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General Idea of Clustering

◦ Similarity and distance measures

Prototype-based Clustering

◦ Classical c-means clustering

◦ Learning vector quantization

◦ Fuzzy c-means clustering

◦ Expectation maximization for Gaussian mixtures

Hierarchical Agglomerative Clustering

◦ Merging clusters: Dendrograms

◦ Measuring the distance of clusters

◦ Choosing the clusters

Density Based Clustering

Summary



General Idea of Clustering
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Goal: Arrange the given data tuples into classes or clusters.

Data tuples assigned to the same cluster should be as similar as possible.

Data tuples assigned to different clusters should be as dissimilar as possible.

Similarity is most often measured with the help of a distance function.
(The smaller the distance, the more similar the data tuples.)

Often: restriction to data points in IRm (although this is not mandatory).

d : IRm× IRm → IR+
0 is a distance function if it satisfies ∀~x, ~y, ~z ∈ IRm :

(i) d(~x, ~y) = 0 ⇔ ~x = ~y,

(ii) d(~x, ~y) = d(~y, ~x) (symmetry),

(iii) d(~x, ~z) ≤ d(~x, ~y) + d(~y, ~z) (triangle inequality).



Distance Functions
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Illustration of distance functions: Minkowski Family

dk(~x, ~y) =




n∑

i=1

(xi − yi)
k




1
k

Well-known special cases from this family are:

k = 1 : Manhattan or city block distance,
k = 2 : Euclidean distance,
k → ∞ : maximum distance, i.e. d∞(~x, ~y) = max n

i=1|xi − yi|.

k = 1 k = 2 k → ∞



c-Means Clustering
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Choose a number c of clusters to be found (user input).

Initialize the cluster centers randomly
(for instance, by randomly selecting c data points).

Data point assignment:
Assign each data point to the cluster center that is closest to it
(i.e. closer than any other cluster center).

Cluster center update:
Compute new cluster centers as the mean vectors of the assigned data points.
(Intuitively: center of gravity if each data point has unit weight.)

Repeat these two steps (data point assignment and cluster center update)
until the clusters centers do not change anymore.

It can be shown that this scheme must converge,
i.e., the update of the cluster centers cannot go on forever.



c-Means Clustering: Example
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Data set to cluster.

Choose c = 3 clusters.
(From visual inspection, can be
difficult to determine in general.)

Initial position of cluster centers.

Randomly selected data points.
(Alternative methods include
e.g. latin hypercube sampling)



Delaunay Triangulations and Voronoi Diagrams
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Dots represent cluster centers (quantization vectors).

Left: Delaunay Triangulation
(The circle through the corners of a triangle does not contain another point.)

Right: Voronoi Diagram
(Midperpendiculars of the Delaunay triangulation: boundaries of the regions of
points that are closest to the enclosed cluster center (Voronoi cells)).



Delaunay Triangulations and Voronoi Diagrams
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Delaunay Triangulation: simple triangle (shown in grey on the left)

Voronoi Diagram: midperpendiculars of the triangle’s edges
(shown in blue on the left, in grey on the right)



c-Means Clustering: Example
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c-Means Clustering: Local Minima
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Clustering is successful in this example:
The clusters found are those that would have been formed intuitively.

Convergence is achieved after only 5 steps.
(This is typical: convergence is usually very fast.)

However: The clustering result is fairly sensitive to the initial positions of
the cluster centers.

With a bad initialization clustering may fail
(the alternating update process gets stuck in a local minimum).

Fuzzy c-means clustering and the estimation of a mixture of Gaussians are much
more robust (to be discussed later).

Research issue: Can we determine the number of clusters automatically?
(Some approaches exists, but none of them is too successful.)



c-Means Clustering: Local Minima

Rudolf Kruse Intelligent Data Analysis 11



Learning Vector Quantization
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Adaptation of reference vectors / codebook vectors

Like “online” c-means clustering (update after each data point).

For each training pattern find the closest reference vector.

Adapt only this reference vector (winner neuron).

For classified data the class may be taken into account.
(reference vectors are assigned to classes)

Attraction rule (data point and reference vector have same class)

~r (new) = ~r (old) + η
(
~p− ~r (old)

)
,

Repulsion rule (data point and reference vector have different class)

~r (new) = ~r (old) − η
(
~p− ~r (old)

)
.



