that assigns a class from a predefined set to a case or
object, based on the values of descriptive attributes.

An optimal classifier maximizes the probability of a correct class assignment.

Let C be a class attribute with dom(C) = {c1, . . . , cnC},
which occur with probabilities pi, 1 ≤ i ≤ nC .

Let qi be the probability with which a classifier assigns class ci.
(qi ∈ {0, 1} for a deterministic classifier)

The probability of a correct assignment is

P (correct assignment) =
nC∑

i=1

piqi.

Therefore the best choice for the qi is

qi =

{
1, if pi = max

nC
k=1 pk,

0, otherwise.

Probabilistic Classification

Rudolf Kruse Intelligent Data Analysis 5

Consequence: An optimal classifier should assign the most probable class.

This argument does not change if we take descriptive attributes into account.

Let U = {A1, . . . , Am} be a set of descriptive attributes
with domains dom(Ak), 1 ≤ k ≤ m.

Let A1 = a1, . . . , Am = am be an instantiation of the descriptive attributes.

An optimal classifier should assign the class ci for which

P (C = ci | A1 = a1, . . . , Am = am) =

max
nC
j=1 P (C = cj | A1 = a1, . . . , Am = am)

Problem: We cannot store a class (or the class probabilities) for every
possible instantiation A1 = a1, . . . , Am = am of the descriptive attributes.
(The table size grows exponentially with the number of attributes.)

Therefore: Simplifying assumptions are necessary.

Bayes’ Rule and Bayes’ Classifiers

Rudolf Kruse Intelligent Data Analysis 6

Bayes’ rule is a formula that can be used to “invert” conditional probabilities:
Let A and B be events, P (A) > 0. Then

P (B | A) = P (A | B) · P (B)

P (A)
.

Bayes’ rule follows directly from the definition of conditional probability:

P (B | A) = P (A ∩B)

P (A)
and P (A | B) =

P (A ∩B)

P (B)
.

Bayes’ classifiers: Compute the class probabilities as

P (C = ci | A1 = a1, . . . , Am = am) =

P (A1 = a1, . . . , Am = am | C = ci) · P (C = ci)

P (A1 = a1, . . . , Am = am)
.

Looks unreasonable at first sight: Even more probabilities to store.

Naive Bayes Classifiers

Rudolf Kruse Intelligent Data Analysis 7

Naive Assumption:
The descriptive attributes are conditionally independent given the class.

Bayes’ Rule:

P (C = ci | ~A) =
P (A1 = a1, . . . , Am = am | C = ci) · P (C = ci)

P (A1 = a1, . . . , Am = am) ← p0

P (~A) = P (A1 = a1, . . . , Am = am) = p0 used as abbrev., normalizing constant.

Chain Rule of Probability:

P (C = ci | ~A) =
P (C = ci)

p0
·

m∏

k=1

P (Ak = ak | A1 = a1, . . . , Ak−1 = ak−1, C = ci)

Conditional Independence Assumption:

P (C = ci | ~A) =
P (C = ci)

p0
·

m∏

k=1

P (Ak = ak | C = ci)

Reminder: Chain Rule of Probability

Rudolf Kruse Intelligent Data Analysis 8

Based on the product rule of probability:

P (A ∧B) = P (A | B) · P (B)

(Multiply definition of conditional probability with P (B).)

Multiple application of the product rule yields:

P (A1, . . . , Am) = P (Am | A1, . . . , Am−1) · P (A1, . . . , Am−1)
= P (Am | A1, . . . , Am−1)
· P (Am−1 | A1, . . . , Am−2) · P (A1, . . . , Am−2)
= ...

=
m∏

k=1

P (Ak | A1, . . . , Ak−1)

The scheme works also if there is already a condition in the original expression:

P (A1, . . . , Am | C) =
m∏

i=1

P (Ak | A1, . . . , Ak−1, C)

Conditional Independence

Rudolf Kruse Intelligent Data Analysis 9

Reminder: stochastic independence (unconditional)

P (A ∧B) = P (A) · P (B)

(Joint probability is the product of the individual probabilities.)

Comparison to the product rule

P (A ∧B) = P (A | B) · P (B)

shows that this is equivalent to

P (A | B) = P (A)

The same formulae hold conditionally, i.e.

P (A ∧B | C) = P (A | C) · P (B | C) and

P (A | B,C) = P (A | C).

Conditional independence allows us to cancel some conditions.

Conditional Independence: An Example

Rudolf Kruse Intelligent Data Analysis 10

✻

✲

Y

X

Group 1

Group 2

(Weak) Dependence in the entire dataset: X and Y dependent.

Conditional Independence: An Example

Rudolf Kruse Intelligent Data Analysis 11

✻

✲

Y

X

Group 1

No Dependence in Group 1: X and Y conditionally independent given Group 1.

Conditional Independence: An Example

Rudolf Kruse Intelligent Data Analysis 12

✻

✲

Y

X

Group 2

No Dependence in Group 2: X and Y conditionally independent given Group 2.

Naive Bayes Classifiers

Rudolf Kruse Intelligent Data Analysis 13

Consequence: Manageable amount of data to store.
Store distributions P (C = ci) and ∀1 ≤ k ≤ m : P (Ak = ak | C = ci).

It is not necessary to compute p0 explicitely, because it can be computed implicitly
by normalizing the computed values to sum 1.

Estimation of Probabilities:

Nominal/Symbolic Attributes

P̂ (Ak = ak | C = ci) =
#(Ak = ak, C = ci) + γ

#(C = ci) + nAk
γ

#(A = a, C = c) counts, how many data with this specific attribute combination
exist in the data set.

γ is called Laplace correction: Assume for every class ci some number of
hypothetical samples for every value of Ak to prevent the estimate to be 0 if
#(Ak = ak, C = ci) = 0.

γ = 0: Maximum likelihood estimation. Common choices: γ = 1 or γ = 1
2.

Naive Bayes Classifiers

Rudolf Kruse Intelligent Data Analysis 14

Estimation of Probabilities:

Metric/Numeric Attributes: Assume a normal distribution.

P (Ak = ak | C = ci) =
1√

2πσk(ci)
exp

(
−(ak − µk(ci))

2

2σ2k(ci)

)

Estimate of mean value

µ̂k(ci) =
1

#(C = ci)

#(C=ci)∑

j=1

ak(j)

Estimate of variance

σ̂2k(ci) =
1

ξ

#(C=ci)∑

j=1

(ak(j)− µ̂k(ci))
2

ξ = #(C = ci) : Maximum likelihood estimation
ξ = #(C = ci)− 1: Unbiased estimation

Naive Bayes Classifiers: Simple Example 1

Rudolf Kruse Intelligent Data Analysis 15

No Sex Age Blood pr. Drug

1 male 20 normal A
2 female 73 normal B
3 female 37 high A
4 male 33 low B
5 female 48 high A
6 male 29 normal A
7 female 52 normal B
8 male 42 low B
9 male 61 normal B
10 female 30 normal A
11 female 26 low B
12 male 54 high A

P (Drug) A B

0.5 0.5

P (Sex | Drug) A B

male 0.5 0.5
female 0.5 0.5

P (Age | Drug) A B

µ 36.3 47.8

σ2 161.9 311.0

P (Blood Pr. | Drug) A B

low 0 0.5
normal 0.5 0.5
high 0.5 0

A simple database and estimated (conditional) probability distributions.

Naive Bayes Classifiers: Simple Example 1

Rudolf Kruse Intelligent Data Analysis 16

P (Drug A | male, 61, normal)

= c1 · P (Drug A) · P (male | Drug A) · P (61 | Drug A) · P (normal | Drug A)

≈ c1 · 0.5 · 0.5 · 0.004787 · 0.5 = c1 · 5.984 · 10−4 = 0.219

P (Drug B | male, 61, normal)

= c1 · P (Drug B) · P (male | Drug B) · P (61 | Drug B) · P (normal | Drug B)

≈ c1 · 0.5 · 0.5 · 0.017120 · 0.5 = c1 · 2.140 · 10−3 = 0.781

P (Drug A | female, 30, normal)

= c2 · P (Drug A) · P (female | Drug A) · P (30 | Drug A) · P (normal | Drug A)

≈ c2 · 0.5 · 0.5 · 0.027703 · 0.5 = c2 · 3.471 · 10−3 = 0.671

P (Drug B | female, 30, normal)

= c2 · P (Drug B) · P (female | Drug B) · P (30 | Drug B) · P (normal | Drug B)

≈ c2 · 0.5 · 0.5 · 0.013567 · 0.5 = c2 · 1.696 · 10−3 = 0.329

Naive Bayes Classifiers: Simple Example 2

Rudolf Kruse Intelligent Data Analysis 17

100 data points, 2 classes

Small squares: mean values

Inner ellipses:
one standard deviation

Outer ellipses:
two standard deviations

Classes overlap:
classification is not perfect

Naive Bayes Classifier

Naive Bayes Classifiers: Simple Example 3

Rudolf Kruse Intelligent Data Analysis 18

20 data points, 2 classes

Small squares: mean values

Inner ellipses:
one standard deviation

Outer ellipses:
two standard deviations

Attributes are not conditionally
independent given the class

Naive Bayes Classifier

Naive Bayes Classifiers: Iris Data

Rudolf Kruse Intelligent Data Analysis 19

150 data points, 3 classes

Iris setosa (red)
Iris versicolor (green)
Iris virginica (blue)

Shown: 2 out of 4 attributes

sepal length
sepal width
petal length (horizontal)
petal width (vertical)

6 misclassifications
on the training data
(with all 4 attributes) Naive Bayes Classifier

Full Bayes Classifiers

Rudolf Kruse Intelligent Data Analysis 20

Restricted to metric/numeric attributes (only the class is nominal/symbolic).

