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Textbooks

Textbook, 2nd ed.
Springer-Verlag
Heidelberg, 2015

(in German)

Textbook, 3rd ed.
Springer-Verlag
Heidelberg, 2022

(in English)

This lecture follows the
first parts of these books
fairly closely, which treat
artificial neural networks.
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Motivation: Why (Artificial) Neural Networks?

• (Neuro-)Biology / (Neuro-)Physiology / Psychology:

◦ Exploit similarity to real (biological) neural networks.

◦ Build models to understand nerve and brain operation by simulation.

• Computer Science / Engineering / Economics

◦ Mimic certain cognitive capabilities of human beings.

◦ Solve learning/adaptation, prediction, and optimization problems.

• Physics / Chemistry

◦ Use neural network models to describe physical phenomena.

◦ Special case: spin glasses (alloys of magnetic and non-magnetic metals).
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Motivation: Why Neural Networks in AI?

Physical-Symbol System Hypothesis [Newell and Simon 1976]

A physical-symbol system has the necessary and sufficient means
for general intelligent action.

Neural networks process simple signals, not symbols.

So why study neural networks in Artificial Intelligence?

• Symbol-based representations work well for inference tasks,
but are fairly bad for perception tasks.

• Symbol-based expert systems tend to get slower with growing knowledge,
human experts tend to get faster.

• Neural networks allow for highly parallel information processing.

• There are several successful applications in industry and finance.
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Biological Background

Diagram of a typical myelinated vertebrate motoneuron (source: Wikipedia, Ruiz-Villarreal 2007),
showing the main parts involved in its signaling activity like the dendrites, the axon, and the synapses.
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Biological Background

Structure of a prototypical biological neuron (simplified)

nucleus

axon

myelin sheath

cell body
(soma)

terminal button

synapse

dendrites
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Biological Background

(Very) simplified description of neural information processing

• Axon terminal releases certain chemicals, called neurotransmitters.

• These act on the membrane of the receptor dendrite to change its polarization.
(The inside is usually 70mV more negative than the outside.)

• Decrease in potential difference: excitatory synapse
Increase in potential difference: inhibitory synapse

• If there is enough net excitatory input, the axon is depolarized.

• The resulting action potential travels along the axon.
(Speed depends on the degree to which the axon is covered with myelin.)

• When the action potential reaches the terminal buttons,
it triggers the release of neurotransmitters.
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Recording the Electrical Impulses (Spikes)

pictures not available in online version
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Signal Filtering and Spike Sorting

picture not available
in online version

An actual recording of the electrical po-
tential also contains the so-called local
field potential (LFP), which is domi-
nated by the electrical current flowing
from all nearby dendritic synaptic activ-
ity within a volume of tissue. The LFP is
removed in a preprocessing step (high-
pass filtering, ∼300Hz).

picture not available
in online version

Spikes are detected in the filtered sig-
nal with a simple threshold approach.
Aligning all detected spikes allows us to
distinguishing multiple neurons based
on the shape of their spikes. This pro-
cess is called spike sorting.
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(Personal) Computers versus the Human Brain

Personal Computer Human Brain

processing units 1 CPU, 2–16 cores
1010 transistors
1–2 graphics cards/GPUs,
104 cores/shaders
1010 transistors 1011 neurons

storage capacity 1010 bytes main memory (RAM) 1011 neurons
1012 bytes external memory 1014 synapses

processing speed 10−9 seconds > 10−3 seconds
109 operations per second < 1000 per second

bandwidth 1012 bits/second 1014 bits/second

neural updates 106 per second 1014 per second
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(Personal) Computers versus the Human Brain

• The processing/switching time of a neuron is relatively large (> 10−3 seconds),
but updates are computed in parallel.

• A simulation on a computer takes several (dozens of) clock cycles per update.

Advantages of Neural Networks:

• High processing speed due to massive parallelism.

• Fault Tolerance:
Remain functional even if (larger) parts of a network get damaged.

• “Graceful Degradation”:
gradual degradation of performance if an increasing number of neurons fail.

• Well suited for inductive learning
(learning from examples, generalization from instances).

It appears to be reasonable to try to mimic or to recreate these advantages
by constructing artificial neural networks.
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Threshold Logic Units
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Threshold Logic Units

A Threshold Logic Unit (TLU) is a processing unit for numbers with n inputs
x1, . . . , xn and one output y. The unit has a threshold θ and each input xi is
associated with a weight wi. A threshold logic unit computes the function

y =





1, if
n

∑
i=1

wixi ≥ θ,

0, otherwise.

θ

x1

xn

y

w1

wn

TLUs mimic the thresholding behavior of biological neurons in a (very) simple way.
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Threshold Logic Units: Examples

Threshold logic unit for the conjunction x1 ∧ x2.

4

x1

x2

y

3

2

x1 x2 3x1 + 2x2 y

0 0 0 0
1 0 3 0
0 1 2 0
1 1 5 1

Threshold logic unit for the implication x2 → x1.

−1

x1

x2

y

2

−2

x1 x2 2x1 − 2x2 y

0 0 0 1
1 0 2 1
0 1 −2 0
1 1 0 1
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Threshold Logic Units: Examples

Threshold logic unit for (x1 ∧ x2) ∨ (x1 ∧ x3) ∨ (x2 ∧ x3).

1

x1

x2

x3

y

2

−2

2

x1 x2 x3 ∑i wixi y

0 0 0 0 0
1 0 0 2 1
0 1 0 −2 0
1 1 0 0 0
0 0 1 2 1
1 0 1 4 1
0 1 1 0 0
1 1 1 2 1

Rough Intuition:

• Positive weights are analogous to excitatory synapses.

• Negative weights are analogous to inhibitory synapses.
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Threshold Logic Units: Geometric Interpretation

Review of line representations

Straight lines are usually represented in one of the following forms:

Explicit Form: g ≡ x2 = bx1 + c

Implicit Form: g ≡ a1x1 + a2x2 + d = 0

Point-Direction Form: g ≡ x⃗ = p⃗ + k⃗r, k ∈ IR

Normal Form: g ≡ (x⃗ − p⃗)⊤n⃗ = 0

with the parameters:

b : slope of the line

c : section of the x2 axis (intercept)

p⃗ : location vector of a point of the line (base vector)

r⃗ : direction vector of the line

n⃗ : normal vector of the line, may be chosen as (a1, a2)⊤

d : “distance” of the line to the origin in units of (a2
1 + a2

2)
−1

2
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Threshold Logic Units: Geometric Interpretation

x1

x2

g

O

ϕ

c

~p

~r
~n = (a1, a2)

~q = ~p⊤~n
|~n|

~n
|~n|

d = −~p⊤~n

b = r2
r1

A straight line and
its defining parameters:

p⃗: arbitrary point on the line
r⃗: direction vector of the line
n⃗: normal vector of the line
q⃗: plummet from origin to line

(projection of p⃗ to n⃗)

~n = (a1, a2)

x1

x2

g

O

ϕ
~y

~z

~q = ~p⊤~n
|~n|

~n
|~n|

~z = ~y⊤~n
|~n|

~n
|~n|

How to determine the side
on which a point y⃗ lies:

d: “length” of q⃗ in units of 1
|⃗n|

z⃗: projection of y⃗ to n⃗
(to be compared to q⃗)

If y⃗⊤n⃗ + d > 0, then y⃗ lies
on the side to which n⃗ points.
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Threshold Logic Units: Geometric Interpretation

Threshold logic unit for x1 ∧ x2.

4

x1

x2

y

3

2

x1

x2

0 1

0

1

0
1

Threshold logic unit for x2 → x1.

−1

x1

x2

y

2

−2

x1

x2

0 1

0

1
0

1
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Threshold Logic Units: Geometric Interpretation

Visualization of 3-dimensional
Boolean functions:

x1

x2
x3

(0, 0, 0)

(1, 1, 1)

Threshold logic unit for (x1 ∧ x2) ∨ (x1 ∧ x3) ∨ (x2 ∧ x3).

1

x1

x2

x3

y

2

−2

2
x1

x2

x3
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Threshold Logic Units: Limitations

The biimplication problem x1 ↔ x2: There is no separating line.

x1 x2 y

0 0 1
1 0 0
0 1 0
1 1 1

x1

x2

0 1

0

1

Formal proof by reductio ad absurdum:

since (0, 0) 7→ 1: 0 ≥ θ, (1)

since (1, 0) 7→ 0: w1 < θ, (2)

since (0, 1) 7→ 0: w2 < θ, (3)

since (1, 1) 7→ 1: w1 + w2 ≥ θ. (4)

(2) and (3): w1 + w2 < 2θ. With (4): 2θ > θ, or θ > 0. Contradiction to (1).
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Linear Separability

Definition: Two sets of points in a Euclidean space are called linearly separable iff
there exists at least one point, line, plane or hyperplane (depending on the dimen-
sion of the space), such that all points of the one set lie on one side and all points of
the other set lie on the other side of this point, line, plane or hyperplane (or on it).
That is, the point sets can be separated by a linear decision function. Formally:
Two sets X, Y ⊂ IRm are linearly separable iff w⃗ ∈ IRm and θ ∈ IR exist such that

∀x⃗ ∈ X : w⃗⊤x⃗ ≥ θ and ∀y⃗ ∈ Y : w⃗⊤y⃗ < θ.

• Boolean functions define two points sets, namely the set of points that are
mapped to the function value 0 and the set of points that are mapped to 1.

⇒ The term “linearly separable” can be transferred to Boolean functions.

• As we have seen, conjunction and implication are linearly separable
(as are disjunction, NAND, NOR etc.).

• The biimplication is not linearly separable
(and neither is the exclusive or (XOR)).
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Linear Separability

Definition: A set of points in a Euclidean space is called convex if it is non-empty
and connected (that is, if it is a region) and for every pair of points in it every point
on the straight line segment connecting the points of the pair is also in the set.

Definition: The convex hull of a set X of points in a Euclidean space is the smallest
convex set of points that contains X. Alternatively, the convex hull of a set X of
points is the intersection of all convex sets that contain X.

Theorem: Two sets of points in a Euclidean space are linearly separable
if and only if their convex hulls are disjoint (that is, have no point in common).

• For the biimplication problem, the convex hulls are the diagonal line segments.

• They share their intersection point and are thus not disjoint.

• Therefore the biimplication is not linearly separable.
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Threshold Logic Units: Limitations

Total number and number of linearly separable Boolean functions
(On-Line Encyclopedia of Integer Sequences, oeis.org, A001146 and A000609):

inputs Boolean functions linearly separable functions

1 4 4
2 16 14
3 256 104
4 65,536 1,882
5 4,294,967,296 94,572
6 18,446,744,073,709,551,616 15,028,134
n 2(2

n) no general formula known

• For many inputs a threshold logic unit can compute almost no functions.

• Networks of threshold logic units are needed to overcome the limitations.
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Networks of Threshold Logic Units

Solving the biimplication problem with a network.

Idea: logical decomposition x1 ↔ x2 ≡ (x1 → x2) ∧ (x2 → x1)

−1

−1

3

x1

x2

−2

−2

2

2

2

2

y = x1 ↔ x2

computes y1 = x1 → x2

computes y2 = x2 → x1

computes y = y1 ∧ y2
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Networks of Threshold Logic Units

Solving the biimplication problem: Geometric interpretation

x1

x2

0 1

0

1

a

d c

b

g2

g1

0

1

0

1

=⇒

y1

y2

0 1

0

1

b

d

ac
g3

1

0

• The first layer computes new Boolean coordinates for the points.

• After the coordinate transformation the problem is linearly separable.
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Representing Arbitrary Boolean Functions

Algorithm: Let y = f (x1, . . . , xn) be a Boolean function of n variables.

(i) Represent the given function f (x1, . . . , xn) in disjunctive normal form. That is,
determine D f = C1 ∨ . . . ∨ Cm, where all Cj are conjunctions of n literals, that is,
Cj = lj1 ∧ . . . ∧ ljn with lji = xi (positive literal) or lji = ¬xi (negative literal).

(ii) Create a neuron for each conjunction Cj of the disjunctive normal form
(having n inputs — one input for each variable), where

wji =

{
+2, if lji = xi,
−2, if lji = ¬xi,

and θj = n − 1 +
1

2

n

∑
i=1

wji.

(iii) Create an output neuron (having m inputs — one input for each neuron
that was created in step (ii)), where

w(n+1)k = 2, k = 1, . . . , m, and θn+1 = 1.

Remark: weights are set to ±2 instead of ±1 in order to ensure integer thresholds.
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Representing Arbitrary Boolean Functions

Example:
ternary Boolean function:

x1 x2 x3 y Cj

0 0 0 0
1 0 0 1 x1 ∧ x2 ∧ x3

0 1 0 0
1 1 0 0
0 0 1 0
1 0 1 0
0 1 1 1 x1 ∧ x2 ∧ x3

1 1 1 1 x1 ∧ x2 ∧ x3

D f = C1 ∨ C2 ∨ C3

One conjunction for each row
where the output y is 1 with
literals according to input values.

First layer (conjunctions):

C1 =
x1 ∧ x2 ∧ x3

C2 =
x1 ∧ x2 ∧ x3

C3 =
x1 ∧ x2 ∧ x3

Second layer (disjunction):

C1

C2

C3

D f = C1 ∨ C2 ∨ C3
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Representing Arbitrary Boolean Functions

Example:
ternary Boolean function:

x1 x2 x3 y Cj

0 0 0 0
1 0 0 1 x1 ∧ x2 ∧ x3

0 1 0 0
1 1 0 0
0 0 1 0
1 0 1 0
0 1 1 1 x1 ∧ x2 ∧ x3

1 1 1 1 x1 ∧ x2 ∧ x3

D f = C1 ∨ C2 ∨ C3

One conjunction for each row
where the output y is 1 with
literals according to input values.

Resulting network of threshold logic units:

x1

x2

x3

1

3

5

1 y

2

−2

2

−2
2

2

−2

2

2

2

2

2

C1 = x1 ∧ x2 ∧ x3

C2 = x1 ∧ x2 ∧ x3

C3 = x1 ∧ x2 ∧ x3

Df = C1 ∨ C2 ∨ C3
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Reminder: Convex Hull Theorem

Theorem: Two sets of points in a Euclidean space are linearly separable
if and only if their convex hulls are disjoint (that is, have no point in common).

Example function on the preceding slide:

y = f (x1, x2, x3) = (x1 ∧ x2 ∧ x3) ∨ (x1 ∧ x2 ∧ x3) ∨ (x1 ∧ x2 ∧ x3)

Convex hull of points with y = 0 Convex hull of points with y = 1

• The convex hulls of the two point sets are not disjoint (red: intersection).

• Therefore the function y = f (x1, x2, x3) is not linearly separable.
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Training Threshold Logic Units
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Training Threshold Logic Units

• Geometric interpretation provides a way to construct threshold logic units
with 2 and 3 inputs, but:

◦ Not an automatic method (human visualization needed).

◦ Not feasible for more than 3 inputs.

• General idea of automatic training:

◦ Start with random values for weights and threshold.

◦ Determine the error of the output for a set of training patterns.

◦ Error is a function of the weights and the threshold: e = e(w1, . . . , wn, θ).

◦ Adapt weights and threshold so that the error becomes smaller.

◦ Iterate adaptation until the error vanishes.
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Training Threshold Logic Units

Single input threshold logic unit for the negation ¬x.

θx yw
x y

0 1
1 0

Output error as a function of weight and threshold.

error for x = 0

–2
–1

0
1

2

–2

–1
0

1
2

1

21

2

θ

w

e

error for x = 1

–2
–1

0
1

2

–2

–1
0

1
2

1

21

2

θ

w

e

sum of errors

–2
–1

0
1

2

–2

–1
0

1
2

1

21

2

θ

w

e
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Training Threshold Logic Units

• The error function cannot be used directly, because it consists of plateaus.

• Solution: If the computed output is wrong,
take into account how far the weighted sum is from the threshold
(that is, consider “how wrong” the relation of weighted sum and threshold is).

Modified output error as a function of weight and threshold.

error for x = 0

–2
–1

0
1

2

–2

–1
0

1
2

1

2

3

4

1

2

3

4

θ

w

e

error for x = 1

–2
–1

0
1

2

–2

–1
0

1
2

1

2

3

4

1

2

3

4

θ

w

e

sum of errors

–2
–1

0
1

2

–2

–1
0

1
2

1

2

3

4

1

2

3

4

θ

w

e
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Training Threshold Logic Units

Schemata of resulting directions of parameter changes.

changes for x = 0

θ

w

−2 −1 0 1 2

−2

−1

0

1

2

changes for x = 1

θ

w

−2 −1 0 1 2

−2

−1

0

1

2

sum of changes

θ

w

−2 −1 0 1 2

−2

−1

0

1

2

• Start at a random point.

• Iteratively adapt parameters
according to the direction corresponding to the current point.

• Stop if the error vanishes.
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Training Threshold Logic Units: Delta Rule

Formal Training Rule: Let x⃗ = (x1, . . . , xn)⊤ be an input vector of a threshold logic
unit, o the desired output for this input vector and y the actual output of the thresh-
old logic unit. If y ̸= o, then the threshold θ and the weight vector w⃗ = (w1, . . . , wn)⊤

are adapted as follows in order to reduce the error:

θ(new) = θ(old) + ∆θ with ∆θ = −η(o − y),

∀i ∈ {1, . . . , n} : w
(new)
i = w

(old)
i + ∆wi with ∆wi = η(o − y)xi,

where η is a parameter that is called learning rate. It determines the severity of the
weight changes. This procedure is called Delta Rule or Widrow–Hoff Procedure
[Widrow and Hoff 1960].

• Online Training: Adapt parameters after each training pattern.

• Batch Training: Adapt parameters only at the end of each epoch,
that is, after a traversal of all training patterns.
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Training Threshold Logic Units: Delta Rule

procedure online training (var w⃗, var θ, L, η);
var y, e; (* output, sum of errors *)
begin

repeat (* training loop *)
e := 0; (* initialize the error sum *)
for all (x⃗, o) ∈ L do begin (* traverse the patterns *)

if (w⃗⊤x⃗ ≥ θ) then y := 1; (* compute the output *)
else y := 0; (* of the threshold logic unit *)

if (y ̸= o) then begin (* if the output is wrong *)
θ := θ − η(o − y); (* adapt the threshold *)
w⃗ := w⃗+ η(o − y)x⃗; (* and the weights *)
e := e + |o − y|; (* sum the errors *)

end;
end;

until (e ≤ 0); (* repeat the computations *)
end; (* until the error vanishes *)
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Training Threshold Logic Units: Delta Rule

procedure batch training (var w⃗, var θ, L, η);
var y, e, θc, w⃗c; (* output, sum of errors, sums of changes *)
begin

repeat (* training loop *)

e := 0; θc := 0; w⃗c := 0⃗; (* initializations *)
for all (x⃗, o) ∈ L do begin (* traverse the patterns *)

if (w⃗⊤x⃗ ≥ θ)then y := 1; (* compute the output *)
else y := 0; (* of the threshold logic unit *)

if (y ̸= o) then begin (* if the output is wrong *)
θc := θc − η(o − y); (* sum the changes of the *)
w⃗c := w⃗c+ η(o − y)x⃗; (* threshold and the weights *)
e := e + |o − y|; (* sum the errors *)

end;
end;
θ := θ + θc; (* adapt the threshold *)
w⃗ := w⃗ + w⃗c; (* and the weights *)

until (e ≤ 0); (* repeat the computations *)
end; (* until the error vanishes *)
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Training Threshold Logic Units: Online

epoch x o xw − θ y e ∆θ ∆w θ w

1.5 2

1 0 1 −1.5 0 1 −1 0 0.5 2
1 0 1.5 1 −1 1 −1 1.5 1

2 0 1 −1.5 0 1 −1 0 0.5 1
1 0 0.5 1 −1 1 −1 1.5 0

3 0 1 −1.5 0 1 −1 0 0.5 0
1 0 −0.5 0 0 0 0 −0.5 0

4 0 1 −0.5 0 1 −1 0 −0.5 0
1 0 0.5 1 −1 1 −1 0.5 −1

5 0 1 −0.5 0 1 −1 0 −0.5 −1
1 0 −0.5 0 0 0 0 −0.5 −1

6 0 1 0.5 1 0 0 0 −0.5 −1
1 0 −0.5 0 0 0 0 −0.5 −1
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Training Threshold Logic Units: Batch

epoch x o xw − θ y e ∆θ ∆w θ w

1.5 2

1 0 1 −1.5 0 1 −1 0
1 0 0.5 1 −1 1 −1 1.5 1

2 0 1 −1.5 0 1 −1 0
1 0 −0.5 0 0 0 0 0.5 1

3 0 1 −0.5 0 1 −1 0
1 0 0.5 1 −1 1 −1 0.5 0

4 0 1 −0.5 0 1 −1 0
1 0 −0.5 0 0 0 0 −0.5 0

5 0 1 0.5 1 0 0 0
1 0 0.5 1 −1 1 −1 0.5 −1

6 0 1 −0.5 0 1 −1 0
1 0 −1.5 0 0 0 0 −0.5 −1

7 0 1 0.5 1 0 0 0
1 0 −0.5 0 0 0 0 −0.5 −1
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Training Threshold Logic Units

Example training procedure: Online and batch training.

Online Training
θ

w

−2 −1 0 1 2

−2

−1

0

1

2

Batch Training
θ

w

−2 −1 0 1 2

−2

−1

0

1

2

Batch Training

–2
–1

0
1

2

–2

–1
0

1
2

1

2

3

4

1

2

3

4

θ

w

e

−

1

2
x y

−1 x

0 1
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Training Threshold Logic Units: Conjunction

Threshold logic unit with two inputs for the conjunction.

