

Intelligente Systeme

Zustandsagenten, Problemlösen und Suchen

Prof. Dr. R. Kruse C. Moewes G. Ruß

{kruse,cmoewes,russ}@iws.cs.uni-magdeburg.de

Institut für Wissens- und Sprachverarbeitung
Fakultät für Informatik
Otto-von-Guericke Universität Magdeburg

Übersicht

1. Zustandsagenten

Beispiel: Roboter in Gitterwelt Rückgekoppelte Neuronale Netze Umgebungsmodelle Blackboard-Systeme

- 2. Problemlösende Agenten
- 3. Uninformierte Suche

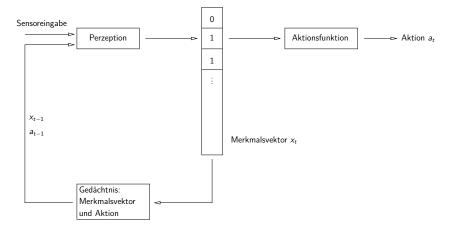
Zustandsagenten

bisher: S-R-Agenten mit unmittelbarer Reaktion auf Sensorreize jetzt:

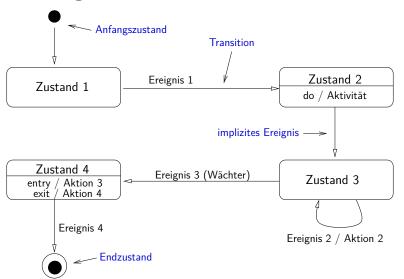
Ausnutzung von Sensorinformationen aus Vergangenheit

Zustandsagenten

- ► Darstellung der Umgebung mit Merkmalsvektoren
- ► Beispiel:



Zustandsagenten



Beispiel: Roboter in Gitterwelt (1)

Roboter in Gitterwelt mit begrenzter Sensorinformation

- ► Sensoreingabe zum Zeitpunkt *t*:
 - $ightharpoonup s_2^t$, s_4^t , s_6^t , s_8^t (d.h. nur 4 statt bisher 8 Sensoren)
 - $s_i^t = 1 \leftrightarrow \text{Feld } s_i^t \text{ ist nicht frei}$
- ► Aufgabe: Wandverfolgung
- ▶ Idee: nutze Merkmalsvektor des jeweils vorherigen Zeitpunkts

Beispiel: Roboter in Gitterwelt (2)

Definition der Merkmalsvektoren:

- $w_i^t = s_i^t$ für i = 2, 4, 6, 8
- $w_1^t = 1 \leftrightarrow w_2^{t-1} = 1$ and $a_{t-1} = \text{east}$
- $w_3^t = 1 \leftrightarrow w_4^{t-1} = 1$ and $a_{t-1} = \text{south}$
- $w_5^t = 1 \leftrightarrow w_6^{t-1} = 1$ and $a_{t-1} = \text{west}$
- $\blacktriangleright w_7^t = 1 \leftrightarrow w_8^{t-1} = 1$ and $a_{t-1} = \text{north}$
- ⇒ (teilweiser) Ausgleich eingeschränkter Sensorinformationen möglich!

Beispiel: Roboter in Gitterwelt (3)

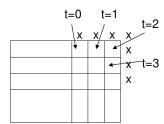
Sinnvolle Aktionen zur Wandverfolgung:

- $w_2^t \wedge \neg w_4^t \rightarrow \text{east}$
- $w_4^{\overline{t}} \wedge \neg w_6^{\overline{t}} \rightarrow \text{south}$
- $w_6^t \wedge \neg w_8^t \rightarrow \text{west}$
- $w_8^t \wedge \neg w_2^t \rightarrow \text{north}$
- $w_1^t \wedge \neg w_2^t \rightarrow \text{north}$
- ▶ $w_3^t \land \neg w_4^t \rightarrow \text{east}$
- $w_5^t \wedge \neg w_6^t \rightarrow \text{south}$
- ▶ $w_7^t \land \neg w_8^t \rightarrow \text{west}$
- ▶ alle $w_i = 0 \rightarrow \text{north}$

Beispiel: Roboter in Gitterwelt (4)

Implementierung (Beispiel einer Bewegung):