Simplifying Assumption:
Each class can be described by a multivariate normal distribution.

f(A1 = a1, . . . , Am = am | C = ci)

=
1√

(2π)m|Σi|
exp

(
−1
2
(~a− ~µi)

⊤Σ−1i (~a− ~µi)
)

~µi: mean value vector for class ci

Σi: covariance matrix for class ci

Intuitively: Each class has a bell-shaped probability density.

Naive Bayes classifiers: Covariance matrices are diagonal matrices.
(Details about this relation are given below.)

Full Bayes Classifiers

Rudolf Kruse Intelligent Data Analysis 21

Estimation of Probabilities:

Estimate of mean value vector

~̂µi =
1

#(C = ci)

#(C=ci)∑

j=1

~a(j)

Estimate of covariance matrix

Σ̂i =
1

ξ

#(C=ci)∑

j=1

(
~a(j)− ~̂µi

) (
~a(j)− ~̂µi

)⊤

ξ = #(C = ci) : Maximum likelihood estimation
ξ = #(C = ci)− 1: Unbiased estimation

~x⊤ denotes the transpose of the vector ~x.

~x~x⊤ is the so-called outer product or matrix product of ~x with itself.

Comparison of Naive and Full Bayes Classifiers

Rudolf Kruse Intelligent Data Analysis 22

Naive Bayes classifiers for metric/numeric data are equivalent
to full Bayes classifiers with diagonal covariance matrices:

f(A1 = a1, . . . , Am = am | C = ci)

=
1√

(2π)m|Σi|
· exp

(
−1
2
(~a− ~µi)

⊤Σ−1i (~a− ~µi)
)

=
1√

(2π)m
∏m
k=1 σ

2
i,k

· exp
(
−1
2
(~a− ~µi)

⊤ diag
(
σ−2i,1 , . . . , σ

−2
i,m

)
(~a− ~µi)

)

=
1

∏m
k=1

√
2πσ2i,k

· exp

−1

2

m∑

k=1

(ak − µi,k)
2

σ2i,k




=
m∏

k=1

1√
2πσ2i,k

· exp

−

(ak − µi,k)
2

2σ2i,k


 =̂

m∏

k=1

f(Ak = ak | C = ci),

where f(Ak = ak | C = ci) are the density functions used by a naive Bayes classifier.

Comparison of Naive and Full Bayes Classifiers

Rudolf Kruse Intelligent Data Analysis 23

Naive Bayes Classifier Full Bayes Classifier

Full Bayes Classifiers: Iris Data

Rudolf Kruse Intelligent Data Analysis 24

150 data points, 3 classes

Iris setosa (red)
Iris versicolor (green)
Iris virginica (blue)

Shown: 2 out of 4 attributes

sepal length
sepal width
petal length (horizontal)
petal width (vertical)

2 misclassifications
on the training data
(with all 4 attributes) Full Bayes Classifier

Summary Bayes Classifiers

Rudolf Kruse Intelligent Data Analysis 25

Probabilistic Classification: Assign the most probable class.

Bayes’ Rule: “Invert” the conditional class probabilities.

Naive Bayes Classifiers

Simplifying Assumption:
Attributes are conditionally independent given the class.

Can handle nominal/symbolic as well as metric/numeric attributes.

Full Bayes Classifiers

Simplifying Assumption:
Each class can be described by a multivariate normal distribution.

Can handle only metric/numeric attributes.

Rudolf Kruse Intelligent Data Analysis 26

Decision Trees

Decision Trees

Rudolf Kruse Intelligent Data Analysis 27

Classification with a Decision Tree

Top-down Induction of Decision Trees

◦ A simple example

◦ The general algorithm

◦ Attribute selection measures

◦ Treatment of numeric attributes and missing values

Pruning Decision Trees

◦ General approaches

◦ A simple example

Summary

A Very Simple Decision Tree

Rudolf Kruse Intelligent Data Analysis 28

Assignment of a drug to a patient:

Blood pressure

high
normal

low

Drug A Age Drug B

≤ 40 > 40

Drug A Drug B

Classification with a Decision Tree

Rudolf Kruse Intelligent Data Analysis 29

Recursive Descent:

Start at the root node.

If the current node is an leaf node:

Return the class assigned to the node.

If the current node is an inner node:

Test the attribute associated with the node.

Follow the branch labeled with the outcome of the test.

Apply the algorithm recursively.

Intuitively: Follow the path corresponding to the case to be classified.

Classification in the Example

Rudolf Kruse Intelligent Data Analysis 30

Assignment of a drug to a patient:

Blood pressure

high
normal

low

Drug A Age Drug B

≤ 40 > 40

Drug A Drug B

Classification in the Example

Rudolf Kruse Intelligent Data Analysis 31

Assignment of a drug to a patient:

Blood pressure

high
normal

low

Drug A Age Drug B

≤ 40 > 40

Drug A Drug B

Classification in the Example

Rudolf Kruse Intelligent Data Analysis 32

Assignment of a drug to a patient:

Blood pressure

high
normal

low

Drug A Age Drug B

≤ 40 > 40

Drug A Drug B

Induction of Decision Trees

Rudolf Kruse Intelligent Data Analysis 33

Top-down approach

◦ Build the decision tree from top to bottom
(from the root to the leaves).

Greedy Selection of a Test Attribute

◦ Compute an evaluation measure for all attributes.

◦ Select the attribute with the best evaluation.

Divide and Conquer / Recursive Descent

◦ Divide the example cases according to the values of the test attribute.

◦ Apply the procedure recursively to the subsets.

◦ Terminate the recursion if – all cases belong to the same class

– no more test attributes are available

Induction of a Decision Tree: Example

Rudolf Kruse Intelligent Data Analysis 34

Patient database

12 example cases

3 descriptive attributes

1 class attribute

Assignment of drug

(without patient attributes)

always drug A or always drug B:

50% correct (in 6 of 12 cases)

No Sex Age Blood pr. Drug

1 male 20 normal A
2 female 73 normal B
3 female 37 high A
4 male 33 low B
5 female 48 high A
6 male 29 normal A
7 female 52 normal B
8 male 42 low B
9 male 61 normal B
10 female 30 normal A
11 female 26 low B
12 male 54 high A

Induction of a Decision Tree: Example

Rudolf Kruse Intelligent Data Analysis 35

Sex of the patient

Division w.r.t. male/female.

Assignment of drug

male: 50% correct (in 3 of 6 cases)

female: 50% correct (in 3 of 6 cases)

total: 50% correct (in 6 of 12 cases)

No Sex Drug

1 male A
6 male A
12 male A
4 male B
8 male B
9 male B

3 female A
5 female A
10 female A
2 female B
7 female B
11 female B

Induction of a Decision Tree: Example

Rudolf Kruse Intelligent Data Analysis 36

Age of the patient

Sort according to age.

Find best age split.
here: ca. 40 years

Assignment of drug

≤ 40: A 67% correct (in 4 of 6 cases)

> 40: B 67% correct (in 4 of 6 cases)

total: 67% correct (in 8 of 12 cases)

No Age Drug

1 20 A
11 26 B
6 29 A
10 30 A
4 33 B
3 37 A

8 42 B
5 48 A
7 52 B
12 54 A
9 61 B
2 73 B

Induction of a Decision Tree: Example

Rudolf Kruse Intelligent Data Analysis 37

Blood pressure of the patient

Division w.r.t. high/normal/low.

Assignment of drug

high: A 100% correct (in 3 of 3 cases)

normal: 50% correct (in 3 of 6 cases)

low: B 100% correct (in 3 of 3 cases)

total: 75% correct (in 9 of 12 cases)

No Blood pr. Drug

3 high A
5 high A
12 high A

1 normal A
6 normal A
10 normal A
2 normal B
7 normal B
9 normal B

4 low B
8 low B
11 low B

Induction of a Decision Tree: Example

Rudolf Kruse Intelligent Data Analysis 38

Current Decision Tree:

Blood pressure

high
normal

low

Drug A ? Drug B

Induction of a Decision Tree: Example

Rudolf Kruse Intelligent Data Analysis 39

Blood pressure and sex

Only patients
with normal blood pressure.