Learning Vector Quantization
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Adaptation of reference vectors / codebook vectors

~r1

~r2

~r3~p

d
ηd

attraction rule

~r1

~r2

~r3~p

d ηd

repulsion rule

~p: data point, ~ri: reference vector

η = 0.4 (learning rate)



Learning Vector Quantization: Learning Rate Decay
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Problem: fixed learning rate can lead to oscillations

Solution: time dependent learning rate

η(t) = η0α
t, 0 < α < 1, or η(t) = η0t

κ, κ < 0.



Learning Vector Quantization: Example
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Adaptation of reference vectors / codebook vectors

Left: Online training with learning rate η = 0.1,

Right: Batch training with learning rate η = 0.05.



Excursus: Short Introduction to Fuzzy Theory
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Classical Logic: only truth values true and false.
Classical Algebra: either is element or is not element.

The bivalence of the classical theories is often not appropriate.

Illustrating example: Sorites Paradoxon (Greek sorites: heap)

1. One billion grains of sand is a heap of sand. (true)

2. If you remove a grain of sand from a heap of sand,
a heap of sand remains. (true)

Thus it follows:

3. 999 999 999 grains are a heap of sand. (true)

Multiple repetition of the same conclusion finally leads to

4. 1 grain of sand is a heap of sand. (false!)

At which number of grains the conclusion does not preserve the truth?



Excursus: Short Introduction to Fuzzy Theory
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Obviously: There is no exact determined number of grains of sand,
where the conclusion to the next smaller number is wrong.

Problem: Terms of natural language (e.g., “heap of sand”, “bald headed”,
“warm”, “fast”, “high pressure”, “light” etc.) are vague.

Note: Though vague terms may be inexact , but not useless.

Also for vague terms there exist situations/objects,
where they are for sure applicable and
where they are for sure not applicable.

Between this a penumbra (Latin semi-shade) of situations is located, where
it is unclear, whether the terms are applicable, or whether they are only ap-
plicable with restrictions (“small heap of sand”).

The fuzzy theory tries to model this penumbra mathematically
(“soft transition” between applicable and not applicable).



Excursus: Fuzzy Logic
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Fuzzy logic is an extension of the classical logic
to intermediate values between true and false.

As truth value, any value from the real interval [0, 1] can appear,
whereas 0 =̂ false and 1 =̂ true.

Thus necessary: Extension of the logical operators

◦ Negation classical: ¬a, fuzzy: ∼ a Fuzzy Negation

◦ Conjunction classical: a ∧ b, fuzzy: ⊤(a, b) t-Norm

◦ Disjunction classical: a ∨ b, fuzzy: ⊥(a, b) t-Conorm

Basic principles of the extension:

• For the extreme values 0 and 1, the operators shall behave the same way like
the classical examples (marginal/edge constraints).

• For the intermediate values, the behavior shall be monotone.

• As far as possible the laws of the classical logical shall be preserved.



Fuzzy Clustering
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Allow degrees of membership of a datum to different clusters.
(Classical c-means clustering assigns data crisply.)

Objective Function: (to be minimized)

J(X,B,U) =
c∑

i=1

n∑

j=1

uwijd
2(~βi, ~xj)

U = [uij] is the c× n fuzzy partition matrix,

uij ∈ [0, 1] is the membership degree of the data point ~xj to the i-th cluster.

B = {~β1, . . . , ~βc} is the set of cluster prototypes.

w is the so-called “fuzzifier” (the higher w, the softer the cluster boundaries).

Constraints:

∀i ∈ {1, . . . , c} :
n∑

j=1

uij > 0 and ∀j ∈ {1, . . . , n} :
c∑

i=1

uij = 1.



Fuzzy and Hard Clustering
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Relation to Classical c-Means Clustering:

c-means clustering can be seen as optimizing the objective function

J(X,B,U) =
c∑

i=1

n∑

j=1

uij d
2(~βi, ~xj),

where ∀i, j : uij ∈ {0, 1} (i.e. hard assignment of the data points)

and the cluster prototypes ~βi consist only of cluster centers.