θ

x1

x2

y

w1

w2

x1 x2 y

0 0 0
1 0 0
0 1 0
1 1 1

3

x1

x2

y

2

1

x1

x2

0 1

0

1

0
1
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Training Threshold Logic Units: Conjunction

epoch x1 x2 o x⃗⊤w⃗ − θ y e ∆θ ∆w1 ∆w2 θ w1 w2

0 0 0

1 0 0 0 0 1 −1 1 0 0 1 0 0
0 1 0 −1 0 0 0 0 0 1 0 0
1 0 0 −1 0 0 0 0 0 1 0 0
1 1 1 −1 0 1 −1 1 1 0 1 1

2 0 0 0 0 1 −1 1 0 0 1 1 1
0 1 0 0 1 −1 1 0 −1 2 1 0
1 0 0 −1 0 0 0 0 0 2 1 0
1 1 1 −1 0 1 −1 1 1 1 2 1

3 0 0 0 −1 0 0 0 0 0 1 2 1
0 1 0 0 1 −1 1 0 −1 2 2 0
1 0 0 0 1 −1 1 −1 0 3 1 0
1 1 1 −2 0 1 −1 1 1 2 2 1

4 0 0 0 −2 0 0 0 0 0 2 2 1
0 1 0 −1 0 0 0 0 0 2 2 1
1 0 0 0 1 −1 1 −1 0 3 1 1
1 1 1 −1 0 1 −1 1 1 2 2 2

5 0 0 0 −2 0 0 0 0 0 2 2 2
0 1 0 0 1 −1 1 0 −1 3 2 1
1 0 0 −1 0 0 0 0 0 3 2 1
1 1 1 0 1 0 0 0 0 3 2 1

6 0 0 0 −3 0 0 0 0 0 3 2 1
0 1 0 −2 0 0 0 0 0 3 2 1
1 0 0 −1 0 0 0 0 0 3 2 1
1 1 1 0 1 0 0 0 0 3 2 1
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Training Threshold Logic Units: Biimplication

epoch x1 x2 o x⃗⊤w⃗ − θ y e ∆θ ∆w1 ∆w2 θ w1 w2

0 0 0

1 0 0 1 0 1 0 0 0 0 0 0 0
0 1 0 0 1 −1 1 0 −1 1 0 −1
1 0 0 −1 0 0 0 0 0 1 0 −1
1 1 1 −2 0 1 −1 1 1 0 1 0

2 0 0 1 0 1 0 0 0 0 0 1 0
0 1 0 0 1 −1 1 0 −1 1 1 −1
1 0 0 0 1 −1 1 −1 0 2 0 −1
1 1 1 −3 0 1 −1 1 1 1 1 0

3 0 0 1 0 0 1 -1 0 0 0 1 0
0 1 0 0 1 −1 1 0 −1 1 1 −1
1 0 0 0 1 −1 1 −1 0 2 0 −1
1 1 1 −3 0 1 −1 1 1 1 1 0

4 0 0 1 0 0 1 -1 0 0 0 1 0
0 1 0 0 1 −1 1 0 −1 1 1 −1
1 0 0 0 1 −1 1 −1 0 2 0 −1
1 1 1 −3 0 1 −1 1 1 1 1 0
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Training Threshold Logic Units: Convergence

Convergence Theorem: Let L = {(x⃗1, o1), . . . (x⃗m, om)} be a set of training patterns,
each consisting of an input vector x⃗i ∈ IRn and a desired output oi ∈ {0, 1}.

Furthermore, let L0 = {(x⃗, o) ∈ L | o = 0} and L1 = {(x⃗, o) ∈ L | o = 1}.

If L0 and L1 are linearly separable, that is, if w⃗ ∈ IRn and θ ∈ IR exist such that

∀(x⃗, 0) ∈ L0 : w⃗⊤x⃗ < θ and

∀(x⃗, 1) ∈ L1 : w⃗⊤x⃗ ≥ θ,

then online as well as batch training terminate.

• The algorithms terminate only when the error vanishes.

• Therefore the resulting threshold and weights must solve the problem.

• For not linearly separable problems the algorithms do not terminate
(oscillation, repeated computation of same non-solving w⃗ and θ).
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Training Threshold Logic Units: Delta Rule

Turning the threshold value into a weight:

θ

x1

x2

xn

y
w2

wn

w1

n

∑
i=1

wixi ≥ θ

0

x1

x2

xn

y
w2

wn

x0+1 =

−1

w1

w0 = −θ
+θ

n

∑
i=1

wixi − θ ≥ 0
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Training Threshold Logic Units: Delta Rule

Formal Training Rule (with threshold turned into a weight):
Let x⃗ = (x0 = 1, x1, . . . , xn)⊤ be an (extended) input vector of a threshold logic unit,
o the desired output for this input vector and y the actual output of the threshold
logic unit. If y ̸= o, then the (extended) weight vector w⃗ = (w0 = −θ, w1, . . . , wn)⊤

is adapted as follows in order to reduce the error:

∀i ∈ {0, . . . , n} : w
(new)
i = w

(old)
i + ∆wi with ∆wi = η(o − y)xi,

where η is a parameter that is called learning rate. It determines the severity of the
weight changes. This procedure is called Delta Rule or Widrow–Hoff Procedure
[Widrow and Hoff 1960].

• Note that with extended input and weight vectors, there is only one update rule
(no distinction of threshold and weights).

• Note also that the (extended) input vector may be x⃗ = (x0 = −1, x1, . . . , xn)⊤

and the corresponding (extended) weight vector w⃗ = (w0 = +θ, w1, . . . , wn)⊤.
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Training Networks of Threshold Logic Units

• Single threshold logic units have strong limitations:
They can only compute linearly separable functions.

• Networks of threshold logic units
can compute arbitrary Boolean functions.

• Training single threshold logic units with the delta rule is easy and fast
and guaranteed to find a solution if one exists.

• Networks of threshold logic units cannot be trained, because

◦ there are no desired values for the neurons of the first layer(s),

◦ the problem can usually be solved with several different functions
computed by the neurons of the first layer(s) (non-unique solution).

• When this situation became clear,
neural networks were first seen as a “research dead end”.
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General (Artificial) Neural Networks
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General Neural Networks: Graph Theory

Basic graph theoretic notions

A (directed) graph is a pair G = (V, E) consisting of a (finite) set V of vertices
or nodes and a (finite) set E ⊆ V × V of edges.

We call an edge e = (u, v) ∈ E directed from vertex u to vertex v.

Let G = (V, E) be a (directed) graph and u ∈ V a vertex.
Then the vertices of the set

pred(u) = {v ∈ V | (v, u) ∈ E}

are called the predecessors of the vertex u
and the vertices of the set

succ(u) = {v ∈ V | (u, v) ∈ E}

are called the successors of the vertex u.
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General Neural Networks: General Definition

General definition of a neural network

An (artificial) neural network is a (directed) graph G = (U, C),
whose vertices u ∈ U are called neurons or units and
whose edges c ∈ C are called connections.

The set U of vertices is partitioned into

• the set Uin of input neurons,

• the set Uout of output neurons, and

• the set Uhidden of hidden neurons.

It is
U = Uin ∪ Uout ∪ Uhidden,

Uin ̸= ∅, Uout ̸= ∅, Uhidden ∩ (Uin ∪ Uout) = ∅.
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General Neural Networks: General Definition

Each connection (v, u) ∈ C possesses a weight wuv and
each neuron u ∈ U possesses three (real-valued) state variables:

• the network input netu,

• the activation actu, and

• the output outu.

Each input neuron u ∈ Uin also possesses a fourth (real-valued) state variable,

• the external input extu.

Furthermore, each neuron u ∈ U possesses three functions:

• the network input function f
(u)
net : IR2|pred(u)|+κ1(u) → IR,

• the activation function f
(u)
act : IRκ2(u) → IR, and

• the output function f
(u)
out : IR → IR,

which are used to compute the values of the state variables.
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Structure of a Generalized Neuron

A Generalized Neuron is a Simple Numeric Processor.

u
outv1 = inuv1

wuv1

outvn = inuvn

wuvn

f
(u)
net netu

f
(u)
act actu

f
(u)
out outu

extu

σ1, . . . , σl θ1, . . . , θk

Note: Dashed lines are optional parameters, inputs and transfers.
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General Neural Networks: Network Types

Types of (artificial) neural networks:

• If the graph of a neural network is acyclic,
it is called a feed-forward network.

• If the graph of a neural network contains cycles (backward connections),
it is called a recurrent network.

Representation of the connection weights as a matrix:

u1 u2 . . . ur


wu1u1
wu1u2

. . . wu1ur

wu2u1
wu2u2

wu2ur
... ...

wuru1
wuru2

. . . wurur




u1

u2
...

ur

Note: Weights refer to connection from second index to first index (reason: later).
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General Neural Networks: Example

A simple recurrent neural network

u1

u2

u3x1

x2

y

−2

4

1

3

Weight matrix of this network

u1 u2 u3


0 0 4
1 0 0

−2 3 0




u1

u2

u3

Note: Weights refer to connection from row to column.
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General Neural Networks: Example

A simple recurrent neural network

1

u1

1

u2

1

u3

x1

x2

y

−2

4

1

3

f
(u)
net (w⃗u, i⃗nu) = ∑

v∈pred(u)

wuvinuv = ∑
v∈pred(u)

wuv outv

f
(u)
act (netu, θ) =

{
1, if netu ≥ θ,
0, otherwise.

f
(u)
out (actu) = actu
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General Neural Networks: Example

Updating the activations of the neurons

u1 u2 u3

input phase 1 0 0

work phase 1 0 0 netu3
= −2 < 1

0 0 0 netu1
= 0 < 1

0 0 0 netu2
= 0 < 1

0 0 0 netu3
= 0 < 1

0 0 0 netu1
= 0 < 1

• Order in which the neurons are updated:
u3, u1, u2, u3, u1, u2, u3, . . .

• Input phase: activations/outputs in the initial state.

• Work phase: activations/outputs of the next neuron to update (bold) are
computed from the outputs of the other neurons and the weights/threshold.

• A stable state with a unique output is reached.
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General Neural Networks: Example

Updating the activations of the neurons

u1 u2 u3

input phase 1 0 0

work phase 1 0 0 netu3
= −2 < 1

1 1 0 netu2
= 1 ≥ 1

0 1 0 netu1
= 0 < 1

0 1 1 netu3
= 3 ≥ 1

0 0 1 netu2
= 0 < 1

1 0 1 netu1
= 4 ≥ 1

1 0 0 netu3
= −2 < 1

• Order in which the neurons are updated:
u3, u2, u1, u3, u2, u1, u3, . . .

• No stable state is reached (oscillation of output).

• Outputs depends on when the updates are terminated.
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Scale Types / Attribute Types

Scale Type Possible Operations Examples

nominal test for equality sex/gender
(categorical, qualitative) blood group

ordinal test for equality exam grade
(rank scale, comparative) greater/less than wind strength

metric test for equality length
(interval scale, quantitative) greater/less than weight

difference time
maybe ratio temperature

• Nominal scales are sometimes divided into dichotomic (binary, two values)
and polytomic (more than two values).

• Metric scales may or may not allow us to form a ratio of values:
weight and length do, temperature (in ◦C) does not (it does in ◦K).
time as duration does, time as calender time does not.

• Counts may be considered as a special type (e.g. number of children).
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General Neural Networks: Attribute Types

• Metric attributes can be processed directly (since their values are numbers),
but other scale types need some preprocessing.

• To process nominal attributes, we have to turn their values into numbers.

(Note that they may already be encoded as numbers in the data we want to process,
but that does not mean that they are metric or can be used directly like that.)

• Although it may seem natural to simply number the different values
of nominal attributes, this can lead to undesired effects
if the numbers do not reflect a natural order of the values.

(Only ordinal attributes possess such an order, nominal attributes do not.)

• Even if there is such a natural order, it may still not be appropriate
to choose equal steps between neighboring values.

(This requires that differences can be computable meaningfully.)

• Hence ordinal attributes also pose a problem:
Their values cannot simply be numbered according to their order.
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General Neural Networks: Nominal Attributes

• Nominal attributes are commonly handled by so-called 1-in-n encoding
(also called 1-hot encoding):

◦ Each nominal attribute is represented by as many binary variables
as it has values — each variable corresponds to one attribute value.

◦ The variable corresponding to the obtaining attribute value is set to 1,
while all other variables that belong to the same attribute are set to 0.

◦ That is, only 1 in n variables (where n is the number of attributes values)
is set to 1, the others to 0, which explains the name of this encoding.

• A common alternative is 1-in-(n–1) encoding:

◦ One attribute value is treated specially and is encoded as all zeros.

◦ The remaining n−1 values are encoded by setting one of the variables to 1.

◦ Attention: This does not treat all attribute values in the same way!
(There should be a good reason to single out one attribute value.)
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General Neural Networks: Ordinal Attributes

• There are only few approaches that can explicitly treat ordinal attributes.
(These approaches are not covered in this lecture.)

• Hence ordinal attributes often pose an unpleasant problem.

• Of course, one may treat ordinal attributes like nominal attributes,
and this is actually what is most commonly done.

• However, this discards the ordinal structure of the domain of such an attribute.
As a consequence, a lot of information is lost.

• On the other hand, if we represent the values of an ordinal attribute by numbers
that reflect the ordering, it will be treated as if it were a metric attribute,
implicitly assuming that at least differences can be computed meaningfully.

• Unfortunately there seems to be no perfect solution for this problem.

• One has to choose for the application at hand
which drawback is easier to tolerate.
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General Neural Networks: Preprocessing

Normalization of the Input Vectors

• Compute expected value and (corrected) variance for each input:

µk =
1

|L| ∑
l∈L

ext
(l)
uk

and σ2
k =

1

|L| − 1 ∑
l∈L

(
ext

(l)
uk
−µk

)2

,

(“−1”: Bessel’s correction, after Friedrich Wilhelm Bessel, 1784–1846;
suggested by inductive statistics: prevent under-estimation)

• Normalize the input vectors to expected value 0 and standard deviation 1:

ext
(l)(new)
uk

=
ext

(l)(old)
uk

−µk√
σ2

k

• Such a normalization avoids unit and scaling problems.
It is also known as z-scaling or z-score standardization/normalization.

Christian Borgelt Artificial Neural Networks and Deep Learning 63



General Neural Networks: Training

Definition of Learning Tasks for a Neural Network

A fixed learning task Lfixed for a neural network with

• n input neurons Uin = {u1, . . . , un} and

• m output neurons Uout = {v1, . . . , vm},

is a set of training patterns l =
(
ı⃗ (l), o⃗ (l)

)
, each consisting of

• an input vector ı⃗ (l) =
(

ext
(l)
u1

, . . . , ext
(l)
un

)
and

• an output vector o⃗ (l) =
(
o
(l)
v1

, . . . , o
(l)
vm

)
.

A fixed learning task is solved, if for all training patterns l ∈ Lfixed the neural
network computes from the external inputs contained in the input vector ı⃗ (l) of
a training pattern l the outputs contained in the corresponding output vector o⃗ (l).
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General Neural Networks: Training

Definition of Learning Tasks for a Neural Network

A free learning task Lfree for a neural network with

• n input neurons Uin = {u1, . . . , un},

is a set of training patterns l =
(
ı⃗ (l)
)
, each consisting of

• an input vector ı⃗ (l) =
(

ext
(l)
u1

, . . . , ext
(l)
un

)
.

Properties:

• There is no desired output for the training patterns.

• Outputs can be chosen freely by the training method.

• Solution idea: Similar inputs should lead to similar outputs.
(clustering of input vectors)

Christian Borgelt Artificial Neural Networks and Deep Learning 65



General Neural Networks: Regression

Solving a Fixed Learning Task: Error Definition

• Measure how well a neural network solves a given fixed learning task.

• Suppose the target is a metric attribute (value differences are meaningful);
in this case the learning task is regression.

• Compute differences between desired and actual outputs.

• Do not sum differences directly in order to avoid errors canceling each other.

• Square has favorable properties for deriving the adaptation rules.

e = ∑
l∈Lfixed

e(l) = ∑
v∈Uout

ev = ∑
l∈Lfixed

∑
v∈Uout

e
(l)
v ,

where e
(l)
v =

(
o
(l)
v − out

(l)
v

)2

Christian Borgelt Artificial Neural Networks and Deep Learning 66



General Neural Networks: Classification

Solving a Fixed Learning Task: Error Definition

• In practice we often face nominal target (or output) attributes:
in this case the learning task is classification.

• Nominal attributes are usually encoded with 1-in-n encoding.

With this, the sum of squared deviations can be used as an error measure,
summing over all variables that were introduced for the encoding.

• However, there are some problems with this approach.

◦ We need to be able to “decode” the output of the neural network.

◦ It is not likely that, even after proper training,
the output of a neural network is a clean 1-in-n encoding.

◦ The standard (and very natural) solution is to interpret the neural network
as predicting the value for which the greatest output is produced.

◦ Alternative: interpret the outputs as probabilities.
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General Neural Networks: Classification

Objective: Output values that can be interpreted as class probabilities.

• Start from the activations act
(l)
1 , . . . , act

(l)
m of the output neurons.

• First idea: Simply normalize the activation values to sum 1.

out
(l)
v =

act
(l)
v

∑u∈Uout
act

(l)
u

• Problem: Activation values may be negative (e.g., if fact(x) = tanh(x)).

• Solution: Use the so-called softmax function (actually softargmax):

out
(l)
v =

exp
(

act
(l)
v

)

∑u∈Uout
exp

(
act

(l)
u

)

• Advantage: The softmax function yields a probability distribution

for any list of values act
(l)
1 , . . . , act

(l)
m , regardless of sign and magnitude.
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General Neural Networks: Classification

• Since with the softmax function the output of a neural network
can be interpreted as a probability distribution over classes,
other error measures suggest themselves.

• We may draw on measures for the divergence of probability distributions.

• One of the best known divergence measures is [Kullback and Leibler 1951]:

Let p1 and p2 be two strictly positive probability distributions
on the same space Ω of events. Then

IKLdiv(p1, p2) = ∑
ω∈Ω

p1(ω) log2

p1(ω)

p2(ω)
= IEω∼p1

(
log2

p1(ω)

p2(ω)

)

is called the Kullback–Leibler information divergence of p1 and p2.

◦ The Kullback-Leibler information divergence is non-negative.

◦ It is zero if and only if p1 ≡ p2.

◦ It is generally not symmetric: IKLdiv(p1, p2) ̸= IKLdiv(p2, p1).
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General Neural Networks: Classification

• An error measure is derived from Kullback–Leibler information divergence
by combining it with Shannon entropy [Shannon 1948] to obtain
a relative entropy of one probability distribution w.r.t. another:

The Shannon entropy of a strictly positive probability distribution p
on a space Ω of events is

HShannon(p) = − ∑
ω∈Ω

p(ω) log2 p(ω) = IEω∼p(− log2 p(ω)).

• Let p1 and p2 be two strictly positive probability distributions
on the same space Ω of events. Then

Hcross(p1, p2) = H(p1) + IKLdiv(p1, p2)

= − ∑
ω∈Ω

p1(ω) log2 p1(ω) + ∑
ω∈Ω

p1(ω) log2

p1(ω)

p2(ω)

= − ∑
ω∈Ω

p1(ω) log2 p2(ω) = IEω∼p1
(− log2 p2(ω))

is called the cross entropy of p1 and p2 or the relative entropy of p2 w.r.t. p1.
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General Neural Networks: Classification

• Cross entropy is used as an objective function by applying it for a pattern l

◦ to the output distribution o⃗ut
(l)

computed via the softmax function and

◦ the desired output distribution o⃗(l) as it is contained in the data
(which is a clean 1-in-n encoding of the obtaining class).

• Summing over all training patterns of a fixed learning task Lfixed yields

Hcross(Θ) = ∑
l∈Lfixed

Hcross

(
o⃗(l), o⃗ut

(l))
= − ∑

l∈Lfixed

∑
v∈Uout

o
(l)
v log2

(
out

(l)
v

)
.

• This is actually a fairly intuitive measure: (Θ: parameters of the neural network)

An entropy measure can be seen as a quantification of the uncertainty
about the obtaining value that is encoded in a probability distribution.

• The desired output distribution exhibits no uncertainty, the computed does.

• The higher the amount of uncertainty about the obtaining output value,
especially w.r.t. the desired output value (which is the ground truth),
the worse the performance of the neural network.
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General Neural Networks: Classification

• Note that in the above expression the inner sum reduces to a single term
for each training pattern l, because o⃗(l) is a clean 1-in-n encoding
and hence all values o

(l)
v are zero, except one. That is,

Hcross(Θ) = − ∑
l∈Lfixed

log2

(
out

(l)
v(l)

)
,

where v(l) is the output neuron representing the desired output value (class).

• At first sight this makes it look as if the error only depends on a single output
value per training pattern while all the other output values are ignored.

• However, this is not the case, as can be seen if we plug in the softmax function:

Let act
(l)
v for v ∈ Uout be the activations that enter the softmax function,

which are transformed by it into the output values out
(l)
v . Then we can write

Hcross(Θ) = − ∑
l∈Lfixed

log2


 e

act
(l)
v(l)

∑v∈Uout
eact

(l)
v


 = ∑

l∈Lfixed


log2

(

∑
v∈Uout

eact
(l)
v

)
−

act
(l)
v(l)

ln(2)


.
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Multi-layer Perceptrons (MLPs)
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Multi-layer Perceptrons

An r-layer perceptron is a neural network with a graph G = (U, C)
that satisfies the following conditions:

(i) Uin ∩ Uout = ∅,

(ii) Uhidden = U
(1)
hidden ∪ · · · ∪ U

(r−2)
hidden,

∀1 ≤ i < j ≤ r − 2 : U
(i)
hidden ∩ U

(j)
hidden = ∅,

(iii) C ⊆
(

Uin × U
(1)
hidden

)
∪
(⋃r−3

i=1 U
(i)
hidden × U

(i+1)
hidden

)
∪
(

U
(r−2)
hidden × Uout

)

or, if there are no hidden neurons (r = 2, Uhidden = ∅),

C ⊆ Uin × Uout.

• Feed-forward network with strictly layered structure.

• The input layer is counted as a layer, although it does not compute anything.
(Due to this, other definitions do not count the input layer.)
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Multi-layer Perceptrons

General Structure of a Multi-layer Perceptron

xn

x2

x1

ym

y2

y1

Uin U
(1)
hidden U

(2)
hidden U

(r−2)
hidden

Uout

Note: The input layer effectively only distributes the inputs.
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Multi-layer Perceptrons

• The network input function of each hidden neuron and of each output neuron
is the weighted sum of its inputs, that is,

∀u ∈ Uhidden ∪ Uout : f
(u)
net (w⃗u, i⃗nu) = w⃗⊤

u i⃗nu = ∑
v∈pred (u)

wuv outv .

• The activation function of each hidden neuron is a so-called
sigmoid function, that is, a monotone non-decreasing function

f : IR → [0, 1] with lim
x→−∞

f (x) = 0 and lim
x→∞

f (x) = 1.

• The activation function of each output neuron is either also a sigmoid function
or a linear function, that is,

fact(net, θ) = α net−θ.

Only the step function is a neurobiologically plausible activation function.
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Sigmoid Activation Functions

step function:

fact(net, θ) =

{
1, if net ≥ θ,
0, otherwise.

net
0

1

2

1

θ

semi-linear function:

fact(net, θ) =





1, if net > θ + 1
2 ,

0, if net < θ − 1
2 ,

(net−θ) + 1
2 , otherwise.

net
0

1

2

1

θθ −

1

2
θ +

1

2

sine until saturation:

fact(net, θ) =





1, if net > θ + π
2 ,

0, if net < θ − π
2 ,

sin(net−θ)+1
2 , otherwise.

net
0

1

2

1

θθ −

π

2
θ +

π

2

logistic function:

fact(net, θ) =
1

1 + e−(net−θ)

net
0

1

2

1

θθ − 4 θ − 2 θ + 2 θ + 4
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Sigmoid Activation Functions

• All sigmoid functions on the previous slide are unipolar,
that is, they range from 0 to 1.