	Sensoreingabe			Merkmalsvektor							Aktion		
t	s_2^t	S_4^t	s_6^t	s_8^t	w_1^t	w_2^t	w_3^t	w_4^t	w_5^t	w_6^t	w_7^t	w_8^t	a_{t}
0	1	0	0	0	0	1	0	0	0	0	0	0	east
1	1	0	0	0	1	1	0	0	0	0	0	0	east
2	1	1	0	0	1	1	0	1	0	0	0	0	south
2'	0	0	0	0	1	0	0	0	0	0	0	0	north



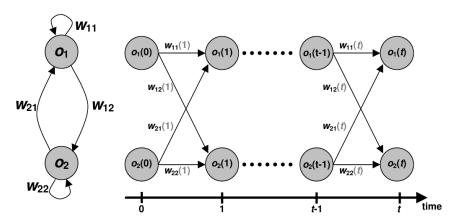
Anmerkung: Situation $t=2^{\circ}$ z.B. bei Sensorstörung (alle Sensoren s=0)

Rekurrente Neuronale Netze

- ► rückgekoppelte neuronale Netzen
- ► Verbindungen von oberen zu unteren Schichten erlaubt
- ▶ vgl. MLP: nur Verbindungen von "unten" nach "oben"
- ► Rückkopplung ⇒ Information kann gespeichert werden
- ► Training: modifizierte Backpropagation
- ► Anwendung: komplexe Differentialgleichungssysteme

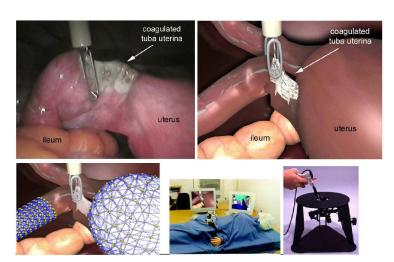
Rekurrente Netze: Lernverfahren

Idee der Lernverfahren: Entfalten des Netzes über die Zeit



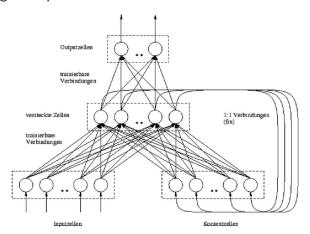
SUSILAP-G

SUrgical Simulator for LAParoscopy in Gynaecology [Radetzky et al., 1999]



Einfache RNNs: Elman-Netze

- ► Einführung einer Kontextschicht
- ► ermöglicht Speichern von Informationen

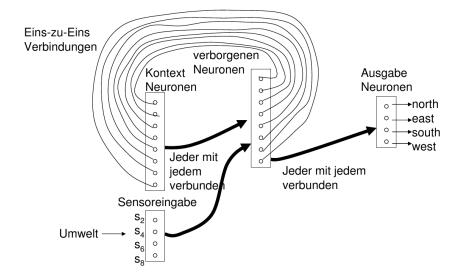


Beispiel: Elman-Netz für Roboter

Elman-Netz für Roboter in Gitterwelt:

- ► 8-dimensionale Merkmalsvektoren (i.A. Anzahl der Dimensionen unbekannt)
- ► 4 Eingaben (Sensoren)
- 4 Ausgaben (Richtungen; Ausgabe mit größtem Wert wird gewählt)
- ► Training durch Backpropagation
- ▶ "lernfähige" Automaten

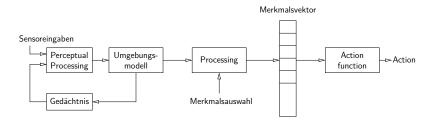
Beispiel: Elman-Netz für Roboter



Umgebungsmodelle

- ▶ bisher: nur Informationen über sehr kleinen Umgebungsausschnitt:
 - ▶ unmittelbare Nachbarschaft
 - gespeichert in Merkmalsvektor
- ► Idee der Umgebungsmodelle:
 - Speicherung möglichst aller bereits gesammelter Informationen über Umgebung
 - ▶ Nutzung geeigneter Datenstrukturen wie z.B. Landkarten

Umgebungsmodelle: Beispiel für Gitterwelt



Umgebungsmodelle: Beispiel für Gitterwelt

1	1	1	1	1	?	?
1	0	0	0	0	0	?
1	0	0	0	0	0	?
1	0	0	R	0	0	?
1	0	0	0	0	0	?
1	?	?	?	?	?	?
?	?	?	?	?	?	?