To obtain a fuzzy assignment of the data points, it is not enough
to extend the range of values for the uij to the unit interval [0, 1]:
The objective function J is optimized for a hard assignment
(each data point is assigned to the closest cluster center).

Necessary for degrees of membership:
Apply a convex function h : [0, 1] → [0, 1] to the membership degrees uij.
Most common choice: h(u) = uw, usually with w = 2.



Fuzzy Clustering: Alternating Optimization
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Objective function: (to be minimized)

J(X,B,U) =
c∑

i=1

n∑

j=1

uwijd
2(~xj, ~βi)

Constraints:

∀i ∈ {1, . . . , c} :
n∑

j=1

uij > 0 and ∀j ∈ {1, . . . , n} :
c∑

i=1

uij = 1.

Problem: The objective function J cannot be minimized directly.

Therefore: Alternating Optimization

◦ Optimize membership degrees for fixed cluster parameters.

◦ Optimize cluster parameters for fixed membership degrees.

(Update formulae are derived by differentiating the objective function J)

◦ Iterate until convergence (checked, e.g., by change of cluster center).



Fuzzy Clustering: Alternating Optimization
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First Step: Fix the cluster parameters.

Introduce Lagrange multipliers λj , 0 ≤ j ≤ n, to incorporate the constraints ∀j; 1 ≤
j ≤ n :

∑c
i=1 uij = 1. This yields the Lagrange function (to be minimized)

L(X,B,U,Λ) =
c∑

i=1

n∑

j=1

uwij d
2
ij

︸ ︷︷ ︸
=J(X,B,U)

+
n∑

j=1

λj


1−

c∑

i=1

uij


 ,

A necessary condition for the minimum is that the partial derivatives of the
Lagrange function w.r.t. the membership degrees vanish, i.e.,

∂

∂ukl
L(X,B,U,Λ) = w uw−1

kl d2kl − λl
!
= 0,

which leads to

∀i; 1 ≤ i ≤ c : ∀j; 1 ≤ j ≤ n : uij =


 λj

w d2ij




1
w−1

.



Fuzzy Clustering: Alternating Optimization
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Summing these equations over the clusters (in order to be able to exploit
the corresponding constraints on the membership degrees), we get

1 =
c∑

i=1

uij =
c∑

i=1


 λj

w d2ij




1
w−1

.

Consequently the λj , 1 ≤ j ≤ n, are

λj =




c∑

i=1

(
w d2ij

) 1
1−w



1−w

.

Inserting this into the equation for the membership degrees yields

∀i; 1 ≤ i ≤ c : ∀j; 1 ≤ j ≤ n : uij =
d

2
1−w
ij

∑c
k=1 d

2
1−w
kj

.

This update formula results regardless of the distance measure.



Standard Fuzzy Clustering Algorithms
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Fuzzy C-Means Algorithm: Euclidean distance

d 2
fcm(~xj,

~βi) = (~xj − ~µi)
⊤(~xj − ~µi) with ~βi = (~µi)

Necessary condition for a minimum: gradients w.r.t. cluster centers vanish.

∇~µk
Jfcm(X,B,U) = ∇~µk

c∑

i=1

n∑

j=1

uwij (~xj − ~µi)
⊤(~xj − ~µi)

=
n∑

j=1

uwkj ∇~µk
(~xj − ~µk)

⊤(~xj − ~µk)

= −2
n∑

j=1

uwkj (~xj − ~µk)
!
= ~0

Resulting update rule for the cluster centers (second step of alt. optimization):

∀i; 1 ≤ i ≤ c : ~µi =

∑n
j=1 u

w
ij~xj∑n

j=1 u
w
ij



Standard Fuzzy Clustering Algorithms

Rudolf Kruse Intelligent Data Analysis 25

Gustafson–Kessel Algorithm: Mahalanobis distance

d 2
gk(~xj,

~βi) = (~xj − ~µi)
⊤C−1

i (~xj − ~µi) with ~βi = (~µi,Σi)

Additional constraints: |Ci| = 1 (all cluster have unit size).
These constraints are incorporated again by Lagrange multipliers.