• Sometimes bipolar sigmoid functions are used (ranging from −1 to +1),
like the hyperbolic tangent (tangens hyperbolicus).

hyperbolic tangent:

fact(net, θ) = tanh(net−θ)

=
e(net−θ) − e−(net−θ)

e(net−θ) + e−(net−θ)

=
1 − e−2(net−θ)

1 + e−2(net−θ)

=
2

1 + e−2(net−θ)
− 1

net

1

0

−1

θ − 2 θ − 1 θ θ + 1 θ + 2
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Multi-layer Perceptrons: Weight Matrices

Let U1 = {v1, . . . , vm} and U2 = {u1, . . . , un} be the neurons
of two consecutive layers of a multi-layer perceptron.

Their connection weights are represented by an n × m matrix

W =




wu1v1
wu1v2

. . . wu1vm

wu2v1
wu2v2

. . . wu2vm
... ... ...
wunv1

wunv2
. . . wunvm


 ,

where wuivj
= 0 if there is no connection from neuron vj to neuron ui.

Advantage: The computation of the network input can be written as

n⃗etU2
= W · i⃗nU2

= W · o⃗utU1

where n⃗etU2
= (netu1

, . . . , netun)
⊤ and i⃗nU2

= o⃗utU1
= (outv1

, . . . , outvm)
⊤.
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Multi-layer Perceptrons: Biimplication

Solving the biimplication problem with a multi-layer perceptron.

x1

x2

−1

−1

3 y

−2

−2

2

2

2

2

Uin Uhidden Uout

Note the additional input neurons compared to the TLU solution.

W1 =

( −2 2
2 −2

)
and W2 =

(
2 2

)
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Multi-layer Perceptrons: Fredkin Gate

s

x1

x2

s
y1

y2

0

a

b

0

a

b

1
a

b

1

b
a

s 0 0 0 0 1 1 1 1

x1 0 0 1 1 0 0 1 1

x2 0 1 0 1 0 1 0 1

y1 0 0 1 1 0 1 0 1

y2 0 1 0 1 0 0 1 1

x1

x2

x3

y1

x1

x2

x3

y2
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Multi-layer Perceptrons: Fredkin Gate

• The Fredkin gate (after Edward Fredkin ∗1934) or controlled swap gate
(CSWAP) is a computational circuit that is used in conservative logic
and reversible computing.

• Conservative logic is a model of computation that explicitly reflects the physical
properties of computation, like the reversibility of the dynamical laws and the
conservation of certain quantities (e.g. energy) [Fredkin and Toffoli 1982].

• The Fredkin gate is reversible in the sense that the inputs can be computed as
functions of the outputs in the same way in which the outputs can be computed
as functions of the inputs (no information loss, no entropy gain).

• The Fredkin gate is universal in the sense that all Boolean functions
can be computed using only Fredkin gates.

• Note that both outputs, y1 and y2 are not linearly separable, because the convex
hull of the points mapped to 0 and the convex hull of the points mapped to 1
share the point in the center of the cube.
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Reminder: Convex Hull Theorem

Theorem: Two sets of points in a Euclidean space are linearly separable
if and only if their convex hulls are disjoint (that is, have no point in common).

Both outputs y1 and y2 of a Fredkin gate are not linearly separable:

Convex hull of points with y1 = 0 Convex hull of points with y2 = 0

Convex hull of points with y1 = 1 Convex hull of points with y2 = 1
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Multi-layer Perceptrons: Fredkin Gate

x2

s

x1

1

3

3

1

1

1

y2

y1

2

2

2

2

2

2

−2

−2

2

2

2

2

Uin Uhidden Uout

W1 =




2 −2 0
2 2 0
0 2 2
0 −2 2




W2 =

(
2 0 2 0
0 2 0 2

)
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Why Non-linear Activation Functions?

With weight matrices we have for two consecutive layers U1 and U2

n⃗etU2
= W · i⃗nU2

= W · o⃗utU1
.

If the activation functions are linear, that is,

fact(net, θ) = α net−θ.

the activations of the neurons in the layer U2 can be computed as

a⃗ctU2
= Dact · n⃗etU2

− θ⃗,

where

• a⃗ctU2
= (actu1

, . . . , actun)
⊤ is the activation vector,

• Dact is an n × n diagonal matrix of the factors αui
, i = 1, . . . , n, and

• θ⃗ = (θu1
, . . . , θun)

⊤ is a bias vector.

Christian Borgelt Artificial Neural Networks and Deep Learning 85



Why Non-linear Activation Functions?

If the output function is also linear, it is analogously

o⃗utU2
= Dout · a⃗ctU2

− ξ⃗,

where

• o⃗utU2
= (outu1

, . . . , outun)
⊤ is the output vector,

• Dout is again an n × n diagonal matrix of factors, and

• ξ⃗ = (ξu1
, . . . , ξun)

⊤ a bias vector.

Combining these computations we get

o⃗utU2
= Dout ·

(
Dact ·

(
W · o⃗utU1

)
− θ⃗

)
− ξ⃗

and thus
o⃗utU2

= A12 · o⃗utU1
+ b⃗12

with an n × m matrix A12 and an n-dimensional vector b⃗12.

Christian Borgelt Artificial Neural Networks and Deep Learning 86



Why Non-linear Activation Functions?

Therefore we have

o⃗utU2
= A12 · o⃗utU1

+ b⃗12

and

o⃗utU3
= A23 · o⃗utU2

+ b⃗23

for the computations of two consecutive layers U2 and U3.

These two computations can be combined into

o⃗utU3
= A13 · o⃗utU1

+ b⃗13,

where A13 = A23 · A12 and b⃗13 = A23 · b⃗12 + b⃗23.

Result: With linear activation and output functions any multi-layer perceptron
can be reduced to a two-layer perceptron.
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Multi-layer Perceptrons: Function Approximation

• Up to now: representing and learning Boolean functions f : {0, 1}n → {0, 1}.

• Now: representing and learning real-valued functions f : IRn → IR.

General idea of function approximation:

• Approximate a given function by a step function.

• Construct a neural network that computes the step function.

x

y

x1 x2 x3 x4

y0

y1

y2

y3
y4
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Multi-layer Perceptrons: Function Approximation

x y

x1

x2

x3

x4

1

1

1

id

1

1

1

1

−2

2

−2

2

−2

2

y3

y2

y1

A neural network that computes the step function shown on the preceding slide.
According to the input value only one step is active at any time.
The output neuron has the identity as its activation and output functions.
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Multi-layer Perceptrons: Function Approximation

Theorem: Any Riemann-integrable function can be approximated
with arbitrary accuracy by a four-layer perceptron.

• But: Error is measured as the area between the functions.

• More sophisticated mathematical examination allows a stronger assertion:
With a three-layer perceptron any continuous function can be approximated
with arbitrary accuracy (error: maximum function value difference).
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Multi-layer Perceptrons as Universal Approximators

Universal Approximation Theorem [Hornik 1991]:

Let φ(·) be a continuous, bounded and non-constant function,
let X denote an arbitrary compact subset of IRm, and
let C(X) denote the space of continuous functions on X.

Given any function f ∈ C(X) and ε > 0, there exists an integer N, real constants
vi, θi ∈ IR and real vectors w⃗i ∈ IRm, i = 1, . . . , N, such that we may define

F(x⃗) =
N

∑
i=1

vi φ
(
w⃗⊤

i x⃗ − θi

)

as an approximate realization of the function f where f is independent of φ. That is,

|F(x⃗)− f (x⃗)| < ε

for all x⃗ ∈ X. In other words, functions of the form F(x⃗) are dense in C(X).

Note that it is not the shape of the activation function, but the layered structure of
the network that renders multi-layer perceptrons universal approximators.
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Multi-layer Perceptrons: Function Approximation

x

y

x1 x2 x3 x4

y0

y1

y2

y3
y4

x

y

x1 x2 x3 x4

∆y1

∆y2

∆y3

∆y4

1

0

1

0

1

0

1

0
·∆y4

·∆y3

·∆y2

·∆y1

By using relative step heights
one layer can be saved.
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Multi-layer Perceptrons: Function Approximation

x y

x1

x2

x3

x4

id

1

1

1

1

∆y4

∆y3

∆y2

∆y1

A neural network that computes the step function shown on the preceding slide.
The output neuron has the identity as its activation and output functions.
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Multi-layer Perceptrons: Function Approximation

x

y

x1 x2 x3 x4

y0

y1

y2

y3
y4

x

y

x1 x2 x3 x4

∆y1

∆y2

∆y3

∆y4

1

0

1

0

1

0

1

0
·∆y4

·∆y3

·∆y2

·∆y1

With semi-linear functions
the approximation can be
improved.
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Multi-layer Perceptrons: Function Approximation

x y

θ1

θ2

θ3

θ4

id

1

∆x

1

∆x

1

∆x

1

∆x

∆y4

∆y3

∆y2

∆y1

θi =
xi

∆x

∆x = xi+1 − xi

A neural network that computes the step function shown on the preceding slide.
The output neuron has the identity as its activation and output functions.
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Mathematical Background: Regression
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Regression: Method of Least Squares

Regression is also known as Method of Least Squares. (Carl Friedrich Gauß)
(also known as Ordinary Least Squares, abbreviated OLS)

Given: • A data set ((x⃗1, y1), . . . , (x⃗n, yn)) of n data tuples
(one or more input values and one output value) and

• a hypothesis about the functional relationship
between response and predictor values,
e.g. Y = f (X) = a + bX + ε.

Desired: • A parameterization of the conjectured function
that minimizes the sum of squared errors (“best fit”).

Depending on

• the hypothesis about the functional relationship and

• the number of arguments to the conjectured function

different types of regression are distinguished.
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Reminder: Function Optimization

Task: Find values x⃗ = (x1, . . . , xm) such that f (x⃗) = f (x1, . . . , xm) is optimal.

Often feasible approach:

• A necessary condition for a (local) optimum (minimum/maximum) is that the
partial derivatives w.r.t. the parameters vanish (Pierre de Fermat, 1607–1665).

• Therefore: (Try to) solve the equation system that results from setting
all partial derivatives w.r.t. the parameters equal to zero.

Example task: Minimize f (x, y) = x2 + y2 + xy − 4x − 5y.

Solution procedure:

1. Take the partial derivatives of the objective function and set them to zero:

∂ f

∂x
= 2x + y − 4 = 0,

∂ f

∂y
= 2y + x − 5 = 0.

2. Solve the resulting (here: linear) equation system: x = 1, y = 2.

Christian Borgelt Artificial Neural Networks and Deep Learning 98



Mathematical Background: Linear Regression

Training neural networks is closely related to regression.

Given: • A data set D = ((x1, y1), . . . , (xn, yn)) of n data tuples and

• a hypothesis about the functional relationship, e.g. y = g(x) = a + bx.

Approach: Minimize the sum of squared errors, that is,

F(a, b) =
n

∑
i=1

(g(xi)− yi)
2 =

n

∑
i=1

(a + bxi − yi)
2.

Necessary conditions for a minimum
(a.k.a. Fermat’s theorem, after Pierre de Fermat, 1607–1665):

∂F

∂a
=

n

∑
i=1

2(a + bxi − yi) = 0 and

∂F

∂b
=

n

∑
i=1

2(a + bxi − yi)xi = 0
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Linear Regression: Example of Error Functional

0 1 2 3

0

1

2

x

y

• A very simple data set (4 points),
to which a line is to be fitted.

• The error functional
for linear regression

F(a, b) =
n

∑
i=1

(a + bxi − yi)
2

(same function, two different views).
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Mathematical Background: Linear Regression

Result of necessary conditions: System of so-called normal equations, that is,

na +

(
n

∑
i=1

xi

)
b =

n

∑
i=1

yi,

(
n

∑
i=1

xi

)
a +

(
n

∑
i=1

x2
i

)
b =

n

∑
i=1

xiyi.

• Two linear equations for two unknowns a and b.

• System can be solved with standard methods from linear algebra.

• Solution is unique unless all x-values are identical.

• The resulting line is called a regression line.
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Linear Regression: Example

x 1 2 3 4 5 6 7 8

y 1 3 2 3 4 3 5 6

Assumption:

y = a + bx

Normal equations:

8 a + 36 b = 27,
36 a + 204 b = 146.

Solution:

y =
3

4
+

7

12
x.

x

y
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Mathematical Background: Polynomial Regression

Generalization to polynomials

y = p(x) = a0 + a1x + . . . + amxm

Approach: Minimize the sum of squared errors, that is,

F(a0, a1, . . . , am) =
n

∑
i=1

(p(xi)− yi)
2 =

n

∑
i=1

(a0 + a1xi + . . . + amxm
i − yi)

2

Necessary conditions for a minimum: All partial derivatives vanish, that is,

∂F

∂a0
= 0,

∂F

∂a1
= 0, . . . ,

∂F

∂am
= 0.
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Mathematical Background: Polynomial Regression

System of normal equations for polynomials

na0 +

(
n

∑
i=1

xi

)
a1 + . . . +

(
n

∑
i=1

xm
i

)
am =

n

∑
i=1

yi

(
n

∑
i=1

xi

)
a0 +

(
n

∑
i=1

x2
i

)
a1 + . . . +

(
n

∑
i=1

xm+1
i

)
am =

n

∑
i=1

xiyi

... ...(
n

∑
i=1

xm
i

)
a0 +

(
n

∑
i=1

xm+1
i

)
a1 + . . . +

(
n

∑
i=1

x2m
i

)
am =

n

∑
i=1

xm
i yi,

• m + 1 linear equations for m + 1 unknowns a0, . . . , am.

• System can be solved with standard methods from linear algebra.

• Solution is unique unless the coefficient matrix (left hand side) is singular.
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Mathematical Background: Multivariate Linear Regression

Generalization to more than one argument

z = f (x, y) = a + bx + cy

Approach: Minimize the sum of squared errors, that is,

F(a, b, c) =
n

∑
i=1

( f (xi, yi)− zi)
2 =

n

∑
i=1

(a + bxi + cyi − zi)
2

Necessary conditions for a minimum: All partial derivatives vanish, that is,

∂F

∂a
=

n

∑
i=1

2(a + bxi + cyi − zi) = 0,

∂F

∂b
=

n

∑
i=1

2(a + bxi + cyi − zi)xi = 0,

∂F

∂c
=

n

∑
i=1

2(a + bxi + cyi − zi)yi = 0.
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Mathematical Background: Multivariate Linear Regression

System of normal equations for several arguments

na +

(
n

∑
i=1

xi

)
b +

(
n

∑
i=1

yi

)
c =

n

∑
i=1

zi

(
n

∑
i=1

xi

)
a +

(
n

∑
i=1

x2
i

)
b +

(
n

∑
i=1

xiyi

)
c =

n

∑
i=1

zixi

(
n

∑
i=1

yi

)
a +

(
n

∑
i=1

xiyi

)
b +

(
n

∑
i=1

y2
i

)
c =

n

∑
i=1

ziyi

• 3 linear equations for 3 unknowns a, b, and c.

• System can be solved with standard methods from linear algebra.

• Solution is unique unless all data points lie on a straight line.
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Multivariate Linear Regression

General multivariate linear case:

y = f (x1, . . . , xm) = a0 +
m

∑
k=1

akxk

Approach: Minimize the sum of squared errors, that is,

F(⃗a) = (X⃗a − y⃗)⊤(X⃗a − y⃗),

where (leading ones capture constant a0)

X =




1 x11 . . . x1m
... ... . . . ...
1 xn1 . . . xnm


 , y⃗ =




y1
...
yn


 , and a⃗ =




a0

a1
...
am




Necessary conditions for a minimum: (∇⃗ is a differential operator called “nabla” or “del”.)

∇⃗⃗a F(⃗a) = ∇⃗⃗a (X⃗a − y⃗)⊤(X⃗a − y⃗) = 0⃗
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Multivariate Linear Regression

• ∇⃗⃗a F(⃗a) may easily be computed by remembering that the differential operator

∇⃗⃗a =
( ∂

∂a0
, . . . ,

∂

∂am

)

behaves formally like a vector that is “multiplied” to the sum of squared errors.

• Alternatively, one may write out the differentiation component-wise.

With the former method we obtain for the derivative:

∇⃗⃗aF(⃗a) = ∇⃗⃗a

(
(X⃗a − y⃗)⊤(X⃗a − y⃗)

)

=
(
∇⃗⃗a (X⃗a − y⃗)

)⊤
(X⃗a − y⃗) +

(
(X⃗a − y⃗)⊤

(
∇⃗⃗a (X⃗a − y⃗)

))⊤

=
(
∇⃗⃗a (X⃗a − y⃗)

)⊤
(X⃗a − y⃗) +

(
∇⃗⃗a (X⃗a − y⃗)

)⊤
(X⃗a − y⃗)

= 2X⊤(X⃗a − y⃗)

= 2X⊤X⃗a − 2X⊤y⃗ = 0⃗
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Multivariate Linear Regression

Necessary condition for a minimum therefore:

∇⃗⃗aF(⃗a) = ∇⃗⃗a(X⃗a − y⃗)⊤(X⃗a − y⃗)

= 2X⊤X⃗a − 2X⊤y⃗
!
= 0⃗

As a consequence we obtain the system of normal equations:

X⊤X⃗a = X⊤y⃗

This system has a solution unless X⊤X is singular. If it is regular, we have

a⃗ = (X⊤X)−1X⊤y⃗.

(X⊤X)−1X⊤ is called the (Moore-Penrose-)Pseudoinverse of the matrix X.

With the matrix-vector representation of the regression problem
an extension to multivariate polynomial regression is straightforward:
Simply add the desired products of powers (monomials) to the matrix X.
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Mathematical Background: Logistic Function

x

y

0

1

2

1

0−4 −2 +2 +4

Logistic Function:

y = f (x) =
Y

1 + e−a(x−x0)

Special case Y= a = 1, x0 = 0:

y = f (x) =
1

1 + e−x

Application areas of the logistic function:

• Can be used to describe saturation processes

(growth processes with finite capacity/finite resources Y).

Derivation e.g. from a Bernoulli differential equation

f ′(x) = k · f (x) · (Y − f (x)) (yields a = kY)

• Can be used to describe a linear classifier
(especially for two-class problems, considered later).
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Mathematical Background: Logistic Function

Example: two-dimensional logistic function

y = f (x⃗) =
1

1 + exp(−( x1 + x2 − 4))
=

1

1 + exp(−((1, 1)⊤(x1, x2)− 4))
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The “contour lines” of the logistic function are parallel lines/hyperplanes.
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Mathematical Background: Logistic Function

Example: two-dimensional logistic function

y = f (x⃗) =
1

1 + exp(−(2x1 + x2 − 6))
=

1

1 + exp(−((2, 1)⊤(x1, x2)− 6))
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The “contour lines” of the logistic function are parallel lines/hyperplanes.
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Mathematical Background: Logistic Regression

Generalization of regression to non-polynomial functions.

Simple example: y = axb

Idea: Find a transformation to the linear/polynomial case.

Transformation for the above example: ln y = ln a + b · ln x.

⇒ Linear regression for the transformed data y′ = ln y and x′ = ln x.

Special case: Logistic Function (with a0 = a⃗⊤⃗x0)

y =
Y

1 + e−(⃗a⊤⃗x+a0)
⇔ 1

y
=

1 + e−(⃗a⊤⃗x+a0)

Y
⇔ Y − y

y
= e−(⃗a⊤⃗x+a0).

Result: Apply so-called Logit Transform

z = ln
( y

Y − y

)
= a⃗⊤⃗x + a0.
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Logistic Regression: Example

Data points: x 1 2 3 4 5

y 0.4 1.0 3.0 5.0 5.6

Apply the logit transform

z = ln
( y

Y − y

)
, Y = 6.

Transformed data points: (for linear regression)

x 1 2 3 4 5

z −2.64 −1.61 0.00 1.61 2.64

The resulting regression line and therefore the desired function are

z ≈ 1.3775x − 4.133 and y ≈ 6

1 + e−(1.3775x−4.133)
≈ 6

1 + e−1.3775(x−3)
.

Attention: Note that the error is minimized only in the transformed space!
Therefore the function in the original space may not be optimal!
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Logistic Regression: Example
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The resulting regression line and therefore the desired function are

z ≈ 1.3775x − 4.133 and y ≈ 6

1 + e−(1.3775x−4.133)
≈ 6

1 + e−1.3775(x−3)
.

Attention: Note that the error is minimized only in the transformed space!
Therefore the function in the original space may not be optimal!
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Logistic Regression: Example
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The logistic regression function can be computed by a single neuron with

• network input function fnet(x) ≡ wx with w ≈ 1.3775,

• activation function fact(net, θ) ≡
(
1 + e−(net−θ)

)−1
with θ ≈ 4.133 and

• output function fout(act) ≡ 6 act.
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Multivariate Logistic Regression: Example
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• Example data were drawn from a logistic function and noise was added.
(The gray “contour lines” show the ideal logistic function.)

• Reconstructing the logistic function can be reduced to a multivariate linear re-
gression by applying a logit transform to the y-values of the data points.
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Multivariate Logistic Regression: Example
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• The black “contour lines” show the resulting logistic function.
Is the deviation from the ideal logistic function (gray) caused by the noise?

• Attention: Note that the error is minimized only in the transformed space!
Therefore the function in the original space may not be optimal!
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Logistic Regression: Optimization in Original Space

Approach analogous to linear/polynomial regression

Given: data set D = {(x⃗1, y1), . . . , (x⃗n, yn)} with n data points, yi ∈ (0, 1).

Simplification: Use x⃗∗
i = (1, xi1, . . . , xim)⊤ and a⃗ = (a0, a1, . . . , am)⊤.

(By the leading 1 in x⃗∗
i the constant a0 is captured.)

Minimize sum of squared errors / deviations:

F(⃗a) =
n

∑
i=1

(
yi −

1

1 + e−⃗a⊤⃗x∗i

)2
!
= min .

Necessary condition for a minimum:

Gradient of the objective function F(⃗a) w.r.t. a⃗ vanishes: ∇⃗⃗a F(⃗a)
!
= 0⃗

Problem: The resulting equation system is not linear.

Solution possibilities:

• Gradient descent on objective function F(⃗a). (considered in the following)

• Root search on gradient ∇⃗⃗a F(⃗a). (e.g. Newton–Raphson algorithm)
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Reminder: Gradient Methods for Optimization

x

y

z

x0

y0

∂z
∂x

|~p
∂z
∂y

|~p

~∇z|~p=(x0,y0) The gradient (symbol ∇⃗, “nabla”)
is a differential operator that turns
a scalar function into a vector field.