- ▶ 1: belegt, 0: frei, ?: unbekannt, R: Roboter
- ▶ mögliche Aktion basierend auf Informationen: go west (or north) and follow wall

Umgebungsmodelle: Aktionen

- ► Aktionen z.B. über zwei-dimensionale Potentialfelder bestimmen
- ► Potentialfelder: Überlagerung von anziehenden ("attractive") und abstoßenden ("repulsive") Komponenten
- Bewegung des Roboters: absteigender Richtung des Gradienten (lokale Minima!)
- ► Bewegungsrichtung: vorberechnet oder online (z.B. in sich ändernden Umgebungen)

Umgebungsmodelle: Potentialfeld für Gridworld

anziehende Komponente:

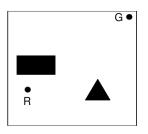
- ▶ durch Zielfeld erzeugt: $p_a(x^{(\rho)}) = k_1 \cdot d(x^{(\rho)})^2$
- ▶ k₁: konstanter Faktor, d: Abstand zum Zielfeld

abstoßende Komponente(n):

- ▶ durch Hindernisse erzeugt: $p_r(x^{(\rho)}) = \frac{k_2}{d(x^{(\rho)})^2}$
- ▶ wobei k₂ konstanter Faktor, d Abstand zum Hindernis

insgesamt: $p = p_a + p_r$

Potentialfelder: Beispielumgebung

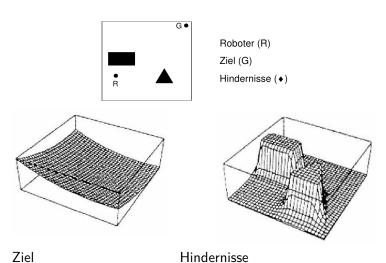


Roboter (R)

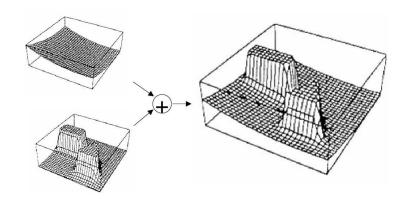
Ziel (G)

Hindernisse (♦)

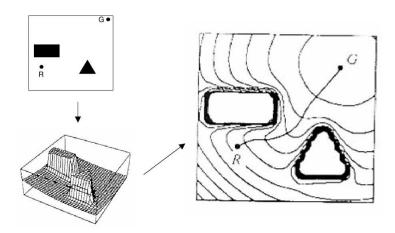
Potentialfelder: Potentialfeldkomponenten



Potentialfelder: Gesamtes Potentialfeld

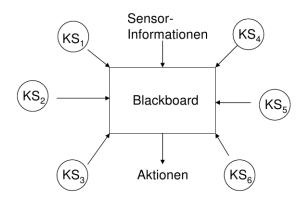


Äquipotentiallinien (für Gradientenverfahren)



Blackboard-Systeme

- ► Blackboard: Spezielle Datenstruktur
- ► Knowledge Source (KS): Programm zum Lesen und Schreiben des Blackboards



Blackboard-Systeme: Knowledge Source

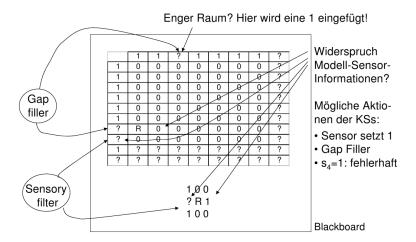
Bestandteile:

- 1. Bedingungsteil (berechnet Wert eines Merkmals)
- 2. Aktionsteil (Programm zum Lesen/Schreiben des Blackboards und/oder zum Ausführen externer Aktionen)
 - ► Konfliktlöser entscheidet bei Ausführung von zwei KS, welche gewählt wird
- ► KS = "Experte" eines Teils des Blackboards, den es überwacht

Blackboard-Systeme: Beispiel (1)

- Weltmodell im Roboter: kann unvollständig/falsch sein (Grund: Sensorfehler)
- ▶ mögliche Knowledge Sourcen:
 - ► Lückenfüller (Gap Filler): sucht nach engen Räumen (tight spaces) im gelernten Umgebungsmodell und markiert Feld bzw. korrigiert ggf. vorhandene Fehler
 - ► Sensorfilter (Sensory Filter): vergleicht Sensorinformationen mit gelerntem Umgebungsmodell und versucht Fehler zu beseitigen

Blackboard-Systeme: Beispiel (2)