A similar derivation as for the fuzzy c-means algorithm
yields the same update rule for the cluster centers:

∀i; 1 ≤ i ≤ c : ~µi =

∑n
j=1 u

w
ij~xj∑n

j=1 u
w
ij

Update rule for the covariance matrices (m is the number of dimensions):

Ci =
1

m
√
|Σi|

Σi where Σi =
n∑

j=1

uwij(~xj − ~µi)(~xj − ~µi)
⊤.



Fuzzy Clustering: Overlapping Clusters
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Classical c-Means Fuzzy c-Means



Fuzzy Clustering of the Iris Data
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Fuzzy c-Means Gustafson–Kessel



Expectation Maximization: Mixture of Gaussians
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Assumption: Data was generated by sampling a set of normal distributions.
(The probability density is a mixture of Gaussian distributions.)

Formally: We assume that the probability density can be described as

f ~X
(~x;C) =

c∑

y=1

f ~X,Y
(~x, y;C) =

c∑

y=1

pY (y;C) · f ~X|Y (~x|y;C).

C is the set of cluster parameters

~X is a random vector that has the data space as its domain

Y is a random variable that has the cluster indices as possible
values (i.e., dom( ~X) = IRm and dom(Y ) = {1, . . . , c})

pY (y;C) is the probability that a data point belongs to (is generated
by) the y-th component of the mixture

f ~X|Y (~x|y;C) is the conditional probability density function of a data point
given the cluster (specified by the cluster index y)



Expectation Maximization
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Basic idea: Do a maximum likelihood estimation of the cluster parameters.

Problem: The likelihood function,

L(X;C) =
n∏

j=1

f ~Xj
(~xj;C) =

n∏

j=1

c∑

y=1

pY (y;C) · f ~X|Y (~xj|y;C),

is difficult to optimize, even if one takes the natural logarithm (cf. the maximum
likelihood estimation of the parameters of a normal distribution), because

lnL(X;C) =
n∑

j=1

ln
c∑

y=1

pY (y;C) · f ~X|Y (~xj|y;C)

contains the natural logarithms of complex sums.

Approach: Assume that there are “hidden” variables Yj stating the clusters
that generated the data points ~xj, so that the sums reduce to one term.

Problem: Since the Yj are hidden, we do not know their values.



Expectation Maximization
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Formally: Maximize the likelihood of the “completed” data set (X, ~y),
where ~y = (y1, . . . , yn) combines the values of the variables Yj. That is,

L(X, ~y;C) =
n∏

j=1

f ~Xj,Yj
(~xj, yj;C) =

n∏

j=1

pYj(yj ;C) · f ~Xj|Yj
(~xj|yj;C).

Problem: Since the Yj are hidden, the values yj are unknown
(and thus the factors pYj(yj ;C) cannot be computed).

Approach to find a solution nevertheless:

• See the Yj as random variables (the values yj are not fixed) and
consider a probability distribution over the possible values.

• As a consequence L(X, ~y;C) becomes a random variable,
even for a fixed data set X and fixed cluster parameters C.

• Try to maximize the expected value of L(X, ~y;C) or lnL(X, ~y;C)
(hence the name expectation maximization).



Expectation Maximization
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Formally: Find the cluster parameters as

Ĉ = argmax
C

E([ln]L(X, ~y;C) | X;C),

that is, maximize the expected likelihood

E(L(X, ~y;C) | X;C) =
∑

~y∈{1,...,c}n
p~Y |X (~y |X;C) ·

n∏

j=1

f ~Xj,Yj
(~xj, yj ;C)

or, alternatively, maximize the expected log-likelihood

E(lnL(X, ~y;C) | X;C) =
∑

~y∈{1,...,c}n
p~Y |X (~y |X;C) ·

n∑

j=1

ln f ~Xj,Yj
(~xj, yj;C).

Unfortunately, these functionals are still difficult to optimize directly.

Solution: Use the equation as an iterative scheme, fixing C in some terms
(iteratively compute better approximations, similar to Heron’s algorithm).



Excursion: Heron’s Algorithm
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Task: Find the square root of a given number x, i.e., find y =
√
x.

Approach: Rewrite the defining equation y2 = x as follows:

y2 = x ⇔ 2y2 = y2 + x ⇔ y =
1

2y
(y2 + x) ⇔ y =

1

2

(
y +

x

y

)
.