Illustration of the gradient of
a real-valued function z = f (x, y)
at a point (x0, y0).

It is ∇⃗z|(x0,y0) =
(

∂z
∂x|x0

, ∂z
∂y|y0

)
.

The gradient at a point shows the direction of the steepest ascent of the function
at this point; its length describes the steepness of the ascent.

Principle of Gradient Methods:
Starting at a (possibly randomly chosen) initial point, make (small) steps
in (or against) the direction of the gradient of the objective function
at the current point, until a maximum (or a minimum) has been reached.
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Gradient Methods: Cookbook Recipe

Idea: Starting from a randomly chosen point in the search space, make small steps
in the search space, always in the direction of the steepest ascent (or descent) of the
function to optimize, until a (local) maximum (or minimum) is reached.

1. Choose a (random) starting point u⃗(0) =
(

u
(0)
1 , . . . , u

(0)
n

)⊤

2. Compute the gradient of the objective function f at the current point u⃗ (i):

∇⃗u f (u⃗)
∣∣∣

u⃗ (i)
=

(
∂

∂u1
f (u⃗)

∣∣∣
u
(i)
1

, . . . , ∂
∂un

f (u⃗)
∣∣∣

u
(i)
n

)⊤

3. Make a small step in the direction (or against the direction) of the gradient:

u⃗(i+1) = u⃗ (i) ± η ∇⃗u f (u⃗)
∣∣∣

u⃗ (i)
.

+ : gradient ascent
− : gradient descent

η is a step width parameter (“learning rate” in artificial neuronal networks)

4. Repeat steps 2 and 3, until some termination criterion is satisfied.
(e.g., a certain number of steps has been executed, current gradient is small)

Christian Borgelt Artificial Neural Networks and Deep Learning 121



Gradient Descent: Simple Example

Example function: f (u) =
5

6
u4 − 7u3 +

115

6
u2 − 18u + 6,

i ui f (ui) f ′(ui) ∆ui

0 0.200 3.112 −11.147 0.111
1 0.311 2.050 −7.999 0.080
2 0.391 1.491 −6.015 0.060
3 0.451 1.171 −4.667 0.047
4 0.498 0.976 −3.704 0.037
5 0.535 0.852 −2.990 0.030
6 0.565 0.771 −2.444 0.024
7 0.589 0.716 −2.019 0.020
8 0.610 0.679 −1.681 0.017
9 0.626 0.653 −1.409 0.014

10 0.640 0.635
u

f(u)

0

1

2

3

4

5

6

0 1 2 3 4

global optimum

starting point

Gradient descent with initial value u0 = 0.2, step width/learning rate η = 0.01.

Due to a proper step width/learning rate, the minimum is approached quickly.
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Gradient Descent: Simple Example

Example function: f (u) =
5

6
u4 − 7u3 +

115

6
u2 − 18u + 6,

i ui f (ui) f ′(ui) ∆ui

0 0.200 3.112 −11.147 0.011
1 0.211 2.990 −10.811 0.011
2 0.222 2.874 −10.490 0.010
3 0.232 2.766 −10.182 0.010
4 0.243 2.664 −9.888 0.010
5 0.253 2.568 −9.606 0.010
6 0.262 2.477 −9.335 0.009
7 0.271 2.391 −9.075 0.009
8 0.281 2.309 −8.825 0.009
9 0.289 2.233 −8.585 0.009

10 0.298 2.160
u

f(u)

0

1

2

3

4

5

6

0 1 2 3 4

global optimum

Gradient descent with initial value u0 = 0.2, step width/learning rate η = 0.001.

Due to the small step width/learning rate, the minimum is approached slowly.
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Gradient Descent: Simple Example

Example function: f (u) =
5

6
u4 − 7u3 +

115

6
u2 − 18u + 6,

i ui f (ui) f ′(ui) ∆ui

0 1.500 2.719 3.500 −0.875
1 0.625 0.655 −1.431 0.358
2 0.983 0.955 2.554 −0.639
3 0.344 1.801 −7.157 1.789
4 2.134 4.127 0.567 −0.142
5 1.992 3.989 1.380 −0.345
6 1.647 3.203 3.063 −0.766
7 0.881 0.734 1.753 −0.438
8 0.443 1.211 −4.851 1.213
9 1.656 3.231 3.029 −0.757

10 0.898 0.766
u

f(u)

0

1

2

3

4

5

6

0 1 2 3 4

global optimum

starting point

Gradient descent with initial value u0 = 1.5 and step width/learning rate η = 0.25.

Due to the large step width/learning rate, the iterations lead to oscillations.
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Gradient Descent: Simple Example

Example function: f (u) =
5

6
u4 − 7u3 +

115

6
u2 − 18u + 6,

i ui f (ui) f ′(ui) ∆ui

0 2.600 3.816 −1.707 0.085
1 2.685 3.660 −1.947 0.097
2 2.783 3.461 −2.116 0.106
3 2.888 3.233 −2.153 0.108
4 2.996 3.008 −2.009 0.100
5 3.097 2.820 −1.688 0.084
6 3.181 2.695 −1.263 0.063
7 3.244 2.628 −0.845 0.042
8 3.286 2.599 −0.515 0.026
9 3.312 2.589 −0.293 0.015

10 3.327 2.585
u

f(u)

0

1

2

3

4

5

6

0 1 2 3 4

global optimum

starting point

Gradient descent with initial value u0 = 2.6 and step width/learning rate η = 0.05.

Proper step width, but due to the starting point, only a local minimum is found.
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Logistic Regression: Gradient Descent

With the abbreviation f (z) = 1
1+e−z for the logistic function it is

∇⃗⃗a F(⃗a) = ∇⃗⃗a

n

∑
i=1

(yi − f (⃗a⊤⃗x∗
i ))

2 = − 2
n

∑
i=1

(yi − f (⃗a⊤⃗x∗
i )) · f ′(⃗a⊤⃗x∗

i ) · x⃗∗
i .

Derivative of the logistic function: (cf. Bernoulli differential equation)

f ′(z) =
d

dz

(
1 + e−z

)−1
= −

(
1 + e−z

)−2 (−e−z
)

=
1 + e−z − 1

(1 + e−z)2
=

1

1 + e−z

(
1 − 1

1 + e−z

)
= f (z) · (1 − f (z)),

z

f(z)

0

1

2

1

0−4 −2 +2 +4

z

f ′(z)

0

1

2

1

0

1

4

−4 −2 +2 +4
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Logistic Regression: Gradient Descent

Given: data set D = {(x⃗1, y1), . . . , (x⃗n, yn)} with n data points, yi ∈ (0, 1).

Simplification: Use x⃗∗
i = (1, xi1, . . . , xim)⊤ and a⃗ = (a0, a1, . . . , am)⊤.

Gradient descent on the objective function F(⃗a):

• Choose as the initial point a⃗0 the result of a logit transform
and a linear regression (or merely a linear regression).

• Update of the parameters a⃗:

a⃗t+1 = a⃗t −
η

2
· ∇⃗⃗a F(⃗a)|⃗at

= a⃗t + η ·
n

∑
i=1

(yi − f (⃗a⊤t x⃗∗
i )) · f (⃗a⊤t x⃗∗

i ) · (1 − f (⃗a⊤t x⃗∗
i )) · x⃗∗

i ,

where η is a step width parameter to be chosen by a user (e.g. η = 0.05)
(in the area of artificial neural networks also called “learning rate”).

• Repeat the update step until convergence, e.g. until
||⃗at+1 − a⃗t|| < τ with a chosen threshold τ (e.g. τ = 10−6).
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Multivariate Logistic Regression: Example
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• Black “contour line”: logit transform and linear regression.

• Green “contour line”: gradient descent on error function in original space.

(For simplicity and clarity only the “contour lines” for y = 0.5 (inflection lines) are shown.)
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Logistic Classification: Two Classes

x

0

1

2

1

x0−
4

a
x0−

2

a
x0 x0+

2

a
x0+

4

a

probability

class 1

probability

class 0

Logistic function with Y= 1:

y = f (x) =
1

1 + e−a(x−x0)

Interpret the logistic function
as the probability of one class.

• Conditional class probability is logistic function:
a⃗ = (a0, a1, . . . , am)⊤

x⃗∗ = (1, x1, . . . , xm)⊤

P(C = c1 | X⃗ = x⃗) = p1(x⃗) = p(x⃗; a⃗) =
1

1 + e−⃗a⊤⃗x∗
.

• With only two classes the conditional probability of the other class is:

P(C = c0 | X⃗ = x⃗) = p0(x⃗) = 1 − p(x⃗; a⃗).

• Classification rule:
C =

{
c1, if p(x⃗; a⃗) ≥ θ,

c0, if p(x⃗; a⃗) < θ,
θ = 0.5.
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Logistic Classification
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• The classes are separated at the “contour line” p(x⃗; a⃗) = θ = 0.5 (inflection line).
(The class boundary is linear, therefore linear classification.)

• Via the classification threshold θ, which need not be θ = 0.5,
misclassification costs may be incorporated.
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Logistic Classification: Example
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• In finance (e.g., when assessing the credit worthiness of businesses)
logistic classification is often applied in discrete spaces,
that are spanned e.g. by binary attributes and expert assessments.

(like assessments of the range of products, market share, growth etc.)
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Logistic Classification: Example
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• In such a case multiple businesses may fall onto the same grid point.

• Then probabilities may be estimated from observed credit defaults:

p̂default(x⃗) =
#defaults(x⃗) + γ

#loans(x⃗) + 2γ
(γ: Laplace correction, e.g. γ ∈ {1

2, 1})
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Logistic Classification: Example
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• Black “contour line”: logit transform and linear regression.

• Green “contour line”: gradient descent on error function in original space.

(For simplicity and clarity only the “contour lines” for y = 0.5 (inflection lines) are shown.)
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Logistic Classification: Example
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• More frequent is the case in which at least some attributes are metric
and for each point a class, but no class probability is available.

• If we assign class 0: c0 =̂ y = 0 and class 1: c1 =̂ y = 1,
the logit transform is not applicable. (ln(0/1) = −∞, ln(1/0) = log(∞) = +∞)
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Logistic Classification: Example
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• The logit transform becomes applicable by mapping the classes to ϵ and 1 − ϵ:

c1 =̂ z = ln
(

ϵ
1−ϵ

)
and c0 =̂ z = ln

(
1−ϵ

ϵ

)
= − ln

(
ϵ

1−ϵ

)
.

• The value of ϵ ∈ (0, 1
2) is irrelevant (i.e., the result is independent of ϵ

and equivalent to a linear regression with c0 =̂ y = 0 and c1 =̂ y = 1).
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Logistic Classification: Example
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• Logit transform and linear regression often yield suboptimal results:
Depending on the distribution of the data points relative to a(n optimal) sepa-
rating hyperplane the computed hyperplane can be shifted and/or rotated.

• This can lead to (unnecessary) misclassifications!
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Logistic Classification: Example
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• Black “contour line”: logit transform and linear regression.

• Green “contour line”: gradient descent on error function in original space.

(For simplicity and clarity only the “contour lines” for y = 0.5 (inflection lines) are shown.)
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Logistic Classification: Maximum Likelihood Approach

A likelihood function describes the probability of observed data
depending on the parameters a⃗ of the (conjectured) data generating process.

Here: logistic function to describe the class probabilities.

class y = 1 occurs with probability p1(x⃗) = f (⃗a⊤⃗x∗),

class y = 0 occurs with probability p0(x⃗) = 1 − f (⃗a⊤⃗x∗),

with f (z) = 1
1+e−z and x⃗∗ = (1, x1, . . . , xm)⊤ and a⃗ = (a0, a1, . . . , am)⊤.

Likelihood function for the data set D = {(x⃗1, y1), . . . , (x⃗n, yn)} with yi ∈ {0, 1}:

L(⃗a) =
n

∏
i=1

p1(x⃗i)
yi · p0(x⃗i)

1−yi

=
n

∏
i=1

f (⃗a⊤⃗x∗
i )

yi · (1 − f (⃗a⊤⃗x∗
i ))

1−yi

Maximum Likelihood Approach: Find the set of parameters a⃗,
which renders the occurrence of the (observed) data most likely.
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Logistic Classification: Maximum Likelihood Approach

Simplification by taking the logarithm: log-likelihood function

lnL(⃗a) =
n

∑
i=1

(
yi · ln f (⃗a⊤⃗x∗

i ) + (1 − yi) · ln(1 − f (⃗a⊤⃗x∗
i ))
)

=
n

∑
i=1

(
yi · ln

1

1 + e−(⃗a⊤⃗x∗i )
+ (1 − yi) · ln

e−(⃗a⊤⃗x∗i )

1 + e−(⃗a⊤⃗x∗i )

)

=
n

∑
i=1

(
(yi − 1) · a⃗⊤⃗x∗

i − ln
(

1 + e−(⃗a⊤⃗x∗i )
))

Necessary condition for a maximum:

Gradient of the objective function lnL(⃗a) w.r.t. a⃗ vanishes: ∇⃗⃗a lnL(⃗a)
!
= 0⃗

Problem: The resulting equation system is not linear.

Solution possibilities:

• Gradient ascent on objective function lnL(⃗a). (considered in the following)

• Root search on gradient ∇⃗⃗a lnL(⃗a). (e.g. Newton–Raphson algorithm)
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Logistic Classification: Gradient Ascent

Gradient of the log-likelihood function: (with f (z) = 1
1+e−z)

∇⃗⃗a lnL(⃗a) = ∇⃗⃗a

n

∑
i=1

(
(yi − 1) · a⃗⊤⃗x∗

i − ln
(

1 + e−(⃗a⊤⃗x∗i )
))

=
n

∑
i=1

(
(yi − 1) · x⃗∗

i +
e−(⃗a⊤⃗x∗i )

1 + e−(⃗a⊤⃗x∗i )
· x⃗∗

i

)

=
n

∑
i=1

(
(yi − 1) · x⃗∗

i +
(
1 − f (⃗a⊤⃗x∗

i )
)
· x⃗∗

i

)

=
n

∑
i=1

(
(yi − f (⃗a⊤⃗x∗

i )) · x⃗∗
i

)

As a comparison:

Gradient of the sum of squared errors / deviations:

∇⃗⃗a F(⃗a) = −2
n

∑
i=1

(yi − f (⃗a⊤⃗x∗
i )) · f (⃗a⊤⃗x∗

i ) · (1 − f (⃗a⊤⃗x∗
i ))︸ ︷︷ ︸

additional factor: derivative of the logistic function

· x⃗∗
i
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Logistic Classification: Gradient Ascent

Given: data set D = {(x⃗1, y1), . . . , (x⃗n, yn)} with n data points, y ∈ {0, 1}.

Simplification: Use x⃗∗
i = (1, xi1, . . . , xim)⊤ and a⃗ = (a0, a1, . . . , am)⊤.

Gradient ascent on the objective function lnL(⃗a):

• Choose as the initial point a⃗0 the result of a logit transform
and a linear regression (or merely a linear regression).

• Update of the parameters a⃗:

a⃗t+1 = a⃗t + η · ∇⃗⃗a lnL(⃗a)|⃗at

= a⃗t + η ·
n

∑
i=1

(yi − f (⃗a⊤t x⃗∗
i )) · x⃗∗

i ,

where η is a step width parameter to be chosen by a user (e.g. η = 0.01).
(Comparison to sum of squared errors: missing factor f (⃗a⊤t x⃗∗

i ) · (1− f (⃗a⊤t x⃗∗
i )).)

• Repeat the update step until convergence, e.g. until
||⃗at+1 − a⃗t|| < τ with a chosen threshold τ (e.g. τ = 10−6).
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Logistic Classification: Example
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• Black “contour line”: logit transform and linear regression.

• Green “contour line”: gradient descent on error function in original space.

• Magenta “contour line”: gradient ascent on log-likelihood function.

(For simplicity and clarity only the “contour lines” for y = 0.5 (inflection lines) are shown.)
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Logistic Classification: No Gap Between Classes
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• If there is no (clear) gap between the classes
a logit transform and subsequent linear regression
yields (unnecessary) misclassifications even more often.

• In such a case the alternative methods are clearly preferable!
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Logistic Classification: No Gap Between Classes
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• Black “contour line”: logit transform and linear regression.

• Green “contour line”: gradient descent on error function in original space.

• Magenta “contour line”: gradient ascent on log-likelihood function.

(For simplicity and clarity only the “contour lines” for y = 0.5 (inflection lines) are shown.)
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Logistic Classification: Overlapping Classes
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• Even more problematic is the situation if the classes overlap
(i.e., there is no perfect separating line/hyperplane).

• In such a case even the other methods cannot avoid misclassifications.

(There is no way to be better than the pure or Bayes error.)
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Logistic Classification: Overlapping Classes
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• Black “contour line”: logit transform and linear regression.

• Green “contour line”: gradient descent on error function in original space.

• Magenta “contour line”: gradient ascent on log-likelihood function.

(For simplicity and clarity only the “contour lines” for y = 0.5 (inflection lines) are shown.)
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Transfer to Neural Networks

• Up to now: mainly sum of squared errors (to be minimized)

e = ∑
l∈Lfixed

e(l) = ∑
l∈Lfixed

∑
v∈Uout

e
(l)
v = ∑

l∈Lfixed

∑
v∈Uout

(
o
(l)
v − out

(l)
v

)2

• Appropriate objective function for regression problems,
that is, for problems with a numeric target.

• For classification a maximum likelihood approach is usually more appropriate.

• A maximum (log-)likelihood approach is immediately possible for two classes,
for example, as for logistic regression (to be maximized):

lnL(Θ) = ln ∏
l∈Lfixed

(
out(l)

)o(l) ·
(
1 − out(l)

)1−o(l) (Θ: parameters of
the neural network)

= ∑
l∈Lfixed

(
o(l) · ln

(
out(l)

)
+ (1 − o(l)) · ln

(
1 − out(l)

))

(Attention: For two classes only one output neuron is needed: 1 – one class, 0 – other class.)
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Logistic Classification: Binary Cross Entropy

• Reminder: Cross entropy can be used as an objective function
for an output that can be interpreted as a probability distribution.

• Summing over all training patterns of a fixed learning task Lfixed yields

Hcross(Θ) = ∑
l∈Lfixed

Hcross

(
o⃗(l), o⃗ut

(l))
= − ∑

l∈Lfixed

∑
v∈Uout

o
(l)
v log2

(
out

(l)
v

)
.

• A maximum (log-)likelihood approach for two classes uses:

lnL(Θ) = ln ∏
l∈Lfixed

(
out(l)

)o(l) ·
(
1 − out(l)

)1−o(l) (Θ: parameters of
the neural network)

= ∑
l∈Lfixed

(
o(l) · ln

(
out(l)

)
+ (1 − o(l)) · ln

(
1 − out(l)

))

(Attention: For two classes only one output neuron is needed: 1 – one class, 0 – other class.)

• Clearly, this is equivalent to a cross entropy error measure for two classes.

• This special case is often referred to as binary cross entropy (BCE).
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Logistic Classification: Multiple Classes

What to do if there are more than two classes?

• Reminder: 1-in-n encoding (aka 1-hot encoding).

◦ As many output neurons as there are classes: one for each class

(that is, output vectors are of the form o⃗
(l)
v = (0, . . . , 0, 1, 0, . . . , 0)).

◦ Each neuron distinguishes the class assigned to it from all other classes
(all other classes are combined into a pseudo-class).

• With 1-in-n encoding one may use as an objective function
simply the sum of the log-likelihood over all output neurons:

lnL(Θ) = ∑
v∈Uout

ln ∏
l∈Lfixed

(
out

(l)
v

)o
(l)
v ·
(
1 − out

(l)
v

)1−o
(l)
v (Θ: parameters of

the neural network)

= ∑
l∈Lfixed

∑
v∈Uout

(
o
(l)
v · ln

(
out

(l)
v

)
+ (1 − o

(l)
v ) · ln

(
1 − out

(l)
v

))

Disadvantage: Does not ensure a probability distribution over the classes.
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Reminder: Softmax Function as Output Function

Objective: Output values that can be interpreted as class probabilities.

• Solution: Use the so-called softmax function (actually softargmax):

out
(l)
v =

exp
(

act
(l)
v

)

∑u∈Uout
exp

(
act

(l)
v

)

• Advantage: The softmax function yields a probability distribution

for any list of values act
(l)
1 , . . . , act

(l)
m , regardless of sign and magnitude.

• Related to multinomial logistic/log-linear classification, which assumes

ln

(
P(C = ci | X⃗ = x⃗)

P(C = c0 | X⃗ = x⃗)

)
= ai0 + a⃗⊤i x⃗ c0: reference class

• Reminder: An alternative to 1-in-n encoding is 1-in-(n–1) encoding.

◦ One attribute value is treated specially and is encoded as all zeros.

◦ The remaining n−1 values are encoded by setting one of the variables to 1.
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Multinomial Logistic / Log-linear Classification

• Given: classification problem on IRm with k classes c0, . . . , ck−1.

• Select one class (c0) as a reference or base class and assume

∀i ∈ {1, . . . , k − 1} : ln

(
P(C = ci | X⃗ = x⃗)

P(C = c0 | X⃗ = x⃗)

)
= ai0 + a⃗⊤i x⃗

or P(C = ci | X⃗ = x⃗) = P(C = c0 | X⃗ = x⃗) · eai0+⃗a⊤i x⃗.

• Summing these equations and exploiting ∑
k−1
i=0 P(C = ci | X⃗ = x⃗) = 1 yields

1 − P(C = c0 | X⃗ = x⃗) = P(C = c0 | X⃗ = x⃗) ·
k−1

∑
i=1

eai0+⃗a⊤i x⃗

and therefore

P(C = c0 | X⃗ = x⃗) =
1

1 + ∑
k−1
j=1 e

aj0+⃗a⊤j x⃗

as well as

∀i ∈ {1, . . . , k − 1} : P(C = ci | X⃗ = x⃗) =
eai0+⃗a⊤i x⃗

1 + ∑
k−1
j=1 e

aj0+⃗a⊤j x⃗
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Multinomial Logistic / Log-linear Classification

• This leads to the softmax function if we assume that

◦ the reference class c0 is represented by a function f0(x⃗) = 0 (as e0 = 1) and

◦ all other classes by linear functions fi(x⃗) = ai0 + a⃗⊤i x⃗, i = 1, . . . , k − 1.

• This would be the case with a 1-in-(n–1) encoding:
Represent the classes by c − 1 values with the reference class encoded by zeros,
the remaining c − 1 classes encoded by setting a corresponding value to 1.