Division w.r.t. male/female.

Assignment of drug

male: A 67% correct (2 of 3)

female: B 67% correct (2 of 3)

total: 67% correct (4 of 6)

No Blood pr. Sex Drug

3 high A
5 high A
12 high A

1 normal male A
6 normal male A
9 normal male B

2 normal female B
7 normal female B
10 normal female A

4 low B
8 low B
11 low B

Induction of a Decision Tree: Example

Rudolf Kruse Intelligent Data Analysis 40

Blood pressure and age

Only patients
with normal blood pressure.

Sort according to age.

Find best age split.
here: ca. 40 years

Assignment of drug

≤ 40: A 100% correct (3 of 3)

> 40: B 100% correct (3 of 3)

total: 100% correct (6 of 6)

No Blood pr. Age Drug

3 high A
5 high A
12 high A

1 normal 20 A
6 normal 29 A
10 normal 30 A

7 normal 52 B
9 normal 61 B
2 normal 73 B

11 low B
4 low B
8 low B

Result of Decision Tree Induction

Rudolf Kruse Intelligent Data Analysis 41

Assignment of a drug to a patient:

Blood pressure

high
normal

low

Drug A Age Drug B

≤ 40 > 40

Drug A Drug B

Decision Tree Induction: Notation

Rudolf Kruse Intelligent Data Analysis 42

S a set of case or object descriptions

C the class attribute

A(1), . . . , A(m) other attributes (index dropped in the following)

dom(C) = {c1 , . . . , cnC
}, nC : number of classes

dom(A) = {a1, . . . , anA
}, nA: number of attribute values

N.. total number of case or object descriptions i.e. N.. = |S|
Ni. absolute frequency of the class ci

N.j absolute frequency of the attribute value aj

Nij absolute frequency of the combination of the class ci and the attribute value aj.
It is Ni. =

∑nA

j=1Nij and N.j =
∑nC

i=1Nij.

pi. relative frequency of the class ci, pi. =
Ni.

N..

p.j relative frequency of the attribute value aj, p.j =
N.j

N..

pij relative frequency of the combination of class ci and attribute value aj, pij =
Nij

N..

pi|j relative frequency of the class ci in cases having attribute value aj, pi|j =
Nij

N.j
= pij

p.j

Decision Tree Induction: General Algorithm

Rudolf Kruse Intelligent Data Analysis 43

function grow tree (S : set of cases) : node;
begin

best v := WORTHLESS;
for all untested attributes A do

compute frequencies Nij, Ni., N.j for 1 ≤ i ≤ nC and 1 ≤ j ≤ nA;
compute value v of an evaluation measure using Nij, Ni., N.j;
if v > best v then best v := v; best A := A; end;

end
if best v = WORTHLESS
then create leaf node x;

assign majority class of S to x;
else create test node x;

assign test on attribute best A to x;
for all a ∈ dom(best A) do x.child[a] := grow tree(S|best A=a); end;

end;
return x;

end;

Evaluation Measures

Rudolf Kruse Intelligent Data Analysis 44

Evaluation measure used in the above example:
rate of correctly classified example cases.

Advantage: simple to compute, easy to understand.

Disadvantage: works well only for two classes.

If there are more than two classes, the rate of misclassified example cases neglects
a lot of the available information.

Only the majority class—that is, the class occurring most often in (a subset
of) the example cases—is really considered.

The distribution of the other classes has no influence. However, a good choice
here can be important for deeper levels of the decision tree.

Therefore: Study also other evaluation measures. Here:

Information gain and its various normalizations.

χ2 measure (well-known in statistics).

An Information-theoretic Evaluation Measure

Rudolf Kruse Intelligent Data Analysis 45

Information Gain (Kullback and Leibler 1951, Quinlan 1986)

Based on Shannon Entropy H = −
n∑

i=1

pi log2 pi (Shannon 1948)

Igain(C,A) = H(C) − H(C|A)

=

︷ ︸︸ ︷

−
nC∑

i=1

pi. log2 pi. −

︷ ︸︸ ︷
nA∑

j=1

p.j


−

nC∑

i=1

pi|j log2 pi|j




H(C) Entropy of the class distribution (C: class attribute)

H(C|A) Expected entropy of the class distribution
if the value of the attribute A becomes known

H(C)−H(C|A) Expected entropy reduction or information gain

Inducing the Decision Tree with Information Gain

Rudolf Kruse Intelligent Data Analysis 46

Information gain for drug and sex:

H(Drug) = −
(
1

2
log2

1

2
+
1

2
log2

1

2

)
= 1

H(Drug | Sex) = 1

2

(
−1
2
log2

1

2
− 1

2
log2

1

2︸ ︷︷ ︸
H(Drug|Sex=male)

)
+

1

2

(
−1
2
log2

1

2
− 1

2
log2

1

2︸ ︷︷ ︸
H(Drug|Sex=female)

)
= 1

Igain(Drug, Sex) = 1− 1 = 0

No gain at all since the initial the uniform distribution of drug is splitted into two
(still) uniform distributions.

Inducing the Decision Tree with Information Gain

Rudolf Kruse Intelligent Data Analysis 47

Information gain for drug and age:

H(Drug) = −
(
1

2
log2

1

2
+

1

2
log2

1

2

)
= 1

H(Drug | Age) = 1

2

(
−2
3
log2

2

3
− 1

3
log2

1

3︸ ︷︷ ︸
H(Drug|Age≤40)

)
+
1

2

(
−1
3
log2

1

3
− 2

3
log2

2

3︸ ︷︷ ︸
H(Drug|Age>40)

)
≈ 0.9183

Igain(Drug,Age) = 1− 0.9183 = 0.0817

Splitting w. r. t. age can reduce the overall entropy.

Inducing the Decision Tree with Information Gain

Rudolf Kruse Intelligent Data Analysis 48

Information gain for drug and blood pressure:

H(Drug) = −
(
1

2
log2

1

2
+
1

2
log2

1

2

)
= 1

H(Drug | Blood pr) =
1

4
· 0 + 1

2

(
−2
3
log2

2

3
− 1

3
log2

1

3︸ ︷︷ ︸
H(Drug|Blood pr=normal)

)
+
1

4
· 0 = 0.5

Igain(Drug,Blood pr) = 1− 0.5 = 0.5

Largest information gain, so we first split w. r. t. blood pressure (as in the example
with misclassification rate).

Inducing the Decision Tree with Information Gain

Rudolf Kruse Intelligent Data Analysis 49

Next level: Subtree blood pressure is normal.

Information gain for drug and sex:

H(Drug) = −
(
1

2
log2

1

2
+

1

2
log2

1

2

)
= 1

H(Drug | Sex) = 1

2

(
−2
3
log2

2

3
− 1

3
log2

1

3︸ ︷︷ ︸
H(Drug|Sex=male)

)
+
1

2

(
−1
3
log2

1

3
− 2

3
log2

2

3︸ ︷︷ ︸
H(Drug|Sex=female)

)
= 0.9183

Igain(Drug, Sex) = 0.0817

Entropy can be decreased.

Inducing the Decision Tree with Information Gain

Rudolf Kruse Intelligent Data Analysis 50

Next level: Subtree blood pressure is normal.

Information gain for drug and age:

H(Drug) = −
(
1

2
log2

1

2
+
1

2
log2

1

2

)
= 1

H(Drug | Age) = 1

2
· 0 + 1

2
· 0 = 0

Igain(Drug,Age) = 1

Maximal information gain, that is we result in a perfect classification (again, as in
the case of using misclassification rate).

Interpretation of Shannon Entropy

Rudolf Kruse Intelligent Data Analysis 51

Let S = {s1, . . . , sn} be a finite set of alternatives having positive probabilities
P (si), i = 1, . . . , n, satisfying

∑n
i=1P (si) = 1.

Shannon Entropy:

H(S) = −
n∑

i=1

P (si) log2P (si)

Intuitively: Expected number of yes/no questions that have to be
asked in order to determine the obtaining alternative.

Suppose there is an oracle, which knows the obtaining alternative,
but responds only if the question can be answered with “yes” or “no”.

A better question scheme than asking for one alternative after the other can
easily be found: Divide the set into two subsets of about equal size.

Ask for containment in an arbitrarily chosen subset.

Apply this scheme recursively → number of questions bounded by ⌈log2 n⌉.