Use the resulting equation as an iteration formula, i.e., compute the sequence

yk+1 =
1

2

(
yk +

x

yk

)
with y0 = 1.

It can be shown that 0 ≤ yk −
√
x ≤ yk−1 − yn for k ≥ 2.

Therefore this iteration formula provides increasingly better approximations of the
square root of x and thus is a safe and simple way to compute it.
Example x = 2: y0 = 1, y1 = 1.5, y2 ≈ 1.41667, y3 ≈ 1.414216, y4 ≈ 1.414213.

Heron’s algorithm converges very quickly and is often used in pocket calculators
and microprocessors to implement the square root.



Expectation Maximization
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Iterative scheme for expectation maximization:
Choose some initial set C0 of cluster parameters and then compute

Ck+1 = argmax
C

E(lnL(X, ~y;C) | X;Ck)

= argmax
C

∑

~y∈{1,...,c}n
p~Y |X (~y |X;Ck)

n∑

j=1

ln f ~Xj,Yj
(~xj, yj;C)

= argmax
C

∑

~y∈{1,...,c}n




n∏

l=1

p
Yl| ~Xl

(yl|~xl;Ck)




n∑

j=1

ln f ~Xj,Yj
(~xj, yj ;C)

= argmax
C

c∑

i=1

n∑

j=1

p
Yj| ~Xj

(i|~xj;Ck) · ln f ~Xj,Yj
(~xj, i;C).

It can be shown that each EM iteration increases the likelihood of the data
and that the algorithm converges to a local maximum of the likelihood function
(i.e., EM is a safe way to maximize the likelihood function).



Expectation Maximization
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Justification of the last step on the previous slide:

∑

~y∈{1,...,c}n




n∏

l=1

p
Yl| ~Xl

(yl|~xl;Ck)




n∑

j=1

ln f ~Xj,Yj
(~xj, yj ;C)

=
c∑

y1=1

· · ·
c∑

yn=1




n∏

l=1

p
Yl| ~Xl

(yl|~xl;Ck)




n∑

j=1

c∑

i=1

δi,yj ln f ~Xj,Yj
(~xj, i;C)

=
c∑

i=1

n∑

j=1

ln f ~Xj,Yj
(~xj, i;C)

c∑

y1=1

· · ·
c∑

yn=1

δi,yj

n∏

l=1

p
Yl| ~Xl

(yl|~xl;Ck)

=
c∑

i=1

n∑

j=1

p
Yj| ~Xj

(i|~xj;Ck) · ln f ~Xj,Yj
(~xj, i;C)

c∑

y1=1

· · ·
c∑

yj−1=1

c∑

yj+1=1

· · ·
c∑

yn=1

n∏

l=1,l 6=j
p
Yl| ~Xl

(yl|~xl;Ck)

︸ ︷︷ ︸
=
∏n

l=1,l 6=j

∑c
yl=1 pYl| ~Xl

(yl|~xl;Ck) =
∏n

l=1,l 6=j 1 = 1

.



Expectation Maximization
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The probabilities p
Yj| ~Xj

(i|~xj;Ck) are computed as

p
Yj| ~Xj

(i|~xj;Ck) =
f ~Xj,Yj

(~xj, i;Ck)

f ~Xj
(~xj;Ck)

=
f ~Xj|Yj

(~xj|i;Ck) · pYj(i;Ck)
∑c

l=1 f ~Xj|Yj
(~xj|l;Ck) · pYj(l;Ck)

,

that is, as the relative probability densities of the different clusters (as specified
by the cluster parameters) at the location of the data points ~xj.

The p
Yj| ~Xj

(i|~xj;Ck) are the posterior probabilities of the clusters

given the data point ~xj and a set of cluster parameters Ck.

They can be seen as case weights of a “completed” data set:

• Split each data point ~xj into c data points (~xj, i), i = 1, . . . , c.

• Distribute the unit weight of the data point ~xj according to the above proba-
bilities, i.e., assign to (~xj, i) the weight pYj| ~Xj

(i|~xj;Ck), i = 1, . . . , c.