Übersicht

1. Zustandsagenten

2. Problemlösende Agenten

3. Uninformierte Suche

Problemlösende Agenten

eingeschränkte Form eines generellen Agenten:

Algorithmus 1 SIMPLE-PROBLEM-SOLVING-AGENT

```
Eingabe: Wahrnehmung percept
Ausgabe: eine Aktion action
```

1: **static** *seq*: Aktionssequenz (anfangs leer)

2: static state: momentane Beschreibung der Welt

3: static goal: Ziel (anfangs null)

4: static problem: Problembeschreibung

5: state ← UPDATE-STATE(state, percept)

6: **if** seg is empty { $goal \leftarrow FORMULATE-GOAL(state)$ 7:

 $problem \leftarrow FORMULATE-PROBLEM(state, goal)$

 $seg \leftarrow Search(problem)$ 10: }

11: $action \leftarrow Recommendation(seq, state)$ 12: $seg \leftarrow Remainder(seg, state)$

13: return action

8:

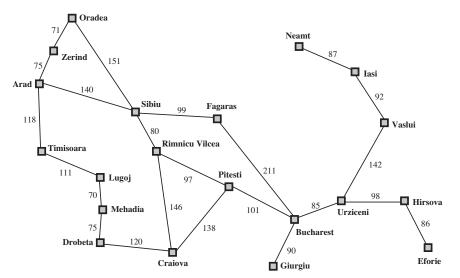
9:

- ► entspricht Problemlösen "offline" ► Lösung mit "geschlossenen Augen"
- ▶ "online": Handeln ohne vollständiges Wissen

Beispiel: Rumänien

- ▶ Urlaub in Rumänien, momentan in Arad
- ► Rückflug: morgen von Bukarest
- ► Formulieren des Ziel: in Bukarest sein
- ► Formulieren des Problems: Fahren
 - ► Zustände: verschiedene Städte
 - ► Aktionen: Fahrten von einer zu anderen Stadt
- ► Lösung finden: Sequenz von Städten, z.B. Arad, Sibiu, Fagaras, Bukarest

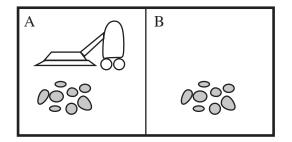
Beispiel: Rumänien



Arten von Problemen

- deterministisch (vollständig beobachtbar)
 - ► Agent weiß genau in welchem Zustand er sein wird
 - ► Lösung ist eine Sequenz
- ▶ nicht beobachtbar ⇒ konformantes Problem
 - ► Agent hat u.U. keine Ahnung wo er ist
 - ► Lösung (falls existent) ist eine Sequenz
- ► nichtdeterministisch (teilw. beobachtbar) ⇒ **Zufallsproblem**
 - ► Wahrnehmungen: neue Infos über momentan Zustand
 - ► Lösung: ungewisser Plan oder Strategie
 - ► oftmals verschränkte Suche/Ausführung
- ► unbekannter Zustandsraum ⇒ Explorationsproblem ("online")

Staubsaug-Welt



Wahrnehmung: Ort und Status, z.B. [A, Dirty]

Aktionen: Left, Right, Suck, NoOp

Ein Staubsaug-Agent

Sequenz von Wahrnehmungen	Aktion		
[A, Clean]	Right		
[A, Dirty]	Suck		
[B, Clean]	Left		
[B, Dirty]	Suck		
[A, Clean], [A, Clean]	Right		
[A, Clean], [A, Dirty]	Suck		
:	:		
-	· .		

```
Algorithmus 2 REFLECTIVE-VACUUM-AGENT

1: if staus = Dirty {
2: return Suck
3: } else {
4: if location = A {
5: return Right
6: } else {
7: return Left
8: }
9: }
```

Beispiel: Staubsaug-Welt

▶ deterministisch, Start in #5, Lösung: [Right, Suck]

▶ konformant

- ► Start in {1,2,3,4,5,6,7,8} z.B. *Right* nach {2,4,6,8}
- ► Lösung: [Right, Suck, Left, Suck]

► Zufall

- ► Start in #5
- Murphys Gesetz: Suck kann einen sauberen Teppich beschmutzigen!
- ► lokal Abtastung: Schmutz, nur Ort
- ► Lösung: [Right, if dirt then Suck]

Ansatz für deterministische Probleme

Problem: definiert durch 4 Begriffe

- 1. Anfangszustand, z.B. Arad
- **2. Nachfolgerfunktion** S(x) = Menge aller

Aktions-Zustands-Paare, z.B.