Question/Coding Schemes

Rudolf Kruse Intelligent Data Analysis 52

P (s1) = 0.10, P (s2) = 0.15, P (s3) = 0.16, P (s4) = 0.19, P (s5) = 0.40

Shannon entropy: −∑iP (si) log2P (si) = 2.15 bit/symbol

Linear Traversal

s4, s5

s3, s4, s5

s2, s3, s4, s5

s1, s2, s3, s4, s5

0.10 0.15 0.16 0.19 0.40
s1 s2 s3 s4 s5
1 2 3 4 4

Code length: 3.24 bit/symbol
Code efficiency: 0.664

Equal Size Subsets

s1, s2, s3, s4, s5

0.25 0.75
s1, s2 s3, s4, s5

0.59
s4, s5

0.10 0.15 0.16 0.19 0.40
s1 s2 s3 s4 s5
2 2 2 3 3

Code length: 2.59 bit/symbol
Code efficiency: 0.830

Question/Coding Schemes

Rudolf Kruse Intelligent Data Analysis 53

Splitting into subsets of about equal size can lead to a bad arrangement of the
alternatives into subsets→ high expected number of questions.

Good question schemes take the probability of the alternatives into account.

Shannon-Fano Coding (1948)

Build the question/coding scheme top-down.

Sort the alternatives w.r.t. their probabilities.

Split the set so that the subsets have about equal probability
(splits must respect the probability order of the alternatives).

Huffman Coding (1952)

Build the question/coding scheme bottom-up.

Start with one element sets.

Always combine those two sets that have the smallest probabilities.

Question/Coding Schemes

Rudolf Kruse Intelligent Data Analysis 54

P (s1) = 0.10, P (s2) = 0.15, P (s3) = 0.16, P (s4) = 0.19, P (s5) = 0.40

Shannon entropy: −∑iP (si) log2P (si) = 2.15 bit/symbol

Shannon–Fano Coding (1948)

s1, s2, s3, s4, s5

0.25

0.41

s1, s2

s1, s2, s3
0.59
s4, s5

0.10 0.15 0.16 0.19 0.40
s1 s2 s3 s4 s5
3 3 2 2 2

Code length: 2.25 bit/symbol
Code efficiency: 0.955

Huffman Coding (1952)

s1, s2, s3, s4, s5

0.60
s1, s2, s3, s4

0.25 0.35
s1, s2 s3, s4

0.10 0.15 0.16 0.19 0.40
s1 s2 s3 s4 s5
3 3 3 3 1

Code length: 2.20 bit/symbol
Code efficiency: 0.977

Question/Coding Schemes

Rudolf Kruse Intelligent Data Analysis 55

It can be shown that Huffman coding is optimal if we have to determine the
obtaining alternative in a single instance.
(No question/coding scheme has a smaller expected number of questions.)

Only if the obtaining alternative has to be determined in a sequence of (indepen-
dent) situations, this scheme can be improved upon.

Idea: Process the sequence not instance by instance, but combine two, three
or more consecutive instances and ask directly for the obtaining combination of
alternatives.

Although this enlarges the question/coding scheme, the expected number of ques-
tions per identification is reduced (because each interrogation identifies the ob-
taining alternative for several situations).

However, the expected number of questions per identification cannot be made ar-
bitrarily small. Shannon showed that there is a lower bound, namely the Shannon
entropy.

Interpretation of Shannon Entropy

Rudolf Kruse Intelligent Data Analysis 56

P (s1) =
1
2, P (s2) =

1
4, P (s3) =

1
8, P (s4) =

1
16, P (s5) =

1
16

Shannon entropy: −∑i P (si) log2 P (si) = 1.875 bit/symbol

If the probability distribution allows for a
perfect Huffman code (code efficiency 1),
the Shannon entropy can easily be inter-
preted as follows:

−
∑

i

P (si) log2 P (si)

=
∑

i

P (si)
︸ ︷︷ ︸

occurrence
probability

· log2
1

P (si)︸ ︷︷ ︸
path length

in tree

.

In other words, it is the expected number
of needed yes/no questions.

Perfect Question Scheme

s4, s5

s3, s4, s5

s2, s3, s4, s5

s1, s2, s3, s4, s5

1

2

1

4

1

8

1

16

1

16

s1 s2 s3 s4 s5
1 2 3 4 4

Code length: 1.875 bit/symbol
Code efficiency: 1

Other Information-theoretic Evaluation Measures

Rudolf Kruse Intelligent Data Analysis 57

Normalized Information Gain

Information gain is biased towards many-valued attributes.

Normalization removes / reduces this bias.

Information Gain Ratio (Quinlan 1986 / 1993)

Igr(C,A) =
Igain(C,A)

HA
=

Igain(C,A)

−∑nA
j=1 p.j log2 p.j

Symmetric Information Gain Ratio (López de Mántaras 1991)

I
(1)
sgr(C,A) =

Igain(C,A)

HAC
or I

(2)
sgr(C,A) =

Igain(C,A)

HA +HC

Bias of Information Gain

Rudolf Kruse Intelligent Data Analysis 58

Information gain is biased towards many-valued attributes,
i.e., of two attributes having about the same information content it tends to select
the one having more values.

The reasons are quantization effects caused by the finite number of example cases
(due to which only a finite number of different probabilities can result in estima-
tions) in connection with the following theorem:

Theorem: Let A, B, and C be three attributes with finite domains and let
their joint probability distribution be strictly positive, i.e., ∀a ∈ dom(A) : ∀b ∈
dom(B) : ∀c ∈ dom(C) : P (A = a,B = b, C = c) > 0. Then

Igain(C,AB) ≥ Igain(C,B),

with equality obtaining only if the attributes C and A are conditionally indepen-
dent given B, i.e., if P (C = c | A = a,B = b) = P (C = c | B = b).

(A detailed proof of this theorem can be found, for example, in [Borgelt and Kruse 2002], p. 311ff.)

A Statistical Evaluation Measure

Rudolf Kruse Intelligent Data Analysis 59

χ2 Measure

Compares the actual joint distribution
with a hypothetical independent distribution.

Uses absolute comparison.

Can be interpreted as a difference measure.

χ2(C,A) =
nC∑

i=1

nA∑

j=1

N..
(pi.p.j − pij)

2

pi.p.j

Side remark: Information gain can also be interpreted as a difference measure.

Igain(C,A) =
nC∑

i=1

nA∑

j=1

pij log2
pij

pi.p.j

Treatment of Numeric Attributes

Rudolf Kruse Intelligent Data Analysis 60

General Approach: Discretization

Preprocessing I

Form equally sized or equally populated intervals.

During the tree construction

Sort the example cases according to the attribute’s values.

Construct a binary symbolic attribute for every possible split
(values: “≤ threshold” and “> threshold”).

Compute the evaluation measure for these binary attributes.

Possible improvements: Add a penalty depending on the number of splits.

Preprocessing II / Multisplits during tree construction

Build a decision tree using only the numeric attribute.

Flatten the tree to obtain a multi-interval discretization.

Treatment of Missing Values

Rudolf Kruse Intelligent Data Analysis 61

Induction

Weight the evaluation measure with the fraction of cases with known values.

Idea: The attribute provides information only if it is known.

Try to find a surrogate test attribute with similar properties
(CART, Breiman et al. 1984)

Assign the case to all branches, weighted in each branch with the relative frequency
of the corresponding attribute value (C4.5, Quinlan 1993).

Classification

Use the surrogate test attribute found during induction.

Follow all branches of the test attribute, weighted with their relative number
of cases, aggregate the class distributions of all leaves reached, and assign the
majority class of the aggregated class distribution.

Pruning Decision Trees

Rudolf Kruse Intelligent Data Analysis 62

Pruning serves the purpose

to simplify the tree (improve interpretability),

to avoid overfitting (improve generalization).

Basic ideas:

Replace “bad” branches (subtrees) by leaves.

Replace a subtree by its largest branch if it is better.

Common approaches:

Reduced error pruning

Pessimistic pruning

Confidence level pruning

Minimum description length pruning

Reduced Error Pruning

Rudolf Kruse Intelligent Data Analysis 63

Classify a set of new example cases with the decision tree.
(These cases must not have been used for the induction!)

Determine the number of errors for all leaves.

The number of errors of a subtree is the sum of the errors of all of its leaves.

Determine the number of errors for leaves that replace subtrees.

If such a leaf leads to the same or fewer errors than the subtree,
replace the subtree by the leaf.

If a subtree has been replaced,
recompute the number of errors of the subtrees it is part of.

Advantage: Very good pruning, effective avoidance of overfitting.

Disadvantage: Additional example cases needed.

Pessimistic Pruning

Rudolf Kruse Intelligent Data Analysis 64

Classify a set of example cases with the decision tree.
(These cases may or may not have been used for the induction.)

Determine the number of errors for all leaves and
increase this number by a fixed, user-specified amount r.

The number of errors of a subtree is the sum of the errors of all of its leaves.