Expectation Maximization: Cookbook Recipe

Rudolf Kruse Intelligent Data Analysis 36

Core Iteration Formula

Ck+1 = argmax
C

c∑

i=1

n∑

j=1

p
Yj| ~Xj

(i|~xj;Ck) · ln f ~Xj,Yj
(~xj, i;C)

Expectation Step

For all data points ~xj :
Compute for each normal distribution the probability p

Yj| ~Xj
(i|~xj;Ck)

that the data point was generated from it
(ratio of probability densities at the location of the data point).
→ “weight” of the data point for the estimation.

Maximization Step

For all normal distributions:
Estimate the parameters by standard maximum likelihood estimation
using the probabilities (“weights”) assigned to the data points
w.r.t. the distribution in the expectation step.



Expectation Maximization: Mixture of Gaussians
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Expectation Step: Use Bayes’ rule to compute

p
C| ~X(i|~x;C) =

pC(i; ci) · f ~X|C(~x|i; ci)
f ~X

(~x;C)
=

pC(i; ci) · f ~X|C(~x|i; ci)∑c
k=1 pC(k; ck) · f ~X|C(~x|k; ck)

.

→ “weight” of the data point ~x for the estimation.

Maximization Step: Use maximum likelihood estimation to compute

̺
(t+1)
i =

1

n

n∑

j=1

p
C| ~Xj

(i|~xj;C(t)), ~µ
(t+1)
i =

∑n
j=1 pC| ~Xj

(i|~xj;C(t)) · ~xj
∑n

j=1 pC| ~Xj
(i|~xj;C(t))

,

and Σ
(t+1)
i =

∑n
j=1 pC| ~Xj

(i|~xj;C(t)) ·

~xj − ~µ

(t+1)
i




~xj − ~µ

(t+1)
i



⊤

∑n
j=1 pC| ~Xj

(i|~xj;C(t))

Iterate until convergence (checked, e.g., by change of mean vector).



Expectation Maximization: Technical Problems
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If a fully general mixture of Gaussian distributions is used,
the likelihood function is truly optimized if

• all normal distributions except one are contracted to single data points and

• the remaining normal distribution is the maximum likelihood estimate for the
remaining data points.

This undesired result is rare,
because the algorithm gets stuck in a local optimum.

Nevertheless it is recommended to take countermeasures,
which consist mainly in reducing the degrees of freedom, like

• Fix the determinants of the covariance matrices to equal values.

• Use a diagonal instead of a general covariance matrix.

• Use an isotropic variance instead of a covariance matrix.

• Fix the prior probabilities of the clusters to equal values.



Hierarchical Agglomerative Clustering
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Start with every data point in its own cluster.
(i.e., start with so-called singletons: single element clusters)

In each step merge those two clusters that are closest to each other.

Keep on merging clusters until all data points are contained in one cluster.

The result is a hierarchy of clusters that can be visualized in a tree structure
(a so-called dendrogram — from the Greek δέντ̺ων (dendron): tree)

Measuring the Distances

◦ The distance between singletons is simply the distance between the (single)
data points contained in them.

◦ However: How do we compute the distance between clusters that contain more
than one data point?
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Centroid (red)
Distance between the centroids (mean value vectors) of the two clusters.

Average Linkage
Average distance between two points of the two clusters.

Single Linkage (green)
Distance between the two closest points of the two clusters.

Complete Linkage (blue)
Distance between the two farthest points of the two clusters.
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Single linkage can “follow chains” in the data
(may be desirable in certain applications).

Complete linkage leads to very compact clusters.

Average linkage also tends clearly towards compact clusters.

Single Linkage Complete Linkage
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The cluster merging process arranges the data points in a binary tree.

Draw the data tuples at the bottom or on the left
(equally spaced if they are multi-dimensional).

Draw a connection between clusters that are merged, with the distance to the data
points representing the distance between the clusters.

data
tuples

distance between clusters
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Example: Clustering of the 1-dimensional data set {2, 12, 16, 25, 29, 45}.

All three approaches to measure the distance between clusters
lead to different dendrograms.

2 12 16 25 29 45 2 12 16 25 29 45 2 12 16 25 29 45

Centroid

14 27

10

16.8

21.5

Single Linkage Complete Linkage
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Hierarchical agglomerative clustering can be implemented by processing the matrix
D = (dij)1≤i,j≤n containing the pairwise distances of the data points. (The data
points themselves are actually not needed.)