• Special case k = 2 (standard logistic classification):

P(C = c0 | X⃗ = x⃗) =
1

1 + ea10+⃗a⊤1 x⃗
=

1

1 + e−(−a10−⃗a⊤1 x⃗)

P(C = c1 | X⃗ = x⃗) =
ea10+⃗a⊤1 x⃗

1 + ea10+⃗a⊤1 x⃗
=

1

1 + e−(+a10+⃗a⊤1 x⃗)

• The softmax function abandons the special role of one class as a reference
and treats all classes equally (requires a “partition function” for normalization).

Christian Borgelt Artificial Neural Networks and Deep Learning 152



Multinomial Logistic / Log-linear Classification

Logistic/Log-linear Model without a Reference Class

• Assumption: The logarithm of a class probability is a linear function plus
a normalization value, the negative logarithm of the partition function Z(x⃗):

∀i = 1, . . . , k : ln P(C = ci | X⃗ = x⃗) = ai0 + a⃗⊤i x⃗ − ln Z(x⃗) or equivalently

P(C = ci | X⃗ = x⃗) = 1
Z(x⃗) eai0+⃗a⊤i x⃗.

• Since conditional probabilities must sum to 1, we obtain

1
Z(x⃗)

k

∑
i=1

eai0+⃗a⊤i x⃗ = 1 ⇒ Z(x⃗) =
k

∑
i=1

eai0+⃗a⊤i x⃗.

• The resulting equations for the probabilities are

∀i = 1, . . . , k : P(C = ci | X⃗ = x⃗) =
eai0+⃗a⊤i x⃗

∑
k
j=1 e

aj0+⃗a⊤j x⃗

This is the softmax function (actually softargmax) applied to a linear classifier.

Christian Borgelt Artificial Neural Networks and Deep Learning 153



Relationship to Cross Entropy

(Log-)Likelihood of a Logistic/Log-linear Model without Reference Class

• Likelihood function for a data set D = {(x⃗1, y1), . . . , (x⃗n, yn)} with yi ∈ {0, 1}:

L(⃗a1, . . . , a⃗k) =
n

∏
i=1

k

∏
j=1

pj(x⃗i)
yi =

n

∏
i=1

k

∏
j=1

P(C = cj | X⃗ = x⃗i)
yi

• Hence the log-likelihood function is

lnL(⃗a1, . . . , a⃗k) =
n

∑
i=1

k

∑
j=1

yi · ln pj(x⃗i) =
n

∑
i=1

k

∑
j=1

yi · ln P(C = cj | X⃗ = x⃗i)

• Suppose the pj(x⃗i) are computed as the outputs outvj
of a neural network

for training patterns li = (x⃗i, yi), where vj is the j-th output neuron. Then

lnL(Θ) =
n

∑
i=1

k

∑
j=1

yi · ln(out
(li)
vj
) (Θ: parameters of

the neural network)

This is the negated cross entropy Hcross(Θ) (with a different logarithm base).
⇒ Cross entropy can be seen as a negative log-likelihood.
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Reminder: Cross Entropy

• Transforming the outputs with the softmax function (actually softargmax):

out
(l)
v =

exp
(

act
(l)
v

)

∑u∈Uout
exp

(
act

(l)
u

) ⇒ probability distribution on Uout

• Let p1 and p2 be two strictly positive probability distributions
on the same space Ω of events. Then

Hcross(p1, p2) = H(p1) + IKLdiv(p1, p2)

= − ∑
ω∈Ω

p1(ω) log2 p2(ω) = − IEω∼p1
(log2 p2(ω))

is called the cross entropy of p1 and p2.

• Applied to multi-layer perceptrons (output layer distribution): (Θ: parameters of
the neural network)

Hcross(Θ) = ∑
l∈Lfixed

Hcross

(
o⃗ (l), o⃗ut

(l))
= − ∑

l∈Lfixed

∑
v∈Uout

o
(l)
v log2

(
out

(l)
v

)

Cross entropy is to be minimized and sometimes divided by |Lfixed| (average cross entropy).
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Training Multi-layer Perceptrons

Christian Borgelt Artificial Neural Networks and Deep Learning 156



Training Multi-layer Perceptrons: Gradient Descent

• Problem of logistic regression: Works only for two-layer perceptrons.

• More general approach: gradient descent.

• Necessary condition: differentiable activation and output functions.

x

y

z

x0

y0

∂z
∂x

|~p
∂z
∂y

|~p

~∇z|~p=(x0,y0) The gradient (symbol ∇⃗, “nabla”)
is a differential operator that turns
a scalar function into a vector field.

Illustration of the gradient of
a real-valued function z = f (x, y)
at a point (x0, y0).

It is ∇⃗z|(x0,y0) =
(

∂z
∂x|x0

, ∂z
∂y|y0

)
.

The gradient at a point shows the direction of the steepest ascent of the function
at this point; its length describes the steepness of the ascent.
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Gradient Descent: Formal Approach

General Idea: Approach the minimum of the error function in small steps.

Error function: (sum of errors over patterns and output neurons)

e = ∑
l∈Lfixed

e(l) = ∑
v∈Uout

ev = ∑
l∈Lfixed

∑
v∈Uout

e
(l)
v ,

Form gradient to determine the direction of the step
(here and in the following: extended weight vector w⃗u = (−θu, wup1

, . . . , wupn)):

∇⃗⃗wue =
∂e

∂w⃗u
=

(
− ∂e

∂θu
,

∂e

∂wup1

, . . . ,
∂e

∂wupn

)
.

Exploit the sum over the training patterns: (derivative of sum equals sum of derivatives)

∇⃗⃗wue =
∂e

∂w⃗u
=

∂

∂w⃗u
∑

l∈Lfixed

e(l) = ∑
l∈Lfixed

∂e(l)

∂w⃗u
= ∑

l∈Lfixed

∇⃗⃗wue(l).
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Gradient Descent: Formal Approach

Single pattern error depends on weights only through the network input:

∇⃗⃗wue(l) =
∂e(l)

∂w⃗u
=

∂e(l)

∂ net
(l)
u

∂ net
(l)
u

∂w⃗u

.

Since net
(l)
u = f

(u)
net (i⃗n

(l)

u , w⃗u) = w⃗⊤
u i⃗n

(l)
u , we have for the second factor

(Note: extended input vector i⃗n
(l)
u = (1, in

(l)
p1u, . . . , in

(l)
pnu), weight vector w⃗u = (−θ, wp1u, . . . , wpnu).)

∂ net
(l)
u

∂w⃗u
= i⃗n

(l)
u .

For the first factor we consider the error e(l) for the training pattern l =
(
ı⃗ (l), o⃗ (l)

)
:

e(l) = ∑
v∈Uout

e
(l)
v = ∑

v∈Uout

(
o
(l)
v − out

(l)
v

)2

,

that is, the sum of the errors over all output neurons (cross entropy is analogous).
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Gradient Descent: Formal Approach

Therefore we have (derivative of sum equals sum of derivatives)

∂e(l)

∂ net
(l)
u

=
∂

∂ net
(l)
u

∑
v∈Uout

(
o
(l)
v − out

(l)
v

)2

= ∑
v∈Uout

∂

∂ net
(l)
u

(
o
(l)
v − out

(l)
v

)2

.

Since only the actual output out
(l)
v of an output neuron v depends on

the network input net
(l)
u of the neuron u we are considering, it is

∂e(l)

∂ net
(l)
u

= − 2 ∑
v∈Uout

(
o
(l)
v − out

(l)
v

) ∂ out
(l)
v

∂ net
(l)
u︸ ︷︷ ︸

δ
(l)
u

,

which also introduces the abbreviation δ
(l)
u for the important sum appearing here.

The expression δ
(l)
u is at the heart of the error backpropagation procedure.
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Gradient Descent: Formal Approach

Distinguish two cases: • The neuron u is an output neuron.

• The neuron u is a hidden neuron.

In the first case we have (sum reduces to a single term: the one for v = u)

∀u ∈ Uout : δ
(l)
u =

(
o
(l)
u − out

(l)
u

) ∂ out
(l)
u

∂ net
(l)
u

Therefore we have for the gradient

∀u ∈ Uout : ∇⃗⃗wue
(l)
u =

∂e
(l)
u

∂w⃗u
= −2

(
o
(l)
u − out

(l)
u

) ∂ out
(l)
u

∂ net
(l)
u

i⃗n
(l)
u

and thus for the weight change

∀u ∈ Uout : ∆w⃗
(l)
u = −η

2
∇⃗⃗wue

(l)
u = η

(
o
(l)
u − out

(l)
u

) ∂ out
(l)
u

∂ net
(l)
u

i⃗n
(l)
u .
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Gradient Descent: Formal Approach

Exact formulae depend on the choice of the activation and the output function,
since it is

out
(l)
u = fout

(
act

(l)
u

)
= fout

(
fact

(
net

(l)
u

))
.

Consider the special case with:

• the output function is the identity,

• the activation function is logistic, that is, fact(x) = 1
1+e−x .

The first assumption yields (apply chain chain rule, exploit identity)

∂ out
(l)
u

∂ net
(l)
u

=
∂ out

(l)
u

∂ act
(l)
u︸ ︷︷ ︸

=1

∂ act
(l)
u

∂ net
(l)
u

=
∂ act

(l)
u

∂ net
(l)
u

= f ′act

(
net

(l)
u

)
.
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Gradient Descent: Formal Approach

For a logistic activation function we have (reminder)

f ′act(x) =
d

dx

(
1 + e−x

)−1
= −

(
1 + e−x

)−2 (−e−x
)

=
1 + e−x − 1

(1 + e−x)2
=

1

1 + e−x

(
1 − 1

1 + e−x

)

= fact(x) · (1 − fact(x)),

and therefore (since out
(l)
u = fout

(
fact

(
net

(l)
u

))
= fact

(
net

(l)
u

)
, since fout is the identity)

f ′act

(
net

(l)
u

)
= fact

(
net

(l)
u

)
·
(

1 − fact

(
net

(l)
u

))
= out

(l)
u

(
1 − out

(l)
u

)
.

The resulting weight change is therefore (collect results from preceding slides)

∆w⃗
(l)
u = η

(
o
(l)
u − out

(l)
u

)
out

(l)
u

(
1 − out

(l)
u

)
i⃗n

(l)
u ,

which makes the computations very simple.
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Gradient Descent: Formal Approach

logistic activation function:

fact(net
(l)
u ) =

1

1 + e− net
(l)
u

net
0

1

2

1

0−4 −2 +2 +4

derivative of logistic function:

f ′act(net
(l)
u ) = fact(net

(l)
u ) · (1 − fact(net

(l)
u ))

net
0

1

2

1

0

1

4

−4 −2 +2 +4

• If a logistic activation function is used (shown on left), the weight changes are

proportional to λ
(l)
u = out

(l)
u

(
1 − out

(l)
u

)
(shown on right; see preceding slide).

• Weight changes are largest (training is fastest) in the vicinity of net
(l)
u = 0.

Far away from net
(l)
u = 0, the gradient becomes (very) small

(“saturation regions”) and thus training is (very) slow.
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Error Backpropagation

Consider now: The neuron u is a hidden neuron, that is, u ∈ Uk, 0 < k < r − 1.

The output out
(l)
v of an output neuron v depends on the network input net

(l)
u

only indirectly through the successor neurons

succ(u) = {s ∈ U | (u, s) ∈ C} = {s1, . . . , sm} ⊆ Uk+1,

namely through their network inputs net
(l)
s .

We apply the chain rule to obtain

δ
(l)
u = ∑

v∈Uout

∑
s∈succ(u)

(o
(l)
v − out

(l)
v

)∂ out
(l)
v

∂ net
(l)
s

∂ net
(l)
s

∂ net
(l)
u

.

Exchanging the sums yields

δ
(l)
u = ∑

s∈succ(u)

(

∑
v∈Uout

(o
(l)
v − out

(l)
v

)∂ out
(l)
v

∂ net
(l)
s

)
∂ net

(l)
s

∂ net
(l)
u

= ∑
s∈succ(u)

δ
(l)
s

∂ net
(l)
s

∂ net
(l)
u

.
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Error Backpropagation

Consider the network input

net
(l)
s = w⃗⊤

s i⃗n
(l)
s =

(
∑

p∈pred(s)

wsp out
(l)
p

)
− θs,

where one element of i⃗n
(l)
s is the output out

(l)
u of the neuron u. Therefore it is

∂ net
(l)
s

∂ net
(l)
u

=


 ∑

p∈pred(s)

wsp

∂ out
(l)
p

∂ net
(l)
u


− ∂θs

∂ net
(l)
u

= wsu
∂ out

(l)
u

∂ net
(l)
u

,

The result is the recursive equation: (δ
(l)
u is computed from δ

(l)
s , s ∈ succ(u))

δ
(l)
u =


 ∑

s∈succ(u)

δ
(l)
s wsu


 ∂ out

(l)
u

∂ net
(l)
u

.

This recursive equation defines error backpropagation,
because it propagates the error back by one layer.

Christian Borgelt Artificial Neural Networks and Deep Learning 166



Error Backpropagation

The resulting formula for the weight change (for training pattern l) is

∆w⃗
(l)
u = −η

2
∇⃗w⃗ue(l) = η δ

(l)
u i⃗n

(l)
u = η


 ∑

s∈succ(u)

δ
(l)
s wsu


 ∂ out

(l)
u

∂ net
(l)
u

i⃗n
(l)
u .

Consider again the special case with

• the output function is the identity,

• the activation function is logistic.

The resulting formula for the weight change is then

∆w⃗
(l)
u = η


 ∑

s∈succ(u)

δ
(l)
s wsu


 out

(l)
u

(
1 − out

(l)
u

)
i⃗n

(l)
u .
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Error Backpropagation: Cookbook Recipe

∀u ∈ Uin :

out
(l)
u = ext

(l)
u

forward
propagation:

∀u ∈ Uhidden ∪ Uout :

out
(l)
u =

(
1+exp

(
−
(
∑p∈pred(u) wup out

(l)
p −θu

)))−1

• logistic
activation
function

• bias value
adaptation
not shown

xn

x2

x1

ym

y2

y1

∀u ∈ Uhidden :

δ
(l)
u =

(
∑s∈succ(u) δ

(l)
s wsu

)
λ
(l)
u

backward
propagation:

∀u ∈ Uout :

δ
(l)
u =

(
o
(l)
u − out

(l)
u

)
λ
(l)
u

error factor:

λ
(l)
u = out

(l)
u

(
1 − out

(l)
u

)activation
derivative:

weight
change: ∆w

(l)
up = η δ

(l)
u out

(l)
p
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Error Backpropagation: Matrix-Vector Notation

• Setting the Input: (single pattern ℓ = (e⃗xt, o⃗))

o⃗ut0 = e⃗xt (layer 0: input layer)

• Forward Propagation: (from layer i to layer i+1)

o⃗uti+1 = f
(i+1)
out ( f

(i+1)
act (Wi+1 o⃗uti − θ⃗i+1)) (element-wise application)

• Error Computation: (sum of squared errors)

δ⃗r−1 = (⃗o − o⃗utr−1)⊙ λ⃗r−1 (layer r−1: output layer)

• Error Backpropagation: (from layer i+1 to layer i)

δ⃗i = (W⊤
i+1 δ⃗i+1)⊙ λ⃗i+1 (⊙: Hadamard product)

λ⃗i+1 = o⃗uti+1 ⊙ (1 − o⃗uti+1) (logistic activation function)

• Weight Adaptation: (from layer i to layer i+1)

W
(new)
i+1 = W

(old)
i+1 + η δ⃗i+1 o⃗ut

⊤
i (η: learning rate)
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Stochastic Gradient Descent

• True gradient descent requires batch training, that is, computing

∆w⃗u = − η

2
∇⃗w⃗u e = − η

2 ∑
l∈L

∇⃗w⃗u e(l) = ∑
l∈L

∆w⃗
(l)
u .

• Since this can be slow, because the parameters are updated only once per epoch,
online training (update after each training pattern) is often employed.

• Online training is a special case of stochastic gradient descent.

Generally, stochastic gradient descent means:

◦ The function to optimize is composed of several subfunctions,
for example, one subfunction per training pattern (as is the case here).

◦ A (partial) gradient is computed from a (random) subsample
of these subfunctions and directly used to update the parameters.
Such (random) subsamples are also referred to as mini-batches.

(Online training works with mini-batches of size 1.)

◦ With randomly chosen subsamples, the gradient descent is stochastic.
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Gradient Descent: Examples

Gradient descent training for the negation ¬x

θx
w y

x y

0 1
1 0

error for x = 0

–4
–2

0
2

4

–4

–2
0

2
4 1

2
1

2

θ

w

e

error for x = 1

–4
–2

0
2

4

–4

–2
0

2
4 1

2
1

2

θ

w

e

sum of errors

–4
–2

0
2

4

–4

–2
0

2
4 1

2
1

2

θ

w

e

Note: error for x = 0 and x = 1 is effectively the squared logistic activation function!
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Gradient Descent: Examples

epoch θ w error

0 3.00 3.50 1.307
20 3.77 2.19 0.986
40 3.71 1.81 0.970
60 3.50 1.53 0.958
80 3.15 1.24 0.937

100 2.57 0.88 0.890
120 1.48 0.25 0.725
140 −0.06 −0.98 0.331
160 −0.80 −2.07 0.149
180 −1.19 −2.74 0.087
200 −1.44 −3.20 0.059
220 −1.62 −3.54 0.044

Online Training

epoch θ w error

0 3.00 3.50 1.295
20 3.76 2.20 0.985
40 3.70 1.82 0.970
60 3.48 1.53 0.957
80 3.11 1.25 0.934

100 2.49 0.88 0.880
120 1.27 0.22 0.676
140 −0.21 −1.04 0.292
160 −0.86 −2.08 0.140
180 −1.21 −2.74 0.084
200 −1.45 −3.19 0.058
220 −1.63 −3.53 0.044

Batch Training

Here there is hardly any difference between online and batch training,
because the training data set is so small (only two sample cases, η = 1).

Christian Borgelt Artificial Neural Networks and Deep Learning 172



Gradient Descent: Examples

Visualization of gradient descent for the negation ¬x

Online Training
θ

w

−4 −2 0 2 4

−4

−2

0

2

4

Batch Training
θ

w

−4 −2 0 2 4

−4

−2

0

2

4

Batch Training

–4
–2

0
2

4

–4

–2
0

2
4 1

2
1

2

θ

w

e

• Training is obviously successful.

• Error cannot vanish completely due to the properties of the logistic function.

Attention: Distinguish between w and θ as parameters of the error function,
and their concrete values in each step of the training process.

Christian Borgelt Artificial Neural Networks and Deep Learning 173



(Stochastic) Gradient Descent: Variants

In the following the distinction of online and batch training is disregarded.
In principle, all methods can be applied with full or stochastic gradient descent.

Weight update rule:
wt+1 = wt + ∆wt (t = 1, 2, 3, . . .)

Standard Gradient Descent:

∆wt = − η

2
∇we|wt = − η

2
(∇we)(wt)

Manhattan Training:

∆wt = −η sgn
(
∇we|wt

)

Fixed step width, only the sign of the gradient (direction) is evaluated.

Advantage: Learning speed does not depend on the size of the gradient.
⇒ No slowing down in flat regions or close to a minimum.

Disadvantage: Parameter values are constrained to a fixed grid.
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(Stochastic) Gradient Descent: Variants

Momentum Term: [Polyak 1964]

∆wt = −η

2
∇we|wt + α ∆wt−1

Part of previous change is added, may lead to accelerated training (α ∈ [0.5, 0.999]).

Nesterov’s Accelerated Gradient: (NAG) [Nesterov 1983]

Analogous to the introduction of a momentum term, but:

Apply the momentum step to the parameters also before computing the gradient.

∆wt = −η

2
∇we|wt+α∆wt−1

+ α ∆wt−1

Idea: The momentum term does not depend on the current gradient,
so one can get a better adaptation direction by applying the momentum term also
before computing the gradient, that is, by computing the gradient at wt + α∆wt−1.
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(Stochastic) Gradient Descent: Variants

Momentum Term: [Polyak 1964]

∆wt = −η

2
mt with m0 = 0; mt = αmt−1 +∇we|wt; α ∈ [0.5, 0.999]

Alternative formulation of the momentum term approach,
using an auxiliary variable to accumulate the gradients (instead of weight changes).

Nesterov’s Accelerated Gradient: (NAG) [Nesterov 1983]

∆wt = −η

2
mt with

m0 = 0; mt = αmt−1 +∇we|wt; α ∈ [0.5, 0.999];

mt = αmt +∇we|wt

Alternative formulation of Nesterov’s Accelerated Gradient.

(Remark: Not exactly equivalent to the formulation on the preceding slide,
but leads to analogous training behavior and is easier to implement.)
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(Stochastic) Gradient Descent: Variants

Quick Propagation (QuickProp)
[Fahlmann 1988]

Approximate the error function
(locally) with a parabola.

Compute the apex of the parabola
and “jump” directly to it.

The weight update rule
can be derived from the triangles:

∆wt =
∇we|wt

∇we|wt−1
−∇we|wt

· ∆wt−1.

e

w

wt+1 wt wt−1m

e(wt)

e(wt−1)

apex

w

∇we

wt+1 wt wt−1

∇we|wt

∇we|wt−1

0

Recommended: Apply with (full) batch training, online training can be unstable.
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(Stochastic) Gradient Descent: Variants

Self-adaptive Error Backpropagation: (SuperSAB) [Tollenaere 1990]

η
(w)
t =





c− · η
(w)
t−1, if ∇we|wt

· ∇we|wt−1
< 0,

c+ · η
(w)
t−1, if ∇we|wt

· ∇we|wt−1
> 0

∧ ∇we|wt−1
· ∇we|wt−2

≥ 0,

η
(w)
t−1, otherwise.

Resilient Error Backpropagation: (RProp) [Riedmiller and Braun 1992]

∆wt =





c− · ∆wt−1, if ∇we|wt
· ∇we|wt−1

< 0,

c+ · ∆wt−1, if ∇we|wt
· ∇we|wt−1

> 0
∧ ∇we|wt−1

· ∇we|wt−2
≥ 0,

∆wt−1, otherwise.

Typical values: c− ∈ [0.5, 0.7] and c+ ∈ [1.05, 1.2].

Recommended: Apply with (full) batch training, online training can be unstable.
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(Stochastic) Gradient Descent: Variants

AdaGrad (adaptive subgradient descent) [Duchi et al. 2011]

∆wt = −η
∇we|wt√

vt + ϵ
with

v0 = 0; vt = vt−1 +
(
∇we|wt

)2
;

ϵ = 10−6; η = 0.01

Idea: Normalize the gradient by raw variance of all preceding gradients.
Slow down learning along dimensions that already changed significantly,
speed up learning along dimensions that changed only slightly.