Determine the number of errors for leaves that replace subtrees
(also increased by r).

If such a leaf leads to the same or fewer errors than the subtree,
replace the subtree by the leaf and recompute subtree errors.

Advantage: No additional example cases needed.

Disadvantage: Number of cases in a leaf has no influence.

Confidence Level Pruning

Rudolf Kruse Intelligent Data Analysis 65

Like pessimistic pruning, but the number of errors is computed as follows:

1. See classification in a leaf as a Bernoulli experiment (error / no error).

2. Estimate an interval for the error probability based on a user-specified confi-
dence level α.
(use approximation of the binomial distribution by a normal distribution)

3. Increase error number to the upper level of the confidence interval
times the number of cases assigned to the leaf.

4. Formal problem: Classification is not a random experiment.

Advantage: No additional example cases needed, good pruning.

Disadvantage: Statistically dubious foundation.

Pruning a Decision Tree: A Simple Example

Rudolf Kruse Intelligent Data Analysis 66

Pessimistic Pruning with r = 0.8 and r = 0.4:

c 1: 13, c 2: 7
leaf: 7.0 errors

r = 0.8: 7.8 errors (prune subtree)
r = 0.4: 7.4 errors (keep subtree)

a1 a2 a3

c 1: 5, c 2: 2

2.8 errors
2.4 errors

c 1: 6, c 2: 2

2.8 errors
2.4 errors

c 1: 2, c 2: 3

2.8 errors
2.4 errors

total: 6.0 errors

r = 0.8: 8.4 errors
r = 0.4: 7.2 errors

Decision Trees: An Example

Rudolf Kruse Intelligent Data Analysis 67

A decision tree for the Iris data
(induced with information gain ratio, unpruned)

Decision Trees: An Example

Rudolf Kruse Intelligent Data Analysis 68

A decision tree for the Iris data
(pruned with confidence level pruning, α = 0.8, and pessimistic pruning, r = 2)

Left: 7 instead of 11 nodes, 4 instead of 2 misclassifications.

Right: 5 instead of 11 nodes, 6 instead of 2 misclassifications.

The right tree is “minimal” for the three classes.

Summary Decision Trees

Rudolf Kruse Intelligent Data Analysis 69

Decision Trees are Classifiers with Tree Structure

Inner node: Test of a descriptive attribute

Leaf node: Assignment of a class

Induction of Decision Trees from Data

(Top-Down Induction of Decision Trees, TDIDT)

Divide and conquer approach / recursive descent

Greedy selection of the test attributes

Attributes are selected based on an evaluation measure,
e.g. information gain, χ2 measure

Recommended: Pruning of the decision tree

Classification Evaluation: Cross Validation

Rudolf Kruse Intelligent Data Analysis 70

General method to evaluate / predict the performance of classifiers.

Serves the purpose to estimate the error rate on new example cases.

Procedure of cross validation:

1. Split the given data set into n so-called folds of equal size
(n-fold cross validation).

2. Combine n− 1 folds into a training data set,
build a classifier, and test it on the n-th fold.

3. Do this for all n possible selections of n− 1 folds
and average the error rates.

Special case: Leave-1-out cross validation.
(use as many folds as there are example cases)

Final classifier is learned from the full data set.

Rudolf Kruse Intelligent Data Analysis 71

Support Vector Machines

Supervised Learning, Diagnosis System for Diseases

Rudolf Kruse Intelligent Data Analysis 72

Training data: Expression profiles of patients with known diagnosis

The known diagnosis gives us a structure within the data, which we want to generalize
for future data.

Learning/Training: Derive a decision rule from the training data which separates
the two classes.

Ability for generalization: How useful is the decision rule when it comes to
diagnosing patients in the future?

Aim: Find a decision rule with high ability for generalization!

Learning from Examples

Rudolf Kruse Intelligent Data Analysis 73

Given: X = {xi, yi}ni=1, training data of patients with known diagnosis

consists of:
xi ∈ R

g (points, expression profiles)

yi ∈ {+1,−1} (classes, 2 kinds of cancer)

Decision function:
fX : Rg → {+1,−1}

diagnosis = fX(new patient)

Underfitting / Overfitting

Rudolf Kruse Intelligent Data Analysis 74

Linear Separation of Training Data

Rudolf Kruse Intelligent Data Analysis 75

Begin with linear separation and increase the complexity in a second
step with a kernel function.

A separating hyperplane is defined by

a normal vector w and

an offset b:

Hyperplane H = {x|〈w, x〉 + b = 0}

〈·, ·〉 is called the inner product
or scalar product.

Predicting the class of a new point

Rudolf Kruse Intelligent Data Analysis 76

Training: Choose w and b in such a way that the hyperplane
separates the training data.

Prediction: Which side of the hyperplane
is the new point located on?

Points on the side that the normal vector
points at are diagnosed as POSITIVE.

Points on the other side are diagnosed
as NEGATIVE.

Motivation

Rudolf Kruse Intelligent Data Analysis 77

Origin in Statistical Learning Theory; class of optimal classifiers

Core problem of Statistical Learning Theory: Ability for generalization.
When does a low training error lead to a low real error?

Binary Class Problem:
Classification ≡ mapping function f(x, u) : x→ y ∈ {+1,−1}
x: sample from one of the two classes
u: parameter vector of the classifier

Learning sample with l observations x1, x2, . . . , xl
along with their class affiliation y1, y2, . . . , yl
→ the empirical risk (error rate) for a given training dataset:

Remp(u) =
1

2l

l∑

i=1

|yi − f(xi, u)| ∈ [0, 1]

A lot of classifiers do minimize the empirical risk, e.g. Neural Networks.

Motivation

Rudolf Kruse Intelligent Data Analysis 78

Expected value of classification error (expected risk):

R(u) = E{Rtest(u)} = E{1
2
|y − f(x, u)|} =

∫ 1

2
|y − f(x, u)|p(x, y) dxdy

p(x, y): Distribution density of all possible samples x along with their class affiliation
y (Can’t evaluate this expression directly as p(x, y) is not available.)

Optimal sample classification:
Search for deterministic mapping function f(x, u) : x→ y ∈ {+1,−1} that minimizes
the expected risk.

Core question of sample classification:

How close do we get to the real error after we saw l training samples? How
well can we estimate the real risk R(u) from the empirical risk Remp(u)?
(Structural Risk Minimization instead of Empirical Risk Minimization)

The answer is given by Learning Theory of Vapnik-Chervonenkis → SVMs

SVMs for linear separable classes

Rudolf Kruse Intelligent Data Analysis 79

Previous solution:
General hyperplane: wx + b = 0

Classification: sgn(wx + b)

Training, e.g. by perceptron-algorithm
(iterative learning, correction after every misclassification; no unique solution)

Reminder: Function Optimization

Rudolf Kruse Intelligent Data Analysis 80

Task: Find values ~x = (x1, . . . , xm) such that f(~x) = f(x1, . . . , xm) is optimal.

Often feasible approach:

A necessary condition for a (local) optimum (maximum or minimum) is
that the partial derivatives w. r. t. the parameters vanish (Pierre Fermat).

Therefore: (Try to) solve the equation system that results from setting
all partial derivatives w. r. t. the parameters equal to zero.

Example task: Minimize f(x, y) = x2 + y2 + xy − 4x− 5y.

Solution procedure:

Take the partial derivatives of the objective function and set them to zero:

∂f

∂x
= 2x + y − 4 = 0,

∂f

∂y
= 2y + x− 5 = 0.

Solve the resulting (here: linear) equation system: x = 1, y = 2.

Function Optimization with Constraints

Rudolf Kruse Intelligent Data Analysis 81

Often a function has to be optimized subject to certain constraints.

Here: restriction to k equality constraints Ci(~x) = 0, i = 1, . . . , k.

Note: the equality constraints describe a subspace of the domain of the function.

Problem of optimization with constraints:

The gradient of the objective function f may vanish outside the constrained sub-
space, leading to an unacceptable solution (violating the constraints).

At an optimum in the constrained subspace the derivatives need not vanish.

One way to handle this problem are generalized coordinates:

Exploit the dependence between the parameters specified in the constraints to
express some parameters in terms of the others and thus reduce the set ~x to a set
~x′ of independent parameters (generalized coordinates).

Problem: Can be clumsy and cumbersome, if possible at all, because the form of
the constraints may not allow for expressing some parameters as proper functions
of the others.