$$S(Arad) = \{ \langle Arad \rightarrow Zerind, Zerind \rangle, \ldots \}$$

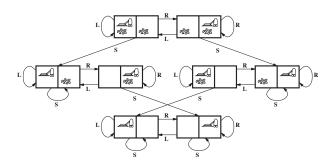
- 3. Zieltest
 - ightharpoonup explizit, z.B. x = Bukarest
 - ▶ implizit, z.B. *NoDirt(x)*
- 4. Wegkosten (zusätzlich)
 - ► Summe der Abstände, Anzahl ausgeführter Aktionen, etc.
 - c(x, a, y) seien Schrittkosten mit ≥ 0

Lösung: Sequenz von Aktionen vom Anfangs- zum Endzustand

Wahl des Zustandsraums

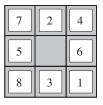
- reale Welt ist sehr komplex
- ⇒ Abstraktion des Zustandsraums für Problemlösen
 - ► (abstrakter) Zustand = Menge realer Zustände
 - ► (abstrakte) Aktion = komplexe Kombination realer Aktionen z.B. "Arad → Zerind" ist komplexe Menge möglicher Strecken, Umleitungen, Raststätten, usw.
 - für Realisierbarkeit: jeder reale Zustand "in Arad" führt zu realem Zustand "in Zerind"
 - (abstrakte) Lösung = Menge aller realen Pfade, die realen Lösungen entsprechen
 - ▶ abstrakte Aktion sollte "leichter" sein als Realität

Beispiel: Zustandsgraph der Staubsaug-Welt

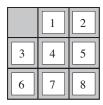


- ► Zustände: ganzzahliger Schmutz und Ort des Agenten
- ► Aktionen: Left, Right, Suck, NoOp
- ► Zieltest: kein Schmutz
- ► Pfadkosten: 1 pro Aktion (0 für *NoOp*)

Beispiel: Das 8-Puzzle



Start State



Goal State

- ► Zustände: ganzzahlige Positionen der Plättchen
- ► Aktionen: bewege Lücke *links*, *rechts*, *hoch*, *runter*
- ► Zieltest: Zielzustand (gegeben)
- ▶ Pfadkosten: 1 pro Zug

Hinweis: optimale Lösung der n-Puzzle-Familie ist NP-schwer

Baumsuchalgorithmen

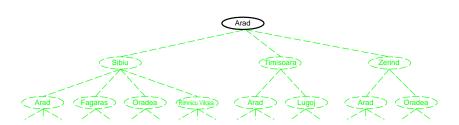
grundlegende Idee:

- ▶ offline, simulierte Durforstung des Zustandsraums
- Erzeugung von Nachfolgern bereits erkundeter Zustände (sog. expandierte Zustände)

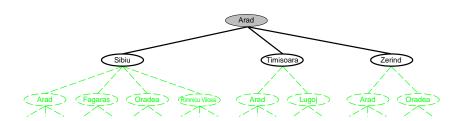
Algorithmus 3 Tree-Search

```
Eingabe: Problembeschreibung problem, Vorgehensweise strategy
Ausgabe: Lösung oder Fehler
 1: initialize search tree using initial state of problem
2: while true {
3:
      if there are no candidates for expansion {
4:
         return failure
5:
6:
      choose leaf node for expansion according to strategy
7:
      if node contains goal state {
         return corresponding solution
8:
9:
       } else {
10:
         expand node and add resulting nodes to search tree
11:
12: }
```

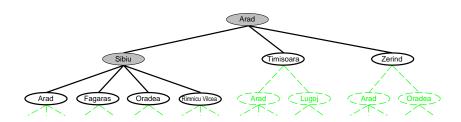

Beispiel: Baumsuche



Beispiel: Baumsuche

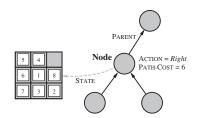


Beispiel: Baumsuche



Implementierung: Zustände vs. Knoten

- ► Zustand = physikalische Konfigurierung
- ► Knoten = Datenstruktur (Teil eines Suchbaums mit Eltern, Kinder, Tiefe, Pfadkosten g(x))
- \triangleright Zustände haben keine Eltern, Kinder, Tiefe, oder Pfadkosten g(x)