Advantage: “Stabilizes” the network’s representation of common features.

Disadvantage: Learning becomes slower over time, finally stops completely.

RMSProp (root mean squared gradients) [Tieleman and Hinton 2012]

∆wt = −η
∇we|wt√

vt + ϵ
with

v0 = 0; vt = βvt−1 + (1 − β)
(
∇we|wt

)2
;

β = 0.999; ϵ = 10−6

Idea: Normalize the gradient by the raw variance of some previous gradients.

Use “exponential forgetting” to avoid having to store previous gradients.
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(Stochastic) Gradient Descent: Variants

AdaDelta (adaptive subgradient descent over windows) [Zeiler 2012]

∆wt = −
√

ut + ϵ√
vt + ϵ

∇we|wt with

u0 = 0; ut = αut−1 + (1 − α)(∆wt−1)2;

v0 = 0; vt = βvt−1 + (1 − β)
(
∇we|wt

)2
;

α = β = 0.95; ϵ = 10−6

The first step is effectively identical to Manhattan training;
the following steps are analogous to a “normalized” momentum term approach.

Idea: In gradient descent a parameter and its change do not have the same “units”.
This is also the case for AdaGrad or RMSProp.

In the Newton-Raphson method, however, due the use of second derivative
information (Hessian matrix), the units of a parameter and its change match.

With some simplifying assumptions, the above update rule can be derived.
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(Stochastic) Gradient Descent: Variants

Adam (adaptive moment estimation) [Kingma and Ba 2015]

∆wt = −η
mt√

vt + ϵ
with

m0 = 0; mt = αmt−1 + (1 − α)
(
∇we|wt

)
; α = 0.9;

v0 = 0; vt = βvt−1 + (1 − β)
(
∇we|wt

)2
; β = 0.999

This method is called adaptive moment estimation, because
mt is an estimate of the (recent) first moment (mean) of the gradient,
vt an estimate of the (recent) raw second moment (raw variance) of the gradient.

Adam with Bias Correction [Kingma and Ba 2015]

∆wt = −η
m̂t√

v̂t + ϵ
with

m̂t = mt/(1 − αt) (mt as above),

v̂t = vt /(1 − βt) (vt as above)

Idea: In the first steps of the update procedure, since m0 = v0 = 0,
several preceding gradients are implicitly set to zero.

As a consequence, the estimates are biased towards zero (they are too small).
The above modification of mt and vt corrects for this initial bias.
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(Stochastic) Gradient Descent: Variants

NAdam (Adam with Nesterov acceleration) [Dozat 2016]

∆wt = −η
αmt + (1 − α)

(
∇we|wt

)
√

vt + ϵ
with mt and vt as for Adam

Since the exponential decay of the gradient is similar to a momentum term,
the idea presents itself to apply Nesterov’s accelerated gradient
(c.f. the alternative formulation of Nesterov’s accelerated gradient).

NAdam with Bias Correction [Dozat 2016]

∆wt = −η
αm̂t +

1−α
1−αt

(
∇we|wt

)
√

v̂t + ϵ

with m̂t and v̂t as for Adam

with bias correction

Idea: In the first steps of the update procedure, since m0 = v0 = 0,
several preceding gradients are implicitly set to zero.

As a consequence, the estimates are biased towards zero (they are too small).
The above modification of mt and vt corrects for this initial bias.
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(Stochastic) Gradient Descent: Variants

AdaMax (Adam with l∞/maximum norm) [Kingma and Ba 2015]

∆wt = −η
mt√

vt + ϵ
with

m0 = 0; mt = αmt−1 + (1 − α)
(
∇we|wt

)
; α = 0.9;

v0 = 0; vt = max
(

βvt−1,
(
∇we|wt

)2)
; β = 0.999

mt is an estimate of the (recent) first moment (mean) of the gradient (as in Adam).
However, while standard Adam uses the l2 norm to estimate the (raw) variance,
AdaMax uses the l∞ or maximum norm to do so.

AdaMax with Bias Correction [Kingma and Ba 2015]

∆wt = −η
m̂t√

vt + ϵ
with

m̂t = mt/(1 − αt) (mt as above),

vt does not need a bias correction.

Idea: In the first steps of the update procedure, since m0 = 0,
several preceding gradients are implicitly set to zero.

As a consequence, the estimates are biased towards zero (they are too small).
The above modification of mt corrects for this initial bias.
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(Stochastic) Gradient Descent: Variants

AMSGrad (Adam with convergence guarantee) [Reddi, Kale & Kumar 2018]

∆wt = −η
mt√

v̂t + ϵ
with

m0 = 0; mt = αmt−1 + (1 − α)
(
∇we|wt

)
; α = 0.9;

v0 = 0; vt = βvt−1 + (1 − β)
(
∇we|wt

)2
; β = 0.999

v̂0 = 0; v̂t = max(v̂t−1, vt) = maxr∈{0,...,t} vr

mt is an estimate of the (recent) first moment (mean) of the gradient (as in Adam).
vt is an estimate of the (recent) raw second moment of the gradient (as in Adam).
v̂t is the largest value of all vt computed up to now (this differs from Adam).

Idea: AdaGrad is guaranteed to converge, since its denominator can only grow.

However, this does not hold for the other variants (e.g. RMSProp, Adam etc.).
It may not even hold if the objective function / error function is convex.
Intuitively, the reason is that the denominator can shrink again.

However, normalizing with (the square root of) the maximum v̂t

of all raw second moment estimates guarantees convergence,
without the drawback of AdaGrad (increasingly slower training).
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Gradient Descent: Examples

Gradient descent training for the negation ¬x

θx
w y

x y

0 1
1 0

error for x = 0
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Note: error for x = 0 and x = 1 is effectively the squared logistic activation function!
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Gradient Descent: Examples

epoch θ w error

0 3.00 3.50 1.295
20 3.76 2.20 0.985
40 3.70 1.82 0.970
60 3.48 1.53 0.957
80 3.11 1.25 0.934

100 2.49 0.88 0.880
120 1.27 0.22 0.676
140 −0.21 −1.04 0.292
160 −0.86 −2.08 0.140
180 −1.21 −2.74 0.084
200 −1.45 −3.19 0.058
220 −1.63 −3.53 0.044

without momentum term

epoch θ w error

0 3.00 3.50 1.295
10 3.80 2.19 0.984
20 3.75 1.84 0.971
30 3.56 1.58 0.960
40 3.26 1.33 0.943
50 2.79 1.04 0.910
60 1.99 0.60 0.814
70 0.54 −0.25 0.497
80 −0.53 −1.51 0.211
90 −1.02 −2.36 0.113

100 −1.31 −2.92 0.073
110 −1.52 −3.31 0.053
120 −1.67 −3.61 0.041

with momentum term (α = 0.9)

Using a momentum term leads to a considerable acceleration (here ≈ factor 2).

Christian Borgelt Artificial Neural Networks and Deep Learning 186



Gradient Descent: Examples

without momentum term
θ

w
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• Dots show position every 20 (without momentum term)
or every 10 epochs (with momentum term).

• Learning with a momentum term (α = 0.9) is about twice as fast.

Attention: The momentum factor α must be strictly less than 1.
If it is 1 or greater, the training process can “explode”,
that is, the parameter changes become larger and larger.
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Gradient Descent: Examples

Example function: f (x) =
5

6
x4 − 7x3 +

115

6
x2 − 18x + 6,

i xi f (xi) f ′(xi) ∆xi

0 0.200 3.112 −11.147 0.011
1 0.211 2.990 −10.811 0.021
2 0.232 2.771 −10.196 0.029
3 0.261 2.488 −9.368 0.035
4 0.296 2.173 −8.397 0.040
5 0.337 1.856 −7.348 0.044
6 0.380 1.559 −6.277 0.046
7 0.426 1.298 −5.228 0.046
8 0.472 1.079 −4.235 0.046
9 0.518 0.907 −3.319 0.045

10 0.562 0.777
u

f(u)

0

1

2

3

4

5

6

0 1 2 3 4

Gradient descent with initial value 0.2, learning rate 0.001
and momentum term α = 0.9.

A momentum term can fix (to some degree) a learning rate that is too small.
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Gradient Descent: Examples

Example function: f (x) =
5

6
x4 − 7x3 +

115

6
x2 − 18x + 6,

i xi f (xi) f ′(xi) ∆xi

0 1.500 2.719 3.500 −1.050
1 0.450 1.178 −4.699 0.705
2 1.155 1.476 3.396 −0.509
3 0.645 0.629 −1.110 0.083
4 0.729 0.587 0.072 −0.005
5 0.723 0.587 0.001 0.000
6 0.723 0.587 0.000 0.000
7 0.723 0.587 0.000 0.000
8 0.723 0.587 0.000 0.000
9 0.723 0.587 0.000 0.000

10 0.723 0.587
u

f(u)

0

1

2

3

4

5

6

0 1 2 3 4

Gradient descent with initial value 1.5, initial learning rate 0.3,
and self-adapting learning rate (c+ = 1.2, c− = 0.5).

An adaptive learning rate can compensate for an improper initial value.
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Gradient Descent: Examples

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1x1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x2

standard gradient descent, η = 0.05

momentum, η = 0.025,α = 0.9

Adam, η = 0.01,α = 0.9,β = 0.999

function y = f (x1,x2) = x2
1 +3x2
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• Optimization behavior on simple parabolic function.

• Note how Adam balances the training speed in the two dimensions.
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Gradient Descent: Examples

−0.2 0 0.2 0.4 0.6 0.8 1 1.2x1
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standard gradient descent, η = 0.02

momentum, η = 0.005,α = 0.9

Adam, η = 0.01,α = 0.9,β = 0.999

function y = f (x1,x2) = (1−x1)
2 +10(x2−x2

1)
2, start at (0.5,0)
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• Optimization behavior on a Rosenbrock function. [Rosenbrock 1960]

• Note the very slow training of standard gradient descent despite larger η.
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Demonstration Software: xmlp/wmlp

Demonstration of multi-layer perceptron training:

• Visualization of the training process

• Biimplication and Exclusive Or, two continuous functions

• http://www.borgelt.net/mlpd.html
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Other Extensions: Modified Weight Changes

Flat Spot Elimination:

Increase logistic function derivative: λ
(l)
u = out

(l)
u

(
1 − out

(l)
u

)
+ ζ

• Eliminates slow learning in saturation regions of the logistic function (ζ ≈ 0.1).

• Counteracts the decay of the error signals over the layers (to be discussed later).

Weight Decay:

∆wt = −η

2
∇we|wt − ξ wt,

• Helps to improve the robustness of the training results (ξ ≤ 10−3).

• Can be derived from an extended error function penalizing large weights:

e∗ = e +
ξ

2 ∑
u∈Uout∪Uhidden

(
θ2

u + ∑
p∈pred(u)

w2
up

)
.
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Other Extensions: Batch Normalization

• Reminder: z-score normalization of the (external) input vectors (neuron u).

z
(l)
u = x

(l)
u −µu√

σ2
u

with µu = 1
|L| ∑

l∈L

x
(l)
u , σ2

u = 1
|L|−1 ∑

l∈L

(
x
(l)
u − µu

)2

• Idea of batch normalization: [Ioffe and Szegedy 2015]

◦ Apply such a normalization after each hidden layer, but compute

µ
(Bi)
u and σ2

u
(Bi) from each mini-batch Bi (instead of all patterns L).

◦ In addition, apply trainable scale γu and shift βu: z′u = γu · zu + βu

◦ Use aggregated mean µu and variance σ2
u for final network:

µu =
1

m ∑
i=1

µ
(Bi)
u , σ2

u =
1

m ∑
i=1

σ2
u
(Bi). m: number of

mini-batches

◦ Transformation in final network (with trained γu and βu)

zu = xu−µu√
σ2

u+ϵ
, z′u = γu · zu + βu.

ϵ: to prevent
division by zero
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Parameter Initialization

• Bias values are often initialized to zero, i.e., θu = 0.

• Do not initialize all weights to zero, because this makes training impossible.
(The gradient will be the same for all weights.)

• Uniform Weight Initialization:

Draw weights from a uniform distribution on [−ϵ, ϵ], with e.g. ϵ ∈
{

1, 1
p, 1√

p

}
,

where p is the number of predecessor neurons.

• Xavier Weight Initialization: [Glorot and Bengio 2010]

Draw weights from a uniform distribution on [−ϵ, ϵ], with ϵ =
√

6/(p + s)
where s is the number of neurons in the respective layer.
Draw weights from a normal distribution with µ = 0 and variance 1

p.

• He et al./Kaiming Weight Initialization: [He et al. 2015]

Draw weights from a normal distribution with µ = 0 and variance 2
p.

• Basic idea of Xavier and He et al./Kaiming initialization:
Try to equalize the variance of the (initial) neuron activations across layers.
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Reminder: The Iris Data

pictures not available in online version

• Collected by Edgar Anderson on the Gaspé Peninsula (Canada).

• First analyzed by Ronald Aylmer Fisher (famous statistician).

• 150 cases in total, 50 cases per Iris flower type.

• Measurements of sepal length and width and petal length and width (in cm).

• Most famous data set in pattern recognition and data analysis.
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Reminder: The Iris Data

pictures not available in online version

• Training a multi-layer perceptron for the Iris data (with sum of squared errors):

◦ 4 input neurons (sepal length and width, petal length and width)

◦ 3 hidden neurons (2 hidden neurons also work)

◦ 3 output neurons (one output neuron per class)

• Different training methods with different learning rates, 100 independent runs.
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Standard Backpropagation with & without Momentum

standard η = 0.02, α = 0, online
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standard η = 2.0, α = 0, online
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standard η = 0.2, α = 0.5, online
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SuperSAB, RProp, QuickProp

SuperSAB η = 0.002, batch
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RProp η = 0.002, batch
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QuickProp η = 0.002, batch
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SuperSAB η = 0.01, batch
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QuickProp η = 0.01, batch
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AdaGrad, RMSProp, AdaDelta

AdaGrad η = 0.02, online
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RMSProp η = 0.002, online
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AdaDelta α = β = 0.95, online
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AdaGrad η = 0.2, online
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RMSProp η = 0.02, online
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AdaDelta α = 0.9, β = 0.999, online
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Adam, NAdam, AdaMax

Adam η = 0.002, online
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NAdam η = 0.002, online
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AdaMax η = 0.02, online
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Adam η = 0.02, online
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Model Training in PyTorch: Iris Data

• Model Creation (see Blackboard system for full code)

import torch import basic PyTorch library

mlp = torch.nn.Sequential( define a multi-layer perceptron
# implicit input layer (4 neurons)
torch.nn.Linear(4, 3), fnet hidden layer (3 neurons)
torch.nn.Sigmoid(), fact hidden layer (3 neurons)
torch.nn.Linear(3, 3), fnet output layer (3 neurons)
torch.nn.Sigmoid() fact output layer (3 neurons)

)

• Model Training (see Blackboard system for full code)

mlp.train() set network up for training
lossfn = torch.nn.CrossEntropyLoss() loss function and optimizer
optim = torch.optim.SGD(mlp.parameters(), lr=0.2, momentum=0.8)

for e in range(1000): training loop: 1000 epochs
optim.zero_grad() (re)initialize all gradients
pred = mlp(X) compute network prediction
loss = lossfn(pred, y) compute training loss
loss.backward() error backpropagation
optim.step() optimization step
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Number of Hidden Neurons
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Number of Hidden Neurons

• Note that the approximation theorem only states that there exists
a number of hidden neurons and weight vectors v⃗ and w⃗i and thresholds θi,
but not how they are to be chosen for a given ε of approximation accuracy.

• For a single hidden layer the following rule of thumb is popular:

number of hidden neurons = (number of inputs + number of outputs) / 2

• Better, though computationally expensive approach:

◦ Randomly split the given data into two subsets of (about) equal size,
the training data and the validation data.

◦ Train multi-layer perceptrons with different numbers of hidden neurons
on the training data and evaluate them on the validation data.

◦ Repeat the random split of the data and training/evaluation many times
and average the results over the same number of hidden neurons.
Choose the number of hidden neurons with the best average error.

◦ Train a final multi-layer perceptron on the whole data set.
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Number of Hidden Neurons

Principle of training data / validation data approach:

• Underfitting: If the number of neurons in the hidden layer is too small, the
multi-layer perceptron may not be able to capture the structure of the relation-
ship between inputs and outputs precisely enough due to a lack of parameters.

• Overfitting: With a larger number of hidden neurons a multi-layer perceptron
may adapt not only to the regular dependence between inputs and outputs, but
also to the accidental specifics (errors and deviations) of the training data set.

• Overfitting will usually lead to the effect that the error a multi-layer perceptron
yields on the validation data will be (possibly considerably) greater than the
error it yields on the training data.

The reason is that the validation data set is likely distorted in a different fashion
than the training data, since the errors and deviations are random.

• Minimizing the error on the validation data by properly choosing
the number of hidden neurons prevents both under- and overfitting.
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Model Capacity: Avoid Overfitting

• Objective: select the model that best fits the data,
taking the model complexity into account.

The more complex the model, the better it usually fits the data.

x

y

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7 black line:
regression line
(2 free parameters)

blue curve:
7th order regression polynomial
(8 free parameters)

• The blue curve fits the data points perfectly, but it is not a good model.

• On the other hand, too simple a model can lead to a lack of fit.

Christian Borgelt Artificial Neural Networks and Deep Learning 206



Model Capacity: Under- and Overfitting

Underfitting [here: linear]

• Caused by model error / lack of fit.

• Model has not enough capacity
to fit the regularities in the data.

(Proper) Fitting [here: quadratic]

• Model has the proper capacity
to fit regularities, but not enough
to fit accidental properties.

Overfitting [here: degree 6]

• Caused by pure & sample error and ...

• ... model has too much capacity
and thus fits not only regularities,
but also accidental properties.
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Model Capacity: Under- and Overfitting

added

Underfitting [here: linear]

• Caused by model error / lack of fit.

• Model has not enough capacity
to fit the regularities in the data.

added

(Proper) Fitting [here: quadratic]

• Model has the proper capacity
to fit regularities, but not enough
to fit accidental properties.

added

Overfitting [here: degree 6]

• Caused by pure & sample error and ...

• ... model has too much capacity
and thus fits not only regularities,
but also accidental properties.
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Reminder: Cross Validation

• General method to assess / to predict the performance of models
created by a given model building procedure (not of a specific model!).

• Serves the purpose to estimate the error (rate) on new example cases.

• Procedure of cross validation:

◦ Split the given data set into k so-called folds of equal size
(k-fold cross validation). Often recommended: k = 10.

◦ Combine k − 1 folds into a training data set,
build a classifier, and test it on the k-th fold (the hold-out fold).

◦ Do this for all k possible selections of k − 1 folds
and average the error (rates) (or some other quality measure).

• Special case: leave-1-out cross validation (also known as jackknife method).
(use as many folds as there are example cases)

• The final classifier is generated from the full data set
(in order to exploit all available information).
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Reminder: Cross Validation

training validation

run 1:

run 2:

run 3:

· · · · · ·

run k:

quality

q1

q2

q3

qk

Build and evaluate a model in each run, then average their quality. q̂ =

1

k

k

∑
i=1

qi

• Cross validation does not assess a single model (since k models are built).

It assesses the expected performance of models built with a certain procedure.
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Number of Hidden Neurons: Cross Validation

• The advantage of cross validation is that one random split of the data
yields n different pairs of training and validation data set.

• An obvious disadvantage is that (except for n = 2) the size
of the training and the test data set are considerably different,
which makes the results on the validation data statistically less reliable.

• It is therefore only recommended for sufficiently large data sets
or sufficiently small n, so that the validation data sets are of sufficient size.
(... but small n reduces the number of values to be averaged.)

• Repeating the split (either with n = 2 or greater n) has the advantage
that one obtains many more training and validation data sets,
leading to more reliable statistics (here: for the number of hidden neurons).

• The described approaches fall into the category of resampling methods.

• Other well-known statistical resampling methods are
jackknife, bootstrap, subsampling and permutation test.
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Reminder: Hyper-Parameter Optimization

• Cross validation is also a method that may be used to determine good
so-called hyper-parameters of a model building method.

• Distinction between parameters and hyper-parameters:

◦ parameter refers to parameters of a model
as it is produced by an algorithm, for example, regression coefficients;

◦ hyper-parameter refers to the parameters of a model-building method,
for example, the maximum height of a decision tree, the number of trees
in a random forest, the number of neurons in a neural network etc.

• Hyper-parameters are commonly chosen by running
a cross validation for various choices of the hyper-parameter(s)
and finally choosing the one that produced the best models
(in terms of their evaluation on the validation data sets).

• A final model is built using the found values for the hyper-parameters
on the whole data set (to maximize the exploitation of information).
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Avoiding Overfitting: Alternatives

• An alternative way to prevent overfitting is the following approach:

◦ During training the performance of the multi-layer perceptron is evaluated
after each epoch (or every few epochs) on a validation data set.

◦ While the error on the training data set should always decrease with each
epoch, the error on the validation data set should, after decreasing initially
as well, increase again as soon as overfitting sets in.

◦ At this moment training is terminated and either the current state or (if avail-
able) the state of the multi-layer perceptron, for which the error on the vali-
dation data reached a minimum, is reported as the training result.

• Further, a stopping criterion may be derived from the shape of the error curve
on the training data over the training epochs, or the network is trained only for
a fixed, relatively small number of epochs (also known as early stopping).

• Disadvantage: these methods stop the training of a complex network early
enough, rather than adjust the complexity of the network to the “correct” level.
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Sensitivity Analysis
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Sensitivity Analysis

Problem of Multi-Layer Perceptrons:

• The knowledge that is learned by a neural network
is encoded in matrices/vectors of real-valued numbers and
is therefore often difficult to understand or to extract.

• Geometric interpretation or other forms of intuitive understanding are possible
only for very simple networks, but fail for complex practical problems.

• Thus a neural network is often effectively a black box,
that computes its output, though in a mathematically precise way,
in a way that is very difficult to understand and to interpret.

Idea of Sensitivity Analysis:

• Try to find out to which inputs the output(s) react(s) most sensitively.

• This may also give hints which inputs are not needed and may be discarded.
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Sensitivity Analysis

Question: How important are different inputs to the network?

Idea: Determine change of output relative to change of input.

∀u ∈ Uin : s(u) =
1

|Lfixed| ∑
l∈Lfixed

∑
v∈Uout

∣∣∣∣∣
∂ out

(l)
v

∂ ext
(l)
u

∣∣∣∣∣ .

(Absolute value of change is used, because change direction does not matter.)

Formal derivation: Apply chain rule.