Contour Lines of a Function

Rudolf Kruse Intelligent Data Analysis 82

Contour Lines: Given a function f : R2 → R, the contour plot is obtained
by drawing the contour sets for equidistant levels, i. e., plot
the following sets of points:

Mkc = {(x1, x2) ∈ R
2 | f(x1, x2) = kc}

for k ∈ N and fixed c ∈ R≥0

Example: f(x1, x2) = x21 + x22

Gradient Field of a Function

Rudolf Kruse Intelligent Data Analysis 83

The gradient of a function f: Rn → R consists of the vector of its partial deriva-
tives w. r. t. the arguments:

∇~x f =

(
∂f

∂x1
, . . . ,

∂f

∂xn

)⊤

The gradient evaluated at a point ~x∗, written as

∇~x f |~x∗ =

(
∂f

∂x1

∣∣∣∣∣
x∗1

, . . . ,
∂f

∂xn

∣∣∣∣∣
x∗n

)⊤
,

points into the direction of largest increase of f .

Formally, the gradient of a function with domain R
n has n dimensions although

it is often depicted as an n + 1-dimensional vector.

Gradient Field of a Function: Examples

Rudolf Kruse Intelligent Data Analysis 84

f1(x1, x2) = x21 + x22

∇~x f1 =

(
2x1
2x2

)

f2(x1, x2) = x1 + x2 − 1

∇~x f2 =

(
1
1

)

Function Optimization with Constraints

Rudolf Kruse Intelligent Data Analysis 85

Problem: If the global optimum of f lies outside the feasible region
the gradient does not vanish at the constrained optimum ~x∗.

Which criteria do hold at the constrained optimum?

Assume we move ~x∗ throughout the feasible region to find the optimum “manu-
ally”. If we cross a contour line of f , the crossing point cannot be an optimum:
because crossing a contour line means descending or ascending.

However, if we touch a contour line we have found an optimum because stepping
backward or forward will increase (or decrease) the value.

At the “touching point” ~x∗ the gradient of f and the gradient of g are parallel.

∇f = λ∇g

We only need both gradients to be parallel. Since they can have opposite directions
and different lengths λ is used to rescale ∇g.

Example

Rudolf Kruse Intelligent Data Analysis 86

Task: Minimize f(x1, x2) = x21 + x22 subject to g : x + y = 1.

Crossing a contour line: Point 1 cannot
be a constrained minimum because ∇f has
a non-zero component in the constrained
space. Walking in opposite direction to this
component can further decrease f .

Touching a contour line: Point 2 is a
constrained minimum: both gradients are
parallel, hence there is no component of ∇f
in the constrained space that might lead us
to a lower value of f .

Function Optimization with Constraints

Rudolf Kruse Intelligent Data Analysis 87

Therefore, at the constrained optimum ~x∗ we require:

∇f(~x∗) = λ∇g(~x∗) and g(~x∗) = 0

More compact representation:

L(~x, λ) = f(~x)− λg(~x) and ∇L = 0

Taking the partial derivatives reveals the initial conditions:

∂

∂~x
L(~x, λ) = ∇f(~x)− λ∇g(~x) = 0

∇f(~x) = λ∇g(~x)
∂

∂λ
L(~x, λ) = g(~x) = 0

The negative sign in the Lagrange function L can be incorporated into λ, i. e. we
will from now on replace it by a positive sign.

Lagrange Theory: Example 1

Rudolf Kruse Intelligent Data Analysis 88

Example task: Minimize f(x, y) = x2 + y2 subject to x + y = 1.

Solution procedure:

Rewrite the constraint, so that one side gets zero: x + y − 1 = 0.

Construct the Lagrange function by incorporating the constraint
into the objective function with a Lagrange multiplier λ:

L(x, y, λ) = x2 + y2 + λ(x + y − 1).

Take the partial derivatives of the Lagrange function and set them to zero
(necessary conditions for a minimum):

∂L

∂x
= 2x + λ = 0,

∂L

∂y
= 2y + λ = 0,

∂L

∂λ
= x + y − 1 = 0.

Solve the resulting (here: linear) equation system:

λ = −1, x = y = 1
2.

Summary: Function Optimization with Constraints

Rudolf Kruse Intelligent Data Analysis 89

Let ~x∗ be a (local) optimum of f(~x) in the constrained subspace. Then:

The gradient ∇~xf(~x∗), if it does not vanish, must be perpendicular to the
constrained subspace. (If ∇~xf(~x∗) had a component in the constrained subspace,
~x∗ would not be a (local) optimum in this subspace.)

The gradients ∇~x gj(~x∗), 1 ≤ j ≤ k, must all be perpendicular to the
constrained subspace, because they are constant, namely 0, in this subspace.
Together they span the subspace perpendicular to the constrained subspace.

Therefore it must be possible to find values λj, 1 ≤ j ≤ k, such that

∇~xf(~x∗) +
s∑

j=1

λj∇~x gj(~x∗) = 0.

If the constraints (and thus their gradients) are linearly independent, the values
λj are uniquely determined. This equation can be used to compensate the
gradient of f(~x∗) so that it vanishes at ~x∗.

General Principle: Lagrange Theory

Rudolf Kruse Intelligent Data Analysis 90

As a consequence of these insights we obtain the

Method of Lagrange Multipliers:

Given: ◦ a function f(~x), which is to be optimized,
◦ k equality constraints gj(~x) = 0, 1 ≤ j ≤ k.

Procedure:

Construct the so-called Lagrange function by incorporating the equality con-
straints gi, i = 1, . . . , k, with (unknown) Lagrange multipliers λi:

L(~x, λ1, . . . , λk) = f(~x) +
k∑

i=1

λigi(~x).

Set the partial derivatives of the Lagrange function equal to zero:

∂L

∂x1
= 0, . . . ,

∂L

∂xm
= 0,

∂L

∂λ1
= 0, . . . ,

∂L

∂λk
= 0.

(Try to) solve the resulting equation system.

Lagrange Theory: Revisited Example 1

Rudolf Kruse Intelligent Data Analysis 91

Example task: Minimize f(x, y) = x2 + y2 subject to x + y = 1.

x

y

0

1

0 0.5 1

unconstrained
minimum
~p0 = (0, 0)

minimum in the
constrained subspace
~p1 = (12,

1
2)

constrained
subspace
x + y = 1

f(x, y) = x2+y2

The unconstrained minimum is not in the constrained subspace, and
at the minimum in the constrained subspace the gradient does not vanish.

Lagrange Theory: Revisited Example 1

Rudolf Kruse Intelligent Data Analysis 92

Example task: Minimize f(x, y) = x2 + y2 subject to x + y = 1.

x

y

C(x, y) = x + y − 1

x + y − 1 = 0
x

y

0

0.5

1

0
10.5

L(x, y,−1) = x2+y2−(x+y−1)

minimum ~p1 = (12,
1
2)

The gradient of the constraint is perpendicular to the constrained subspace.
The (unconstrained) minimum of the Lagrange function L(x, y, λ)
is the minimum of the objective function f(x, y) in the constrained subspace.

Lagrange Theory: Example 2

Rudolf Kruse Intelligent Data Analysis 93

Example task: Find the side lengths x, y, z of a box with maximum volume
for a given area S of the surface.

Formally: Maximize f(x, y, z) = xyz

subject to 2xy + 2xz + 2yz = S.

Solution procedure:

The constraint is C(x, y, z) = 2xy + 2xz + 2yz − S = 0.

The Lagrange function is

L(x, y, z, λ) = xyz + λ(2xy + 2xz + 2yz − S).

Taking the partial derivatives yields (in addition to the constraint):

∂L

∂x
= yz+2λ(y+z) = 0,

∂L

∂y
= xz+2λ(x+z) = 0,

∂L

∂y
= xy+2λ(x+y) = 0.

The solution is: λ = −1
4

√
S
6 , x = y = z =

√
S
6 (i.e., the box is a cube).

Function Optimization: Lagrange Theory

Rudolf Kruse Intelligent Data Analysis 94

Observations:

Due to the representation of the gradient of f(~x) at a local optimum ~x∗ in the
constrained subspace (see above) the gradient of L w.r.t. ~x vanishes at ~x∗.
→ The standard approach works again!

If the constraints are satisfied, the additional terms have no influence.

→ The original task is not modified (same objective function).

Taking the partial derivative w.r.t. a Lagrange multiplier
reproduces the corresponding equality constraint:

∀j; 1 ≤ j ≤ k :
∂

∂λj
L(~x, λ1, . . . , λk) = Cj(~x),

→ Constraints enter the equation system to solve in a natural way.

Remark:

Inequality constraints can be handled with the Kuhn–Tucker theory.

Which hyperplane is the best - and why?

Rudolf Kruse Intelligent Data Analysis 95

No exact cut, but a . . .

Rudolf Kruse Intelligent Data Analysis 96

Separate the training data with maximal separation margin

Rudolf Kruse Intelligent Data Analysis 97

Separate the training data with maximal separation margin

Rudolf Kruse Intelligent Data Analysis 98

Try linear separation, but accept errors:

Penalty for errors: Distance to hyperplane times error weight C

SVMs for linearly separable classes

Rudolf Kruse Intelligent Data Analysis 99

With SVMs we are searching for a separating hyperplane with maximal margin.
Optimum: The hyperplane with the highest 2δ of all possible separating hyper-
planes.