- ► EXPAND-Funktion erzeugt neue Knoten
- ► Successor-Funktion erzeugt zugehörigen Zustände

Implementierung: Generelle Baumsuche

Algorithmus 4 Tree-Search

```
Eingabe: Problembeschreibung problem, Rand fringe
Ausgabe: Lösung oder Fehler
 1: seg ← INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
 2: while true {
      if fringe is empty {
3:
        return failure
 4:
 5:
6:
      node \leftarrow Remove-Front(fringe)
 7:
      if Goal-Test(problem, STATE(node)) {
8:
        return node
9:
10:
      fringe \leftarrow Insert-All(Expand(node, problem), fringe)
11: }
```

Implementierung: Generelle Baumsuche

Algorithmus 5 EXPAND

```
Eingabe: Knoten node, Problembeschreibung problem
Ausgabe: eine Menge von Knoten
 1: for each action, result in Successor(problem, STATE[node]) {
 2:
    s \leftarrow \text{new NODE}
 3:
    PARENT-NODE[s] \leftarrow node
    Action[s] \leftarrow action
4:
 5:
      STATE[s] \leftarrow result
6:
      PATH-Cost[s] \leftarrow PATH-Cost[node] + Step-Cost(node, action, s)
7:
    Depth[s] \leftarrow Depth[node] + 1
      add s to successors
8:
9: }
10: return successors
```


Suchstrategien

- ► Strategie = Reihenfolge der Expansion von Nachfolgerknoten
- ► Bewertung anhand von
 - ▶ Vollständigkeit: Wird immer 1 Lösung gefunden falls eine existiert?
 - ► Zeitkomplexität: Anzahl der Knoten erzeugt/expandiert
 - ► Speicherkomplexität: maximale Anzahl von Knoten im Speicher
 - ► Optimalität: Wird immer 1 Lösung mit geringsten Kosten gefunden?
- ► Zeit- und Speicherkomplexität gemessen anhand von
 - ▶ b maximaler Verzweigungsfaktor des Suchbaums
 - ▶ d Tiefe der Lösung mit geringsten Kosten
 - ▶ m maximale Tiefe des Zustandsraums (eventuell ∞)

Übersicht

- 1. Zustandsagenten
- 2. Problemlösende Agenten

3. Uninformierte Suche

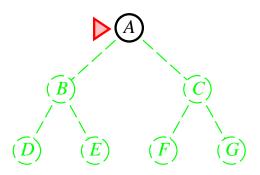
Breitensuche Tiefensuche Beschränkte Tiefensuche Iterative Tiefensuche

Uninformierte Suchstrategien

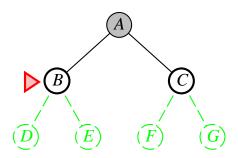
Uninformierte Suchstrategien nutzen nur verfügbare Informationen der Problemdefinition.

- ▶ Breitensuche
- uniforme Kostensuche
- ▶ Tiefensuche
- beschränkte Tiefensuche
- ▶ iterative Tiefensuche

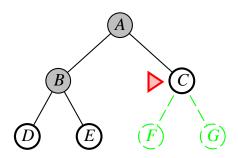
- ► Expandiere "seichtesten", nicht-expandierten Knoten!
- ► Implementierung: *fringe* = FIFO-Schlange (neue Nachfolger ans Ende)



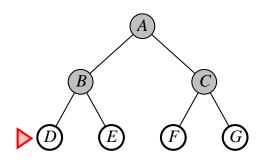
- ► Expandiere "seichtesten", nicht-expandierten Knoten!
- Implementierung: fringe = FIFO-Schlange (neue Nachfolger ans Ende)



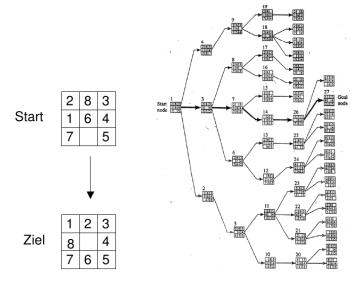
- ► Expandiere "seichtesten", nicht-expandierten Knoten!
- ► Implementierung: fringe = FIFO-Schlange (neue Nachfolger ans Ende)



- ► Expandiere "seichtesten", nicht-expandierten Knoten!
- Implementierung: fringe = FIFO-Schlange (neue Nachfolger ans Ende)