In each step the rows and columns corresponding to the two clusters that are
closest to each other are deleted.

A new row and column corresponding to the cluster formed by merging these
clusters is added to the matrix.

The elements of this new row/column are computed according to

∀k : dk∗ = d∗k = αidik + αjdjk + βdij + γ|dik − djk|

i, j indices of the two clusters that are merged
k indices of the old clusters that are not merged
∗ index of the new cluster (result of merger)
αi, αj, β, γ parameters specifying the method (single linkage etc.)
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The parameters defining the different methods are
(ni, nj, nk are the numbers of data points in the clusters):

method αi αj β γ

centroid method
ni

ni+nj

nj
ni+nj

− ninj
ni+nj

0

median method 1
2

1
2 −1

4 0

single linkage 1
2

1
2 0 −1

2

complete linkage 1
2

1
2 0 +1

2

average linkage
ni

ni+nj

nj
ni+nj

0 0

Ward’s method
ni+nk

ni+nj+nk

nj+nk
ni+nj+nk

0 0
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Simplest Approach:

◦ Specify a minimum desired distance between clusters.

◦ Stop merging clusters if the closest two clusters
are farther apart than this distance.

Visual Approach:

◦ Merge clusters until all data points are combined into one cluster.

◦ Draw the dendrogram and find a good cut level.

◦ Advantage: Cut need not be strictly horizontal.

More Sophisticated Approaches:

◦ Analyze the sequence of distances in the merging process.

◦ Try to find a step in which the distance between the two clusters merged is
considerably larger than the distance of the previous step.

◦ Several heuristic criteria exist for this step selection.
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Different notion of a cluster

• A cluster is a region in space where points a close to each other (dense).

• Points that are isolated from other points should be treated as outliers and
not contribute to the clustering.

Neighborhoods and Density-Reachability

• The neighborhood of a point x are all points that lie closer to x than a certain
threshold, formally: Nǫ(x) = {p ∈ X|d(x, p) ≤ ǫ}

• Points can act as cluster cores if their ǫ-neighborhood exceeds a minimum size:
x is core ↔ |Nǫ(x)| ≥ MinPts.

• A point p that lies on the border of a cluster might not be a core point but still
belong to that cluster if there is at least one core point x such that p ∈ Nǫ(x).
Then, p is directly density-reachable from x.

• A point p is density reachable from another point x if there is a series of
points p1, p2, . . . , pn with p = pn and x = p1 if for every (pi, pi+1): pi+1 is
directly density-reachable from pi.



Density Based Clustering: DBScan

Rudolf Kruse Intelligent Data Analysis 48

Density-Connected

• The former definition does not handle the case of two border points yet. We
still need to connect these:

• Two points p and q are density connected if there exists a core point o such
that p is density reachable from o and q is density reachable from o.

Cluster

• A cluster C is a subset of all data points such that for every p, q ∈ C holds: p
and q are density connected.

Noise

• A point x is considered as noise if there is no cluster C which x belongs to.

Note: All the above definitions are always with respect to the user-defined param-
eters ǫ and MinPts!
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Clusters can be of arbitrary shape and size.

DBScan can find the number of clusters without user interaction.

Can work on a distance matrix alone, no further information needed (beside ǫ and
MinPts).

Main Problem: Clusters of different densities (would require seperate ǫs for each
cluster).
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Prototype-based Clustering

◦ Alternating adaptation of data point assignment and cluster parameters.

◦ Online or batch adaptation of the cluster center.

◦ Crisp or fuzzy/probabilistic assignment of a datum to a cluster.

◦ Local minima can pose a problem.

◦ Fuzzy/probabilistic approaches are usually more robust.

Hierarchical Agglomerative Clustering

◦ Start with singletons (one element clusters).

◦ Always merge those clusters that are closest.

◦ Different ways to measure the distance of clusters.

◦ Cluster hierarchy can be depicted as a dendrogram.
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Density Based Clustering

◦ Find cluster core points.

◦ For each core point find its neighborhood.

◦ Merge overlapping neighborhoods (density-reachability).

◦ Points thats do not belong to any cluster are noise.