This is intuitively meaningful
(At constant intra-class scattering, the confidence of right classification is growing
with increasing inter-class distance)

SVMs are theoretically justified by Statistical Learning Theory.

SVMs for linearly separable classes

Rudolf Kruse Intelligent Data Analysis 100

Large-Margin Classifier: Separation line 2 is better than 1

SVMs for linearly separable classes

Rudolf Kruse Intelligent Data Analysis 101

✲

✻

x1

x2

wx + b = +1

wx + b = 0

wx + b = −1

✛ ✲δ

✛ ✲δ

Training samples are classified
correctly, if:

yi(wxi + b) > 0
Invariance of this expression to-
wards a positive scaling leads
to:

yi(wxi + b) ≥ 1
with canonical hyperplanes:{

wxi + b = +1; (class with yi = +1)
wxi + b = −1; (class with yi = −1)

The distance between the canonical hyperplanes results from projecting x1−x2 to the
unit length normal vector w

||w||:

2δ =
2

||w||; d.h. δ =
1

||w||
→ maximizing δ ≡ minimizing ||w||2

SVMs for linearly separable classes

Rudolf Kruse Intelligent Data Analysis 102

Optimal separating plane by minimizing a quadratic function to linear constraints:

Primal Optimization Problem:
minimize: J(w, b) = 1

2||w||2
to the constraints ∀i [yi(wxi + b) ≥ 1], i = 1, 2, . . . , l

Introducing a Lagrange-Function:

L(w, b, α) =
1

2
||w||2 −

l∑

i=1

αi[yi(wxi + b)− 1]; αi ≥ 0

leads to the dual problem :
maximize L(w, b, α) with respect to α, under the constraints:

∂L(w,b,α)
∂w = 0 =⇒ w =

l∑

i=1

αiyixi

∂L(w,b,α)
∂b = 0 =⇒

l∑

i=1

αiyi = 0

SVMs for linearly separable classes

Rudolf Kruse Intelligent Data Analysis 103

Insert this terms in L(w, b, α):

L(w, b, α) =
1

2
||w||2 −

l∑

i=1

αi[yi(wxi + b)− 1]

=
1

2
w · w − w ·

l∑

i=1

αiyixi − b ·
l∑

i=1

αiyi +
l∑

i=1

αi

=
1

2
w · w − w · w +

l∑

i=1

αi

= −1
2
w · w +

l∑

i=1

αi

= −1
2

l∑

i=1

l∑

j=1

yiyjαiαjxixj +
l∑

i=1

αi

SVMs for linearly separable classes

Rudolf Kruse Intelligent Data Analysis 104

Dual Optimization Problem:

maximize: L′(α) =
l∑

i=1

αi −
1

2

l∑

i=1

l∑

j=1

yiyjαiαjxixj

to the constraints αi ≥ 0 and
l∑

i=1

yiαi = 0

This optimization problem can be solved numerically with the help of standard quadratic
programming techniques.

SVMs for linearly separable classes

Rudolf Kruse Intelligent Data Analysis 105

Solution of the optimization problem:

w∗ =
l∑

i=1

αiyixi =
∑

xi∈SV
αiyixi

b∗ = −1
2
· w∗ · (xp + xm)

for arbitrary xp ∈ SV, yp = +1, und xm ∈ SV, ym = −1
where

SV = {xi | αi > 0, i = 1, 2, . . . , l}
is the set of all support vectors.

Classification rule:

sgn(w∗x + b∗) = sgn[(
∑

xi∈SV
αiyixi)x + b∗]

The classification only depends on the support vectors!

SVMs for linearly separable classes

Rudolf Kruse Intelligent Data Analysis 106

Example: Support Vectors

SVMs for linearly separable classes

Rudolf Kruse Intelligent Data Analysis 107

Example: class +1 contains x1 = (0, 0) and x2 = (1, 0);
class -1 contains x3 = (2, 0) and x4 = (0, 2)

✲

✻

1 2

1

2

SVMs for linearly separable classes

Rudolf Kruse Intelligent Data Analysis 108

The Dual Optimization Problem is:

maximize: L′(α) = (α1 + α2 + α3 + α4)− 1
2(α

2
2 − 4α2α3 + 4α23 + 4α24)

to the constraints αi ≥ 0 and α1 + α2 − α3 − α4 = 0

Solution:

α1 = 0, α2 = 1, α3 =
3
4, α4 =

1
4

SV = {(1, 0), (2, 0), (0, 2)}
w∗ = 1 · (1, 0)− 3

4 · (2, 0)− 1
4 · (0, 2) = (−1

2,−1
2)

b∗ = −1
2 · (−1

2,−1
2) · ((1, 0) + (2, 0)) = 3

4

Optimal separation line: x + y = 3
2

SVMs for linearly separable classes

Rudolf Kruse Intelligent Data Analysis 109

Observations:
For the Support Vectors holds: αi > 0

For all training samples outside the margin holds: αi = 0

Support Vectors form a sparse representation of the sample; They are sufficient
for classification.

The solution is the global optima and unique

The optimization procedure only requires scalar products xixj

SVMs for non-linearly separable classes

Rudolf Kruse Intelligent Data Analysis 110

In this example there is no separating line such as ∀i [yi(wxi + b) ≥ 1]

y = 1

y = 0

y = −1

ξ > 1

ξ < 1

ξ = 0

ξ = 0

All three cases can be interpreted
as: yi(wxi + b) ≥ 1− ξi
A) ξi = 0

B) 0 < ξi ≤ 1

C) ξi > 1

Three possible cases:
A) Vectors beyond the margin, which

are correctly classified, i.e.
yi(wxi + b) ≥ 1

B) Vectors within the margin, which are
correctly classified, i.e.

0 ≤ yi(wxi + b) < 1

C) Vectors that are not correctly classi-
fied, i.e.

yi(wxi + b) < 0

SVMs for non-linearly separable classes

Rudolf Kruse Intelligent Data Analysis 111

Motivation for generalization:
Previous approach gives no solution for classes that are non-lin. separable.

Improvement of the generalization on outliers within the margin

Soft-Margin SVM: Introduce “slack”-Variables

✲

✻

ξi

ξj

SVMs for non-linearly separable classes

Rudolf Kruse Intelligent Data Analysis 112

Penalty for outliers via “slack”-Variables

Primale Optimization Problem:

minimize: J(w, b, ξ) = 1
2||w||2 + C

l∑

i=1

ξi

to the constraints ∀i [yi(wxi + b) ≥ 1− ξi, ξi ≥ 0]

Dual Optimization Problem:

maximize: L′(α) =
l∑

i=1

αi −
1

2

l∑

i=1

l∑

j=1

yiyjαiαjxixj

to the constraints 0 ≤ αi ≤ C and
l∑

i=1

yiαi = 0

(Neither slack-Variables nor Lagrange-Multiplier occur in the
dual optimization problem.)

The only difference compared to the linear separable case: Constant C in the constraints.

SVMs for non-linearly separable classes

Rudolf Kruse Intelligent Data Analysis 113

Solution of the optimization problem:

w∗ =
l∑

i=1

αiyixi =
∑

xi∈SV
αiyixi

b∗ = yk(1− ξk)− w∗xk; k = argmax
i

αi

where

SV = {xi | αi > 0, i = 1, 2, . . . , l}

describes the set of all Support Vectors.

SVMs for non-linearly separable classes

Rudolf Kruse Intelligent Data Analysis 114

Example: non-linearly
separable classes

Non-linear SVMs

Rudolf Kruse Intelligent Data Analysis 115

Non-linear class boundaries → low precision

Example: Transformation Ψ(x) = (x, x2) → C1 and C2 linearly separable

=⇒

Idea:
Transformation of attributes x ∈ ℜn in a higher dimensional space ℜm, m > n by

Ψ : ℜn −→ ℜm
and search for an optimal linear separating hyperplane in this space.

Transformation Ψ increases linear separability.