Breitensuche: 8-Puzzle



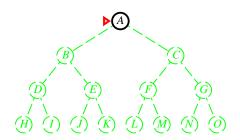
Breitensuche: Eigenschaften

- ▶ vollständig: falls b endlich
- ► Zeit: $1 + b + b^2 + b^3 + \ldots + b^d + b(b^d 1) = O(b^{d+1})$, also exponentiell in d
- ▶ Speicher: $O(b^{d+1})$ (behält jeden Knoten im Speicher)
- ▶ optimal: falls Kosten = 1 pro Schritt, generell nicht
- ▶ größtes Problem: Speicher
- \blacktriangleright leichte Erzeugung von Knoten mit 100 MB/s, also 24 h \mapsto 8.5 TB

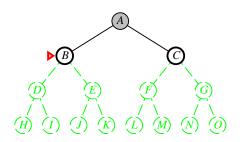
Uniforme Kostensuche

- ► Expandiere nicht-expandierten Knoten mit geringsten Kosten
- ► Implementierung: *fringe* = Schlange absteigend sortiert nach Wegkosten
- ► äquivalent zur Breitensuche falls Schrittkosten alle gleich
- vollständig: falls Schrittkosten $\geq \varepsilon$
- ▶ Zeit: # Knoten mit $g \le$ Kosten der optimalen Lösung $O(b^{\lceil C^*/\epsilon \rceil})$ wobei C^* Kosten der optimalen Lösung
- ▶ Speicher: # Knoten mit $g \le$ Kosten der optimalen Lösung $O(b^{\lceil C^*/\epsilon \rceil})$
- ▶ optimal: ja, denn Knoten expandieren in aufsteigender Reihenfolge von g(n)

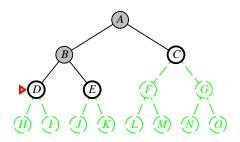
- ► Expandiere tiefsten nicht-expandierten Knoten!
- ► Implementierung: fringe = LIFO-Schlange (Nachfolger nach vorn)



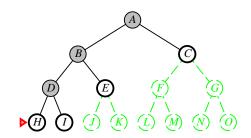
- ► Expandiere tiefsten nicht-expandierten Knoten!
- ► Implementierung: *fringe* = LIFO-Schlange (Nachfolger nach vorn)



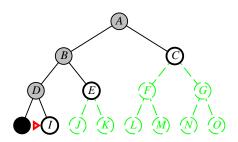
- ► Expandiere tiefsten nicht-expandierten Knoten!
- ► Implementierung: *fringe* = LIFO-Schlange (Nachfolger nach vorn)



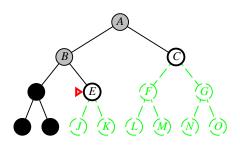
- ► Expandiere tiefsten nicht-expandierten Knoten!
- ► Implementierung: fringe = LIFO-Schlange (Nachfolger nach vorn)



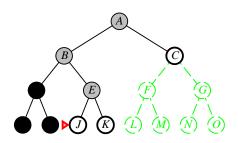
- ► Expandiere tiefsten nicht-expandierten Knoten!
- ► Implementierung: fringe = LIFO-Schlange (Nachfolger nach vorn)



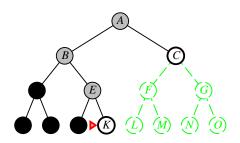
- ► Expandiere tiefsten nicht-expandierten Knoten!
- ► Implementierung: fringe = LIFO-Schlange (Nachfolger nach vorn)



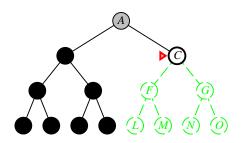
- Expandiere tiefsten nicht-expandierten Knoten!
- ► Implementierung: fringe = LIFO-Schlange (Nachfolger nach vorn)



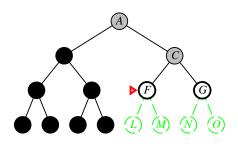
- Expandiere tiefsten nicht-expandierten Knoten!
- ► Implementierung: *fringe* = LIFO-Schlange (Nachfolger nach vorn)



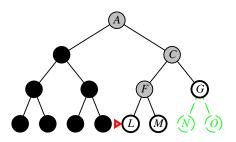
- ► Expandiere tiefsten nicht-expandierten Knoten!
- ► Implementierung: *fringe* = LIFO-Schlange (Nachfolger nach vorn)