∂ out
(l)
v

∂ ext
(l)
u

=
∂ out

(l)
v

∂ out
(l)
u

∂ out
(l)
u

∂ ext
(l)
u

=
∂ out

(l)
v

∂ net
(l)
v

∂ net
(l)
v

∂ out
(l)
u

∂ out
(l)
u

∂ ext
(l)
u

.

Simplification: Assume that the output function is the identity.

∂ out
(l)
u

∂ ext
(l)
u

= 1.
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Sensitivity Analysis

For the second factor we get the general result:

∂ net
(l)
v

∂ out
(l)
u

=
∂

∂ out
(l)
u

∑
p∈pred(v)

wvp out
(l)
p = ∑

p∈pred(v)

wvp

∂ out
(l)
p

∂ out
(l)
u

.

This leads to the recursion formula

∂ out
(l)
v

∂ out
(l)
u

=
∂ out

(l)
v

∂ net
(l)
v

∂ net
(l)
v

∂ out
(l)
u

=
∂ out

(l)
v

∂ net
(l)
v

∑
p∈pred(v)

wvp

∂ out
(l)
p

∂ out
(l)
u

.

However, for the first hidden layer we get

∂ net
(l)
v

∂ out
(l)
u

= wvu, therefore
∂ out

(l)
v

∂ out
(l)
u

=
∂ out

(l)
v

∂ net
(l)
v

wvu.

This formula marks the start of the recursion.
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Sensitivity Analysis

Consider — as usual — the special case with

• output function is the identity,

• activation function is logistic.

The recursion formula is in this case

∂ out
(l)
v

∂ out
(l)
u

= outv(1 − outv) ∑
p∈pred(v)

wvp

∂ out
(l)
p

∂ out
(l)
u

and the anchor of the recursion is

∂ out
(l)
v

∂ out
(l)
u

= outv(1 − outv)wvu.

The computation process is fairly similar to error backpropagation,
though no parameters are adapted, only input importance is determined.
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Reminder: The Iris Data

pictures not available in online version

• Collected by Edgar Anderson on the Gaspé Peninsula (Canada).

• First analyzed by Ronald Aylmer Fisher (famous statistician).

• 150 cases in total, 50 cases per Iris flower type.

• Measurements of sepal length and width and petal length and width (in cm).

• Most famous data set in pattern recognition and data analysis.
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Sensitivity Analysis

Attention: Use weight decay to stabilize the training results!

∆wt = −η

2
∇we|wt − ξ wt,

• Without weight decay the results of a sensitivity analysis
can depend (strongly) on the (random) initialization of the network.

Example: Iris data, 1 hidden layer, 3 hidden neurons, 1000 epochs

attribute ξ = 0 ξ = 0.0001

sepal length 0.0216 0.0399 0.0232 0.0515 0.0367 0.0325 0.0351 0.0395
sepal width 0.0423 0.0341 0.0460 0.0447 0.0385 0.0376 0.0421 0.0425
petal length 0.1789 0.2569 0.1974 0.2805 0.2048 0.1928 0.1838 0.1861
petal width 0.2017 0.1356 0.2198 0.1325 0.2020 0.1962 0.1750 0.1743

Alternative: Weight normalization (neuron weights are normalized to sum 1).
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Deep Learning

(Multi-Layer Perceptrons with Many Layers)
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Deep Learning: Motivation

• Reminder: Universal Approximation Theorem
Any continuous function on an arbitrary compact subspace of IRn

can be approximated arbitrarily well with a three-layer perceptron.

• This theorem is often cited as (allegedly!) meaning that

◦ multi-layer perceptrons with only one hidden layer always suffice,

◦ there is no need to look at multi-layer perceptrons with more hidden layers.

• However: The theorem says nothing about the number of hidden neurons
that may be needed to achieve a desired approximation accuracy.

• Depending on the function to approximate,
a very large number of neurons may be necessary.

• Allowing for more hidden layers may enable us
to achieve the same approximation quality
with a significantly lower number of neurons.
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Deep Learning: Motivation

• A very simple and commonly used example is the n-bit parity function:
Output is 1 if an even number of inputs is 1; output is 0 otherwise.

• Can easily be represented by a multi-layer perceptron with one hidden layer.
(See reminder of TLU algorithm on next slide; adapt to MLPs.)

• However, the solution has 2n−1 hidden neurons:
disjunctive normal form is a disjunction of 2n−1 conjunctions,
which represent the 2n−1 input combinations with an even number of set bits.

• Number of hidden neurons grows exponentially with the number of inputs.

• However, if more hidden layers are admissible, linear growth is possible:

◦ Start with a biimplication of two inputs.

◦ Continue with a chain of exclusive ors, each of which adds another input.

◦ Such a network needs n + 3(n − 1) = 4n − 3 neurons in total
(n input neurons, 3(n − 1)− 1 hidden neurons, 1 output neuron)
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Reminder: Representing Arbitrary Boolean Functions

Algorithm: Let y = f (x1, . . . , xn) be a Boolean function of n variables.

(i) Represent the given function f (x1, . . . , xn) in disjunctive normal form. That is,
determine D f = C1 ∨ . . . ∨ Cm, where all Cj are conjunctions of n literals, that is,
Cj = lj1 ∧ . . . ∧ ljn with lji = xi (positive literal) or lji = ¬xi (negative literal).

(ii) Create a neuron for each conjunction Cj of the disjunctive normal form
(having n inputs — one input for each variable), where

wji =

{
+2, if lji = xi,
−2, if lji = ¬xi,

and θj = n − 1 +
1

2

n

∑
i=1

wji.

(iii) Create an output neuron (having m inputs — one input for each neuron
that was created in step (ii)), where

w(n+1)k = 2, k = 1, . . . , m, and θn+1 = 1.

Remark: weights are set to ±2 instead of ±1 in order to ensure integer thresholds.
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Deep Learning: n-bit Parity Function

x1

x2

x3

xn−1

xn
y

biimplication

xor

xor

xor

• Implementation of the n-bit parity function with a chain of one biimplication
and n − 2 exclusive or sub-networks.

• Note that the structure is not strictly layered, but could be completed.
If this is done, the number of neurons increases to n(n + 1)− 1.
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Deep Learning: Motivation

• Similar to the situation w.r.t. linearly separable functions:

◦ Only few n-ary Boolean functions are linearly separable (see next slide).

◦ Only few n-ary Boolean functions need few hidden neurons in a single layer.

• An n-ary Boolean function has k0 input combinations with an output of 0
and k1 input combinations with an output of 1 (clearly k0 + k1 = 2n).

• We need at most 2min{k0,k1} hidden neurons
if we choose disjunctive normal form for k1 ≤ k0

and conjunctive normal form for k1 > k0.

• As there are (2n

k0
) possible functions with k0 input combinations mapped to 0 and

k1 mapped to 1, many functions require a large number of hidden neurons.

• Although the number of neurons may be reduced with minimization methods
like the Quine–McCluskey algorithm [Quine 1952, 1955; McCluskey 1956],
the fundamental problem remains.
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Reminder: Limitations of Threshold Logic Units

Total number and number of linearly separable Boolean functions
(On-Line Encyclopedia of Integer Sequences, oeis.org, A001146 and A000609):

inputs Boolean functions linearly separable functions

1 4 4
2 16 14
3 256 104
4 65,536 1,882
5 4,294,967,296 94,572
6 18,446,744,073,709,551,616 15,028,134
n 2(2

n) no general formula known

• For many inputs a threshold logic unit can compute almost no functions.

• Networks of threshold logic units are needed to overcome the limitations.
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Deep Learning: Motivation

• In practice the problem is mitigated considerably by the simple fact
that training data sets are necessarily limited in size.

• Complete training data for an n-ary Boolean function has 2n training examples.
Data sets for practical problems usually contain much fewer sample cases.

This leads to many input configurations for which no desired output is given;
freedom to assign outputs to them allows for a simpler representation.

• Nevertheless, using more than one hidden layer promises in many cases
to reduce the number of needed neurons.

• This is the focus of the area of deep learning.
(Depth means the length of the longest path in the network graph.)

• For multi-layer perceptrons (longest path: number of hidden layers plus one),
deep learning starts with more than one hidden layer.

• For 10 or more hidden layers, one sometimes speaks of very deep learning.
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Deep Learning: Main Problems

• Deep learning multi-layer perceptrons suffer from two main problems:

overfitting and vanishing gradient.

• Overfitting results mainly from the increased number of adaptable parameters.

• Weight decay prevents large weights and thus an overly precise adaptation.

• Sparsity constraints help to avoid overfitting:

◦ there is only a restricted number of neurons in the hidden layers or

◦ only few of the neurons in the hidden layers should be active (on average).

May be achieved by adding a regularization term to the error function
(compares the observed number of active neurons with desired number
and pushes adaptations into a direction that tries to match these numbers).

• Furthermore, a training method called dropout training may be applied:

some units are randomly omitted from the input/hidden layers during training.
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Deep Learning: Dropout

• Desired characteristic:
Robustness against neuron failures.

• Approach during training:

◦ Use only p% of the neurons
(e.g. p = 50: half of the neurons).

◦ Choose dropout neurons randomly.

• Approach during execution:

◦ Use all of the neurons.

◦ Multiply all weights by p%.

• Result of this approach:

◦ More robust representation.

◦ Better generalization.

Christian Borgelt Artificial Neural Networks and Deep Learning 230



Reminder: Cookbook Recipe for Error Backpropagation

∀u ∈ Uin :

out
(l)
u = ext

(l)
u

forward
propagation:

∀u ∈ Uhidden ∪ Uout :

out
(l)
u =

(
1 + exp

(
− ∑p∈pred(u) wup out

(l)
p

))−1

• logistic
activation
function

• implicit
bias value

xn

x2

x1

ym

y2

y1

∀u ∈ Uhidden :

δ
(l)
u =

(
∑s∈succ(u) δ

(l)
s wsu

)
λ
(l)
u

backward
propagation:

∀u ∈ Uout :

δ
(l)
u =

(
o
(l)
u − out

(l)
u

)
λ
(l)
u

error factor:

λ
(l)
u = out

(l)
u

(
1 − out

(l)
u

)activation
derivative:

weight
change: ∆w

(l)
up = η δ

(l)
u out

(l)
p
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Deep Learning: Vanishing Gradient

logistic activation function:

fact(net
(l)
u ) =

1

1 + e− net
(l)
u

net
0

1

2

1

0−4 −2 +2 +4

derivative of logistic function:

f ′act(net
(l)
u ) = fact(net

(l)
u ) · (1 − fact(net

(l)
u ))

net
0

1

2

1

0

1

4

−4 −2 +2 +4

• If a logistic activation function is used (shown on left), the weight changes

are proportional to λ
(l)
u = out

(l)
u

(
1 − out

(l)
u

)
(shown on right; see recipe).

• This factor is also propagated back, but cannot be larger than 1
4 (see right).

⇒ The gradient tends to vanish if many layers are backpropagated through.
Learning in the early hidden layers can become very slow [Hochreiter 1991].
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Deep Learning: Vanishing Gradient

• In principle, a small gradient may be counteracted by a large weight.

δ
(l)
u =

(
∑

s∈succ(u)

δ
(l)
s wsu

)
λ
(l)
u .

• However, usually a large weight, since it also enters the activation function,
drives the activation function to its saturation regions.

• Thus, (the absolute value of) the derivative factor is usually the smaller,
the larger (the absolute value of) the weights.

• Furthermore, the connection weights are commonly initialized
to a random value in the range from −1 to +1.

⇒ Initial training steps are particularly affected:
both the gradient as well as the weights provide a factor less than 1.

• Theoretically, there can be exceptions to this description.
However, they are rare in practice; usually one observes a vanishing gradient.
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Deep Learning: Vanishing Gradient

Alternative way to understand the vanishing gradient effect:

• The logistic activation function is a contracting function:
for any two arguments x and y, x ̸= y, we have | fact(x)− fact(y)| < |x − y|.
(Obvious from the fact that its derivative is always < 1; actually ≤ 1

4.)

• If several logistic functions are chained, these contractions combine
and yield an even stronger contraction of the input range.

• As a consequence, a rather large change of the input values
will produce only a rather small change in the output values,
and the more so, the more logistic functions are chained together.

• Therefore the function that maps the inputs of a multi-layer perceptron to its
outputs usually becomes the flatter the more layers the network has.

• Consequently the gradient in the first hidden layer
(were the inputs are processed) becomes the smaller.
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Deep Learning: Different Activation Functions

rectified maximum/ramp function:

fact(net, θ) = max{0, net−θ}

net
0

1

2

1

θθ − 1 θ + 1

softplus function:

fact(net, θ) = ln(1 + enet−θ)

net
0

2

4

θ − 4 θ − 2 θ θ + 2 θ + 4

Note the scale!

• The vanishing gradient problem may be battled with other activation functions.

• These activation functions yield so-called rectified linear units (ReLUs).

• Rectified maximum/ramp function

Advantages: simple computation, simple derivative, zeros simplify learning
Disadvantages: no learning ≤ θ, inelegant, not continuously differentiable
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Reminder: Training a TLU for the Negation

Single input
threshold logic unit
for the negation ¬x.

θx yw
x y

0 1
1 0

Modified output error as a function of weight and threshold:

error for x = 0
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–1

0
1

2

–2

–1
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error for x = 1
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A rectified maximum/ramp function yields these errors directly.
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Deep Learning: Different Activation Functions

rectified maximum/ramp function:

fact(net, θ) = max{0, net−θ}

net
0

1

2

1

θθ − 1 θ + 1

softplus function:

fact(net, θ) = ln(1 + enet−θ)

net
0

2

4

θ − 4 θ − 2 θ θ + 2 θ + 4

Note the scale!

• Softplus function: continuously differentiable, but much more complex

• Alternatives:

◦ Leaky ReLU: f (x) =

{
x if x > 0,
νx otherwise.

(adds learning ≤ θ; ν ≈ 0.01)

◦ Noisy ReLU: f (x) = max{0, x +N (0, σ(x))} (adds Gaussian noise)
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Deep Learning: Different Activation Functions

derivative of ramp function:

fact(net, θ) =

{
1, if net ≥ θ,
0, otherwise.

net
0

1

2

1

θ

derivative of softplus function:

fact(net, θ) =
1

1 + e−(net−θ)

net
0

1

2

1

θθ − 4 θ − 2 θ + 2 θ + 4

• The derivative of the rectified maximum/ramp function is the step function.

• The derivative of the softplus function is the logistic function.

• Factor resulting from derivative of activation function can be much larger.

⇒ Larger gradient in early layers of the network; training is (much) faster.

• What also helps: faster hardware, implementations on GPUs etc.
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Deep Learning: Auto-Encoders

• Reminder: Networks of threshold logic units cannot be trained, because

◦ there are no desired values for the neurons of the first layer(s),

◦ the problem can usually be solved with several different functions
computed by the neurons of the first layer(s) (non-unique solution).

• Though multi-layer perceptrons, even with many hidden layers, can be trained,
the same problems still affect the effectiveness and efficiency of training.

• Alternative: Build network layer by layer,
train only newly added layer in each step.

Popular: Build the network as stacked auto-encoders.

• An auto-encoder is a 3-layer perceptron
that maps its inputs to approximations of these inputs.

◦ Hidden layer forms an encoder into some form of internal representation.

◦ Output layer forms a decoder that (approximately) reconstructs the inputs.
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Deep Learning: Auto-Encoders

xn

x2

x1

x̂n

x̂2

x̂1

encoder decoder

xn

x2

x1

fm

f1

encoder

An auto-encoder/decoder (left), of which only the encoder part (right) is later used.

The xi are the given inputs, the x̂i are the reconstructed inputs, and
the fi are the constructed features; the error is e = ∑

n
i=1(x̂i − xi)2.

Training is conducted with error backpropagation.
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Deep Learning: Auto-Encoders

• Rationale of training an auto-encoder:
hidden layer is expected to construct features.

• Hope: Features capture the information contained in the input in a compressed
form (encoder), so that the input can be well reconstructed from it (decoder).

• Note: this implicitly assumes that features that are well suited to represent
the inputs in a compressed way are also useful to predict some desired output.

Experience shows that this assumption is often justified.

• Main problems: ◦ how many units should be chosen for the hidden layer?
◦ how should this layer be treated during training?

• If there are as many (or even more) hidden units as there are inputs,
it is likely that it will merely pass through its inputs to the output layer.

• The most straightforward solution are sparse auto-encoders:

There should be (considerably) fewer hidden neurons than there are inputs.
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Deep Learning: Sparse and Denoising Auto-Encoders

• Few hidden neurons force the auto-encoder to learn relevant features
(since it is not possible to simply pass through the inputs).

• How many hidden neurons are a good choice?
Note that cross-validation not necessarily a good approach!

• Alternative to few hidden neurons: sparse activation scheme
Number of active neurons in the hidden layer is restricted to a small number.

May be enforced by either adding a regularization term to the error function
that punishes a larger number of active hidden neurons or by
explicitly deactivating all but a few neurons with the highest activations.

• A third approach is to add noise (that is, random variations) to the input
(but not to the copy of the input used to evaluate the reconstruction error):
denoising auto-encoders.

(The auto-encoder to be trained is expected to map the input with noise
to (a copy of) the input without noise, thus preventing simple passing through.)
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Deep Learning: Stacked Auto-Encoders

• A popular way to initialize/pre-train a stacked auto-encoder
is a greedy layer-wise training approach.

• In the first step, a (sparse) auto-encoder is trained for the raw input features.
The hidden layer constructs primary features useful for reconstruction.

• A primary feature data set is obtained by propagating the raw input features
up to the hidden layer and recording the hidden neuron activations.

• In the 2nd step, a (sparse) auto-encoder is trained for the obtained feature data
set. The hidden layer constructs secondary features useful for reconstruction.

• A secondary feature data set is obtained by propagating the primary features
up to the hidden layer and recording the hidden neuron activations.

• This process is repeated as many times as hidden layers are desired.

• Finally the encoder parts of the trained auto-encoders are stacked
and the resulting network is fine-tuned with error backpropagation.
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Deep Learning: Stacked Auto-Encoders

Layer-wise training of auto-encoders:x1 x̂1

x2 x̂2

x3 x̂3

x4 x̂4

x5 x̂5

x6 x̂6

a1

a2

a3

a4

input
features 1

reconst.

a1 â1

a2 â2

a3 â3

a4 â4

b1

b2

b3

features 1

features 2

reconst.

b1

b2

b3

y1

y2

y3

features 2 output

x1

x2

x3

x4

x5

x6

a1

a2

a3

a4

b1

b2

b3

y1

y2

y3

input

features 1

features 2 output

1. Train auto-encoder for the raw input;
this yields a primary feature set.

2. Train auto-encoder for the primary features;
this yields a secondary feature set.

3. A classifier/predictor for the output
is trained from the secondary feature set.

4. The resulting networks are stacked.
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Deep Learning: Convolutional Neural Networks (CNNs)

• Multi-layer perceptrons with several hidden layers built in the way described
have been applied very successfully for handwritten digit recognition.

• In such an application it is assumed, though, that the handwriting
has already been preprocessed in order to separate the digits
(or, in other cases, the letters) from each other.

• However, one would like to use similar networks for more general applications,
for example, recognizing whole lines of handwriting or analyzing photos
to identify their parts as sky, landscape, house, pavement, tree, human etc.

• For such applications it is advantageous that the features constructed
in hidden layers are not localized to a specific part of the image.

• Special form of deep learning multi-layer perceptron:
convolutional neural network.

• Inspired by the human retina, where sensory neurons have a receptive field,
that is, a limited region in which they respond to a (visual) stimulus.
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Convolutional Neural Networks: Receptive Field

“receptive field”

· · ·

· · · · · ·

• Each neuron of a hidden layer is connected to a small number of input neurons
that refer to a contiguous region of the input image (left).

• Weights are shared, same network is evaluated at different locations.
The input field is “moved” step by step over the whole image (right).

• Equivalent to a convolution with a small size kernel (matrix).
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(Discrete) Convolution with a Kernel Matrix

8 3 18 30 25

1 4 14 23 26

7 0 17 24 22

9 6 15 31 28

2 5 16 29 27

∗

−1 0 +1

−2 0 +2

−1 0 +1

=

46 89 36

39 92 35

36 98 42

8 3 18 30 25

1 4 14 23 26

7 0 17 24 22

9 6 15 31 28

2 5 16 29 27

−1 0 +1

−2 0 +2

−1 0 +1
=

46

8 3 18 30 25

1 4 14 23 26

7 0 17 24 22

9 6 15 31 28

2 5 16 29 27

−1 0 +1

−2 0 +2

−1 0 +1
=

89

8 3 18 30 25

1 4 14 23 26

7 0 17 24 22

9 6 15 31 28

2 5 16 29 27

−1 0 +1

−2 0 +2

−1 0 +1
=

36

8 3 18 30 25

1 4 14 23 26

7 0 17 24 22

9 6 15 31 28

2 5 16 29 27

−1 0 +1

−2 0 +2

−1 0 +1
=

39

8 3 18 30 25

1 4 14 23 26

7 0 17 24 22

9 6 15 31 28

2 5 16 29 27

−1 0 +1

−2 0 +2

−1 0 +1
=

92

8 3 18 30 25

1 4 14 23 26

7 0 17 24 22

9 6 15 31 28

2 5 16 29 27

−1 0 +1

−2 0 +2

−1 0 +1
=

35

8 3 18 30 25

1 4 14 23 26

7 0 17 24 22

9 6 15 31 28

2 5 16 29 27

−1 0 +1

−2 0 +2

−1 0 +1
=

36

8 3 18 30 25

1 4 14 23 26

7 0 17 24 22

9 6 15 31 28

2 5 16 29 27

−1 0 +1

−2 0 +2

−1 0 +1
=

98

8 3 18 30 25

1 4 14 23 26

7 0 17 24 22

9 6 15 31 28

2 5 16 29 27

−1 0 +1

−2 0 +2

−1 0 +1
=

42

Christian Borgelt Artificial Neural Networks and Deep Learning 247



(Discrete) Convolution: Shrinkage, Padding and Stride

• A discrete convolution produces output for the locations of the kernel centers.
Hence a k × k kernel (k odd) shrinks the size of the input by k − 1 pixels,
both horizontally and vertically (k−1

2 pixels at each border).

• Shrinkage is counteracted by padding, that is, by adding a border of p pixels.
(Most common: p = k−1

2 in order to compensate the shrinkage exactly.)

Typical padding variants with p = 1: (thick line: image border)

zero
padding

0 0 0 0

0

0

017 24 22

15 31 28

16 29 27

average
padding

(image
average)

16 16 16 16

16

16

1617 24 22

15 31 28

16 29 27

replication
padding

16 29 27 27

27

28

2217 24 22

15 31 28

16 29 27

• The step width, by which the placements of the kernels are shifted,
is called the stride s of the convolution (on previous slide: stride s = 1 pixel).