Separating hyperplane in ℜm ≡ non-linear separating plane in ℜn

Non-linear SVMs

Rudolf Kruse Intelligent Data Analysis 116

Problem: High dimensionality of the attribute space ℜm
E.g. Polynomes of p-th degree over ℜn → ℜm, m = O(np)

Trick with kernel function:

Originally in ℜn: only scalar products xixj required
new in ℜm: only scalar products Ψ(xi)Ψ(xj) required

Solution
No need to compute Ψ(xi)Ψ(xj), but express them at reduced complexity with the
kernel function

K(xi, xj) = Ψ(xi)Ψ(xj)

Non-linear SVMs

Rudolf Kruse Intelligent Data Analysis 117

Example: For the transformation Ψ : ℜ2 −→ ℜ6

Ψ((y1, y2)) = (y21, y
2
2,
√
2y1,

√
2y2,

√
2y1y2, 1)

the kernel function computes

K(xi, xj) = (xixj + 1)2

= ((yi1, yi2) · (yj1, yj2) + 1)2

= (yi1yj1 + yi2yj2 + 1)2

= (y2i1, y
2
i2,
√
2yi1,

√
2yi2,

√
2yi1yi2, 1)

·(y2j1, y2j2,
√
2yj1,

√
2yj2,

√
2yj1yj2, 1)

= Ψ(xi)Ψ(xj)

the scalar product in the new attribute space ℜ6

Non-linear SVMs

Rudolf Kruse Intelligent Data Analysis 118

Example: Ψ : ℜ2 −→ ℜ3

Ψ((y1, y2)) = (y21,
√
2y1y2, y

2
2)

The kernel function

K(xi, xj) = (xixj)
2 = Ψ(xi)Ψ(xj)

computes the scalar product in the new attribute space ℜ3. It is possible to compute
the scalar product of Ψ(xi) and Ψ(xj) without applying the function Ψ.

Nonlinear SVMs

Rudolf Kruse Intelligent Data Analysis 119

Commonly used kernel functions:

Polynomial-Kernel: K(xi, xj) = (xixj)
d

Gauss-Kernel: K(xi, xj) = e−
||xi−xj||2

c

Sigmoid-Kernel: K(xi, xj) = tanh(β1xixj + β2)

Linear combination of valid kernels → new kernel functions

We do not need to know what the new attribute space ℜm looks like. The only thing
we need is the kernel function as a measure for similarity.

Non-linear SVMs

Rudolf Kruse Intelligent Data Analysis 120

Example: Gauss-Kernel (c = 1). The Support Vectors are tagged by an extra circle.

Non-linear SVMs

Rudolf Kruse Intelligent Data Analysis 121

Example: Gauss-Kernel (c = 1) for Soft-Margin SVM.

Final Remarks

Rudolf Kruse Intelligent Data Analysis 122

Advantages of SVMs:
According to current knowledge SVMs yield very good classification results; in
some tasks they are considered to be the top-performer.

Sparse representation of the solution by Support Vectors

Easily practicable: few parameters, no need for a-priori-knowledge

Geometrically intuitive operation

Theoretical statements about results: global optima, ability for generalization

Disadvantages of SVMs
Learning process is slow and in need of intense memory

“Tuning SVMs remains a black art: selecting a specific kernel and parameters is
usually done in a try-and-see manner”

Final Remarks

Rudolf Kruse Intelligent Data Analysis 123

List of SVM-implementations at
http://www.kernel-machines.org/software

The most common one is LIBSVM:
http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Rudolf Kruse Intelligent Data Analysis 124

Deep Learning

Problem: Object recognition in images

Rudolf Kruse Intelligent Data Analysis 125

Imagenet Large Scale Visual Recognition Challenge (LSVRC) since 2010

identify 200 different classes of objects (chair, table, person, bike, ...)

images with approx. 500× 400px, 3 color channels (RGB)

neural network with approx. 600’000 neurons in the first layer

200 neurons in output layer

http://image-net.org/challenges/LSVRC/

Convolution

Rudolf Kruse Intelligent Data Analysis 126

[Source]

Motivation: No matter
where on the image the object
is, it should be recognized

Idea: Use the same features
on the whole image

Implementation: Filter /
Kernel are applied to every
part of the image, sharing
weights

Parameter: Number of fil-
ters, degree of overlapping

https://en.wikipedia.org/wiki/Convolutional_neural_network#/media/File:Conv_layer.png

Convolution

Rudolf Kruse Intelligent Data Analysis 127

[http://ufldl.stanford.edu/wiki/index.php/Feature extraction using convolution]

Feature transformation

Move a filter over features and
look at the filtered features

Multiply original feature and
filter and summarize

Original space: 5x5

filter size: 3x3

new feature size: 3x3

feature space becomes smaller

http://ufldl.stanford.edu/wiki/index.php/Feature_extraction_using_convolution

Pooling

Rudolf Kruse Intelligent Data Analysis 128

[Source]

Feature transformation

Move a filter over features and
look at the filtered features

Consider area according to the
filter’s size

Max pooling: Choose maxi-
mal value

Mean pooling: Calculate
mean value

feature space becomes smaller

https://en.wikipedia.org/wiki/Convolutional_neural_network/media/File:Max_pooling.png

Convolutional Neural Networks

Rudolf Kruse Intelligent Data Analysis 129

[http://ufldl.stanford.edu/wiki/index.php/Feature extraction using convolution]

http://ufldl.stanford.edu/wiki/index.php/Feature_extraction_using_convolution

Results in Image Classification

Rudolf Kruse Intelligent Data Analysis 130

Grafik: William Beluch, ImageNet Classification with Deep
Convolutional Neural Networks

10 years ago: impossible

Fast development over
the last few years

Often used: Ensembles of
networks

Networks are becoming
deeper:
ResNet (2015) more than
150 layers

Application: IQ test

Rudolf Kruse Intelligent Data Analysis 131

solve oral comprehension questions in IQ tests[Wang et al. 2015]

oral IQ tests consist of five types of questions:
Analogy 1, Analogy 2, Classification, Synonym, Antonym

Example (Analogie 1): Isotherm is for temperature like isobar is for ...?
(i) Atmosphere, (ii) Wind, (iii) Pressure, (iv) Dilation, (v) Flow

Approach:

� Classify each question type with an SVM

� Use a specially trained deep neural network for each type of question

� Use a huge training basis to learn words that belong together (Wiki2014)

Result: Deep Learning performs slightly better than persons with a bachelor de-
gree.

Rhythm reconstruction from EEGs

Rudolf Kruse Intelligent Data Analysis 132

[Quelle: Sebastian Stober, DKE-Kolloquium 03.06.2014]

German Traffic Sign Recognition Benchmark (GTSRB)

Rudolf Kruse Intelligent Data Analysis 133

Was analyzed at the International
Joint Conference on Neural Networks
(IJCNN) 2011

Problem:

One Image may belong to several
classes (multiclass classification)

More than 40 classes

More than 50’000 images

Result:

First time superhuman performance
in visual pattern recognition

Error rates:

Human: 1.16%, NN:0.56%

Stallkamp et al. 2012

Used network:
Input, Conv., Max., Conv., Max.,
Conv., Max, Full, Full

Details

http://benchmark.ini.rub.de/index.php?section=gtsrb&subsection=results

Visualization of learned networks

Rudolf Kruse Intelligent Data Analysis 134

Neural network for object recognition in images

What does a network see if it learned to detect noise in bananas?

More examples

Quelle: Heise: What do neural networks dream of? (German)

https://photos.google.com/share/AF1QipPX0SCl7OzWilt9LnuQliattX4OUCj_8EP65_cTVnBmS1jnYgsGQAieQUc1VQWdgQ?key=aVBxWjhwSzg2RjJWLWRuVFBBZEN1d205bUdEMnhB
http://www.heise.de/newsticker/meldung/Bilderkennung-Wovon-traeumen-neuronale-Netze-2717736.html

AlphaGo: Board game Go

Rudolf Kruse Intelligent Data Analysis 135

2 players (black, white)

stones are alternatingly placed

on a 19 x 19 grid

Goal: Encircle the largest area

encircled stones are captured

Number of possible game board configura-
tion: 250150 ∼ 10359

Compared to chess: 3580 ∼ 10123

AlphaGo Approach: Monte Carlo Search

Rudolf Kruse Intelligent Data Analysis 136

Approach: Search in game tree

Learn Network 1 for human-like next moves

Learn Network 2 to evaluate configurations

AlphaGo: Results

Rudolf Kruse Intelligent Data Analysis 137

Victory against european champion Fan Hui: 5:0

Victory against world’s top 10 player Lee Sedol: 4:1

Deep Learning Libraries

Rudolf Kruse Intelligent Data Analysis 138

Theano
http://deeplearning.net/software/theano/
Python implementation for GPU processing of mathematical expressions

Tensorflow https://www.tensorflow.org/
Used by Google’s DeepMind

Keras
http://keras.io
Python implementation, based on Theano and TensorFlow

Torch
http://torch.ch/
LuaJIT and C/CUDA implementation, used by Facebook, Google, Twitter

DL4J
http://deeplearning4j.org/
platform independant java implementation, compatible with Spark and Hadoop

Caffe
http://caffe.berkeleyvision.org/
C++, CUDA implementation with python and MATLAB bindings
very fast, often used for image recognition, e.g. by Facebook

http://deeplearning.net/software/theano/
https://www.tensorflow.org/
http://keras.io
http://torch.ch/
http://deeplearning4j.org/
http://caffe.berkeleyvision.org/