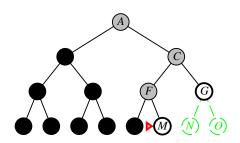
- Expandiere tiefsten nicht-expandierten Knoten!
- ► Implementierung: fringe = LIFO-Schlange (Nachfolger nach vorn)



- Expandiere tiefsten nicht-expandierten Knoten!
- ► Implementierung: fringe = LIFO-Schlange (Nachfolger nach vorn)



- ► Expandiere tiefsten nicht-expandierten Knoten!
- ► Implementierung: fringe = LIFO-Schlange (Nachfolger nach vorn)



Tiefensuche: Eigenschaften

- ▶ vollständig:
 - ► nein, versagt für unendlich-tiefe Räume (oder Räume mit Schleifen)
 - ▶ ja, für endliche Räume bei Vermeidung sich wiederholender Zustände im Pfad
- ▶ Zeit:
 - ▶ $O(b^m)$, schrecklich falls $m \gg d$
 - ▶ falls viele Lösungen, dann u.U. viel schneller als Breitensuche
- ► Speicher: O(bm), also linearer Speicher!
- ▶ optimal: nein

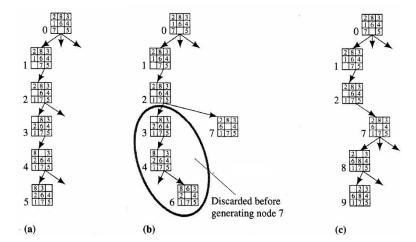
Beschränkte Tiefensuche

- ► Tiefensuche mit Tiefenbegrenzung /
- ⇒ Knoten in Tiefe / haben keine Nachfolger

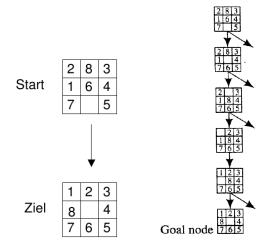
Beispiel: 8-Puzzle

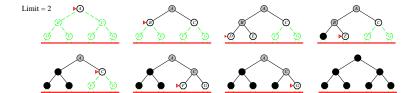
- ► Operationsreihenfolge: links, oben, rechts, unten
- ► Tiefenbegrenzung: 5

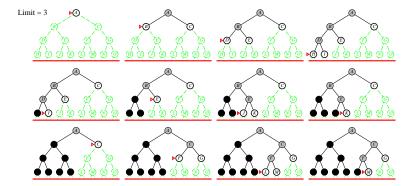
Beschränkte Tiefensuche: 8-Puzzle



Beschränkte Tiefensuche: 8-Puzzle







Iterative Tiefensuche: Eigenschaften

- ► vollständig: ja
- ► Zeit: $(d+1)b^0 + db^1 + (d-1)b^2 + ... + b^d = O(b^d)$
- ► Speicher: $O(b \cdot d)$
- ► optimal:
 - ▶ ja, falls Schrittkosten = 1
 - ▶ kann um uniforme Kostenbäume erweitert werden
- ▶ numerischer Vergleich für b = 10 und d = 5 (Lösung im am weitesten rechten Blatt):

$$N(IDS) = 50 + 400 + 3.000 + 20.000 + 100.000 = 123.450$$

 $N(BFS) = 10 + 100 + 1.000 + 10.000 + 100.000 + 999.990 = 1.111.100$

- ▶ IDS besser, weil andere Knoten bei Tiefe d = 5 nicht expandiert
- ► BFS kann modifiziert werden, um auf Ziel zu testen wenn Knoten generiert wird

Zusammenfassung der Algorithmen

Kriterium	Breiten-	uniforme	Tiefen-	beschränkte	iterative
	suche	Kostensuche	suche	Tiefensuche	Tiefensuche
vollständig?	ja*	ja*	nein	ja, falls $l \geq d$	ja
Zeit	b^{d+1}	$b^{\lceil C^*/\epsilon ceil}$	b^m	b'	b^d
Speicher	b^{d+1}	$b^{\lceil C^*/\epsilon ceil}$	bm	Ы	bd
optimal?	ja*	ja	nein	nein	ja*

Literatur

Radetzky, A., Bartsch, W., Grospietsch, G., and Pretschner, D. P. (1999).

SUSILAP-G: Ein Operationssimulator zum Training minimal-invasiver Eingriffe in der Gynäkologie.

Zentralblatt für Gynäkologie, 121(2).