• Convolution of an image dimension with n pixels yields m = ⌈n+2p−k−1
s ⌉ pixels.

(Most common special case: p = k−1
2 , s = 1 ⇒ m = n)
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Convolutional Neural Networks: Pooling

• (Discrete) Convolutions detect localized features in a limited receptive field.

• Usually it is more important that a feature occurs than where exactly it occurs.
(Slight shifts in the location of the feature are often not that important,
that is, the rough location may be relevant, but not the exact location.)

• This is often exploited to condense the feature information by pooling.
Most common variants are average pooling and maximum pooling (maxpool).

average
pooling

12 31

16 29

22

1
4(12+31+16+29) = 22

maximum
pooling

12 31

16 29

31

max{12, 31, 16, 29} = 31

• Maximum pooling: focus on strongest detection of a feature.
Average pooling: multiple detections of a feature in close proximity.

• The most common pooling size is 2 × 2 pixels (as in examples above),
but pooling larger regions is sometimes used as well.
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Application: Recognition of Handwritten Digits

picture not available in online version

• 9298 segmented and digitized digits of handwritten ZIP codes.

• Appeared on US Mail envelopes passing through the post office in Buffalo, NY.

• Written by different people, great variety of sizes, writing styles and instru-
ments, with widely varying levels of care.

• In addition: 3349 printed digits from 35 different fonts.
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Application: Recognition of Handwritten Digits

picture not available in online version

• Acquisition, binarization, location of the ZIP code on the envelope and segmen-
tation into individual digits were performed by Postal Service contractors.

• Further segmentation were performed by the authors of [LeCun et al. 1990].

• Segmentation of totally unconstrained digit strings is a difficult problem.

• Several ambiguous characters are the result of missegmentation
(especially broken 5s, see picture above).
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Application: Recognition of Handwritten Digits

picture not available in online version

• Segmented digits vary in size, but are typically around 40 to 60 pixels.

• The size of the digits is normalized to 16 × 16 pixels
with a simple linear transformation (preserve aspect ratio).

• As a result of the transformation, the resulting image is not binary,
but has multiple gray levels, which are scaled to fall into [−1,+1].

• Remainder of the recognition is performed entirely by an MLP.
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Application: Recognition of Handwritten Digits

picture not available in online version

• Objective: train an MLP to recognize the digits.

• 7291 handwritten and 2549 printed digits in training set;
2007 handwritten and 700 printed digits (different fonts) in test set.

• Both training and test set contain multiple examples that are ambiguous,
unclassifiable, or even misclassified.

• Picture above: normalized digits from the test set.
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Application: Recognition of Handwritten Digits

• Challenge: all connections are adaptive, although heavily constrained
(in contrast to earlier work that used manually chosen first layers).

• Training: error backpropagation / gradient descent.

• Input: 16 × 16 pixel images of the normalized digits
(256 input neurons).

• Output: 10 neurons, that is, one neuron per class.

If an input image belongs to class i (shows digit i),
the output neuron ui should produce a value of +1,
all other output neurons should produce a value of −1.

• Problem: for a fully connected network with multiple hidden layers
the number of parameters is excessive (risk of overfitting).

• Solution: instead of a fully connected network, use a locally connected one.
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Application: Recognition of Handwritten Digits

picture not available in online version

• Used network has four hidden layers plus input and output layer.

• Local connections in all but the last layer:

◦ Two-dimensional layout of the input and hidden layers (neuron grids).

◦ Connections to a neuron in the next layer from a group of neighboring
neurons in the preceding layer (small sub-grid, local receptive field).
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Application: Recognition of Handwritten Digits

picture not available in online version

• Idea: local connections can implement feature detectors.

• In addition: analogous connections are forced to have identical weights
to allow for features appearing in different parts of the input (weight sharing).

• Equivalent to a convolution with a small size kernel,
followed by an application of the activation function.
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Application: Recognition of Handwritten Digits

picture not available in online version

• Note: Weight sharing considerably reduces the number of free parameters.

• The outputs of a set of neurons with shared weights constitute a feature map.

• In practice, multiple feature maps, extracting different features, are needed.

• The idea of local, convolutional feature maps can be applied to subsequent hid-
den layers as well to obtain more complex and abstract features.
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Application: Recognition of Handwritten Digits

picture not available in online version

• Higher level features require less precise coding of their location;
therefore each additional layer performs local averaging and subsampling.

• The loss of spatial resolution (pooling) is partially compensated
by an increase in the number of different features (more channels).

• Layers H1 and H3 are shared-weight feature extractors (convolution),
Layers H2 and H4 are averaging/subsampling layers (pooling).
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Application: Recognition of Handwritten Digits

• Input image is enlarged from 16 × 16 to 28 × 28 to avoid boundary problems.

• In the first hidden layer, four feature maps are represented.
All neurons in the same feature map share the same weight vectors.

• The second hidden layer averages over 2 × 2 blocks in the first hidden layer.

• 12 feature maps in H3, averaging over 2 × 2 blocks in H4.

• Feature maps in hidden layers H2 and H3 are connected as follows:

H2/H3 1 2 3 4 5 6 7 8 9 10 11 12

1 × × × × ×
2 × × × × ×
3 × × × × ×
4 × × × × ×

• The output layer is fully connected to the fourth hidden layer H4.

• In total: 4635 neurons, 98442 connections, 2578 independent parameters.

Christian Borgelt Artificial Neural Networks and Deep Learning 259



Application: Recognition of Handwritten Digits

• After 30 training epochs, the error rate on the training set was 1.1% (MSE: 0.017),
and 3.4% on the test set (MSE: 0.024). Compared to human error: 2.5%

• All classification errors occurred on handwritten digits.

• Substitutions (misclassified) versus Rejections (unclassified):

◦ Reject an input if the difference in output between
the two neurons with the highest output is less than a threshold.

◦ Best result on the test set: 5.7% rejections for 1% substitutions.

◦ On handwritten data alone: 9% rejections for 1% substitutions or
6% rejections for 2% substitutions.

• Atypical input (see below) is also correctly classified.

picture not available in online version
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ImageNet Large Scale Visual Recognition Challenge (ILSVRC)

picture not available in online version

• ImageNet
is an image database organized
according to WordNet nouns.

• WordNet
is a lexical database [of English];
nouns, verbs, adjectives and
adverbs are grouped into sets
of cognitive synonyms (synsets)
each expressing a distinct con-
cept; contains > 100, 000 synsets,
of which > 80, 000 are nouns.

• The ImageNet database contains
hundreds and thousands of
images for each noun/synset.
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ImageNet Large Scale Visual Recognition Challenge (ILSVRC)

• Uses a subset of the ImageNet database (1.2 million images, 1,000 categories)

• Evaluates algorithms for object detection and image classification.

• Yearly challenges/competitions with corresponding workshops since 2010.

28.2%

25.8%

15.3%

11.7%

7.3% 6.7%

3.6% 3%
2.25%

2010 2011 2012
AlexNet

2013 2014
VGG

2014
GoogLeNet

2015
ResNet

2016 2017
0

5

10

15

20

25

30 classification error (top5)

of ILSVRC winners • Hardly possible
15 years ago;
rapid improvement

• Often used:
network ensembles

• Very deep learning:
ResNet (2015)
had > 150 layers
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ImageNet Large Scale Visual Recognition Challenge (ILSVRC)

picture not available in online version

• Structure of AlexNet neural network (winner 2012) [Krizhevsky et al. 2012].

• 60 million parameters, 650,000 neurons, efficient GPU implementation.
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German Traffic Sign Recognition Benchmark (GTSRB)

pictures not available in online version

• Competition at Int. Joint Conference on Neural Networks (IJCNN) 2011
[Stallkamp et al. 2012] benchmark.ini.rub.de/?section=gtsrb

• Single image, multi-class classification problem
(that is, each image can belong to multiple classes).

• More than 40 classes, more than 50,000 images.

• Physical traffic sign instances are unique within the data set
(that is, each real-world traffic sign occurs only once).

• Winning entry (committee of CNNs) outperforms humans!
error rate winner (convolutional neural networks): 0.54%

runner up (not a neural network): 1.12%
human recognition: 1.16%
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Inceptionism: Visualization of Training Results

pictures not available
in online version

• One way to visualize what goes
on in a neural network is to “turn
the network upside down” and
ask it to enhance an input image
in such a way as to elicit a partic-
ular interpretation.

• Impose a prior constraint that the
image should have similar statis-
tics to natural images, such as
neighboring pixels needing to be
correlated.

• Result: NNs that are trained
to discriminate between different
kinds of images contain informa-
tion needed to generate images.
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Deep Learning: Board Game Go

picture not available
in online version

• board with 19 × 19 grid lines,
stones are placed on line crossings

• objective: surround territory/crossings
(and enemy stones: capture)

• special “ko” rules for certain situations
to prevent infinite retaliation

• a player can pass his/her turn
(usually disadvantageous)

• game ends after both players
subsequently pass a turn

• winner is determined by counting
(controlled area plus captured stones)

Board game b d bd b number of moves per ply/turn

Chess ≈ 35 ≈ 80 ≈ 10123 d length of game in plies/turns

Go ≈ 250 ≈ 150 ≈ 10359 bd number of possible sequences
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Deep Learning: AlphaGo

• AlphaGo is a computer program
developed by Alphabet Inc.’s Google
DeepMind to play the board game Go.

• It uses a combination of machine learning and tree search techniques,
combined with extensive training, both from human and computer play.

• AlphaGo uses Monte Carlo tree search,
guided by a “value network” and a “policy network”,
both of which are implemented using deep neural networks.

• A limited amount of game-specific feature detection is applied to the input
before it is sent to the neural networks.

• The neural networks were bootstrapped from human gameplay experience.
Later AlphaGo was set up to play against other instances of itself,
using reinforcement learning to improve its play.

source: Wikipedia
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Deep Learning: AlphaGo

Match against Fan Hui
(Elo 3016 on 01-01-2016,
#512 world ranking list),
best European player
at the time of the match

AlphaGo wins 5 : 0

Match against Lee Sedol
(Elo 3546 on 01-01-2016,
#1 world ranking list 2007–2011,
#4 at the time of the match)

AlphaGo wins 4 : 1

www.goratings.org

AlphaGo threads CPUs GPUs Elo

Async. 1 48 8 2203
Async. 2 48 8 2393
Async. 4 48 8 2564
Async. 8 48 8 2665
Async. 16 48 8 2778
Async. 32 48 8 2867
Async. 40 48 1 2181
Async. 40 48 2 2738
Async. 40 48 4 2850
Async. 40 48 8 2890

Distrib. 12 428 64 2937
Distrib. 24 764 112 3079
Distrib. 40 1202 176 3140
Distrib. 64 1920 280 3168
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Deep Learning: AlphaGo vs Lee Sedol, Game 1

First game of the match between AlphaGo and Lee Sedol
Lee Sedol: black pieces (first move), AlphaGo: white pieces; AlphaGo won

picture not available in online version
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Radial Basis Function Networks
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Radial Basis Function Networks

A radial basis function network (RBFN) is a neural network
with a graph G = (U, C) that satisfies the following conditions

(i) Uin ∩ Uout = ∅,

(ii) C = (Uin × Uhidden) ∪ C′, C′ ⊆ (Uhidden × Uout)

The network input function of each hidden neuron is a distance function
of the input vector and the weight vector, that is,

∀u ∈ Uhidden : f
(u)
net (w⃗u, i⃗nu) = d(w⃗u, i⃗nu),

where d : IRn × IRn → IR+
0 is a function satisfying ∀x⃗, y⃗, z⃗ ∈ IRn :

(i) d(x⃗, y⃗) = 0 ⇔ x⃗ = y⃗,

(ii) d(x⃗, y⃗) = d(⃗y, x⃗) (symmetry),

(iii) d(x⃗, z⃗) ≤ d(x⃗, y⃗) + d(⃗y, z⃗) (triangle inequality).
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Distance Functions

Illustration of distance functions: Minkowski Family

dk(x⃗, y⃗) = k

√
n

∑
i=1

|xi − yi|k =

(
n

∑
i=1

|xi − yi|k
)1

k

Well-known special cases from this family are:

k = 1 : Manhattan or city block distance,
k = 2 : Euclidean distance (the only isotropic distance),
k → ∞ : maximum distance, that is, d∞(x⃗, y⃗) = max n

i=1|xi − yi|.

k = 1 k = 2 k → ∞
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Radial Basis Function Networks

The network input function of the output neurons
is the weighted sum of their inputs:

∀u ∈ Uout : f
(u)
net (w⃗u, i⃗nu) = w⃗⊤

u i⃗nu = ∑
v∈pred (u)

wuv outv .

The activation function of each hidden neuron is a so-called radial function,
that is, a monotone non-increasing function

f : IR+
0 → [0, 1] with f (0) = 1 and lim

x→∞
f (x) = 0.

The activation function of each output neuron is a linear function, namely

f
(u)
act (netu, θu) = netu −θu.

(The linear activation function is important for the initialization.)
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Radial Activation Functions

rectangle function:

fact(net, σ) =

{
0, if net > σ,
1, otherwise.

net
0

1

0 σ

triangle function:

fact(net, σ) =

{
0, if net > σ,
1 − net

σ , otherwise.

net
0

1

0 σ

cosine until zero:

fact(net, σ) =

{
0, if net > 2σ,
cos( π

2σ net)+1

2 , otherwise.

σ 2σ

1

2

net
0

1

0

Gaussian function:

fact(net, σ) = e
−net2

2σ2

e
−

1

2

e
−2

σ 2σ

net
0

1

0
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Radial Basis Function Networks: Examples

Radial basis function networks for the conjunction x1 ∧ x2

x1

x2

1

2
0 y

1

1

1

x1

x2

0 1

0

1

x1

x2

6

5
−1 y

0

0

−1

x1

x2

0 1

0

1
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Radial Basis Function Networks: Examples

Radial basis function networks for the biimplication x1 ↔ x2

Idea: logical decomposition

x1 ↔ x2 ≡ (x1 ∧ x2) ∨ ¬(x1 ∨ x2)

x1

x2

1

2

1

2

0 y

1

0

0

1

1

1

x1

x2

0 1

0

1
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Radial Basis Function Networks: Function Approximation

x

y

x1 x2 x3 x4

y1

y2

y3

y4

x

y

x1 x2 x3 x4

y1

y2

y3

y4

1

0

1

0

1

0

1

0
·y4

·y3

·y2

·y1

Approximation of a function
by rectangular pulses, each of
which can be represented
by a neuron of a radial
basis function network.

Christian Borgelt Artificial Neural Networks and Deep Learning 277



Radial Basis Function Networks: Function Approximation

x y

σ

σ

σ

σ

0

x4

x3

x2

x1

y4

y3

y2

y1

σ = 1
2∆x = 1

2(xi+1 − xi)

Radial basis function network that computes the step function on the preceding and
the piecewise linear function on the next slide (depends on activation function).
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Radial Basis Function Networks: Function Approximation

x

y

x1 x2 x3 x4

y1

y2

y3

y4

x

y

x1 x2 x3 x4

y1

y2

y3

y4

1

0

1

0

1

0

1

0
·y4

·y3

·y2

·y1

Approximation of a function
by triangular pulses, each of
which can be represented
by a neuron of a radial
basis function network.
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Radial Basis Function Networks: Function Approximation

x

y

2 4 6 8

−1

0

1

2

x

y

2 4 6 8

−1

0

1

2

0

1

0

1

0

1
·w1

·w2

·w3

Approximation of a function by
Gaussian functions with σ = 1.
input → hidden:
w1 = 2, w2 = 5, w3 = 6
hidden → output:
w1 = 1, w2 = 3, w3 = −2
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Radial Basis Function Networks: Function Approximation

Radial basis function network for a sum of three Gaussian functions

x y

1

1

1

0

6

5

2

−2

3

1

• Weights of the connections from the input neuron to the hidden neurons deter-
mine the locations of the Gaussian functions.

• Weights of the connections from the hidden neurons to the output neuron de-
termine the height/direction (upward or downward) of the Gaussian functions.
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Training Radial Basis Function Networks
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Radial Basis Function Networks: Initialization

Let Lfixed = {l1, . . . , lm} be a fixed learning task,
consisting of m training patterns l = (⃗ı (l), o⃗ (l)).

Simple radial basis function network:
One hidden neuron vk, k = 1, . . . , m, for each training pattern:

∀k ∈ {1, . . . , m} : w⃗vk
= ı⃗ (lk).

If the activation function is the Gaussian function,
the radii σk are chosen heuristically

∀k ∈ {1, . . . , m} : σk =
dmax√

2m
,

where

dmax = max
lj,lk∈Lfixed

d
(
ı⃗ (lj),⃗ ı (lk)

)
.
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Radial Basis Function Networks: Initialization

Initializing the connections from the hidden to the output neurons

∀u :
m

∑
k=1

wuvk
out

(l)
vk
−θu = o

(l)
u or abbreviated A · w⃗u = o⃗u,

where o⃗u =
(
o
(l1)
u , . . . , o

(lm)
u

)⊤
is the vector of desired outputs, θu = 0, and

A =




out
(l1)
v1

out
(l1)
v2

. . . out
(l1)
vm

out
(l2)
v1

out
(l2)
v2

. . . out
(l2)
vm

... ... ...

out
(lm)
v1

out
(lm)
v2

. . . out
(lm)
vm


 .

This is a linear equation system, that can be solved by inverting the matrix A:

w⃗u = A−1 · o⃗u.
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RBFN Initialization: Example

Simple radial basis function network for the biimplication x1 ↔ x2

x1 x2 y

0 0 1
1 0 0
0 1 0
1 1 1

1

2

1

2

1

2

1

2

0

x2

x1

y

1

0

1

0

1

1

0

0
w1

w2

w3

w4
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RBFN Initialization: Example

Simple radial basis function network for the biimplication x1 ↔ x2

A =




1 e−2 e−2 e−4

e−2 1 e−4 e−2

e−2 e−4 1 e−2

e−4 e−2 e−2 1


 A−1 =




a
D

b
D

b
D

c
D

b
D

a
D

c
D

b
D

b
D

c
D

a
D

b
D

c
D

b
D

b
D

a
D




where
D = 1 − 4e−4 + 6e−8 − 4e−12 + e−16 ≈ 0.9287
a = 1 − 2e−4 + e−8 ≈ 0.9637
b = −e−2 + 2e−6 − e−10 ≈ −0.1304
c = e−4 − 2e−8 + e−12 ≈ 0.0177

w⃗u = A−1 · o⃗u =
1

D




a + c
2b
2b

a + c


 ≈




1.0567
−0.2809
−0.2809

1.0567



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RBFN Initialization: Example

Simple radial basis function network for the biimplication x1 ↔ x2

single basis function

–1
0

1
2

–1

0

1

2

1

1

x1

x
2

a
c
t

all basis functions

–1
0

1
2

–1

0

1

2

1

1

x1

x
2

a
c
t

output

–1
0

1
2

–1

0

1

2

1

1

x1

x
2

y

• Initialization leads already to a perfect solution of the learning task.

• Subsequent training is not necessary.
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Radial Basis Function Networks: Initialization

Normal radial basis function networks:
Select subset of k training patterns as centers.

A =




1 out
(l1)
v1

out
(l1)
v2

. . . out
(l1)
vk

1 out
(l2)
v1

out
(l2)
v2

. . . out
(l2)
vk... ... ... ...

1 out
(lm)
v1

out
(lm)
v2

. . . out
(lm)
vk


 A · w⃗u = o⃗u

Compute (Moore–Penrose) pseudo inverse:

A+ = (A⊤A)−1A⊤.

The weights can then be computed by

w⃗u = A+ · o⃗u = (A⊤A)−1A⊤ · o⃗u
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RBFN Initialization: Example

Normal radial basis function network for the biimplication x1 ↔ x2

Select two training patterns:

• l1 = (⃗ı (l1), o⃗ (l1)) = ((0, 0), (1))

• l4 = (⃗ı (l4), o⃗ (l4)) = ((1, 1), (1))

x1

x2

1

2

1

2

θ y

1

0

0

1

w1

w2
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RBFN Initialization: Example

Normal radial basis function network for the biimplication x1 ↔ x2

A =




1 1 e−4

1 e−2 e−2

1 e−2 e−2

1 e−4 1


 A+ = (A⊤A)−1A⊤ =




a b b a
c d d e
e d d c




where

a ≈ −0.1810, b ≈ 0.6810,
c ≈ 1.1781, d ≈ −0.6688, e ≈ 0.1594.

Resulting weights:

w⃗u =




−θ
w1

w2


 = A+ · o⃗u ≈




−0.3620
1.3375
1.3375


 .
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RBFN Initialization: Example

Normal radial basis function network for the biimplication x1 ↔ x2

basis function (0,0)

–1
0

1
2

–1

0

1

2

1

1

x1

x
2

a
c
t

basis function (1,1)

–1
0

1
2

–1

0

1

2

1

1

x1

x
2

a
c
t

output

–1
0

1
2

–1

0

1 0

1

–0.36

0

1

x1

x2

y

(1, 0)

• Initialization leads already to a perfect solution of the learning task.

• This is an accident, because the linear equation system is not over-determined,
due to linearly dependent equations.
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Radial Basis Function Networks: Initialization

How to choose the radial basis function centers?

• Use all data points as centers for the radial basis functions.

◦ Advantages: Only radius and output weights need to be determined; de-
sired output values can be achieved exactly (unless inconsistencies exist).

◦ Disadvantage: Often much too many radial basis functions; computing the
weights to the output neuron via a pseudo-inverse can become infeasible.

• Use a random subset of data points as centers for the radial basis functions.

◦ Advantages: Fast; only radius and output weights need to be determined.

◦ Disadvantages: Performance depends heavily on the choice of data points.

• Use the result of clustering as centers for the radial basis functions, e.g.

◦ c-means clustering (on the next slides)

◦ Learning vector quantization (to be discussed later)
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RBFN Initialization: c-means Clustering

• Choose a number c of clusters to be found (user input).

• Initialize the cluster centers randomly
(for instance, by randomly selecting c data points).

• Data point assignment:
Assign each data point to the cluster center that is closest to it
(that is, closer than any other cluster center).

• Cluster center update:
Compute new cluster centers as the mean vectors of the assigned data points.
(Intuitively: center of gravity if each data point has unit weight.)

• Repeat these two steps (data point assignment and cluster center update)
until the clusters centers do not change anymore.

It can be shown that this scheme must converge,
that is, the update of the cluster centers cannot go on forever.
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c-Means Clustering: Example

Data set to cluster.

Choose c = 3 clusters.
(From visual inspection, can be
difficult to determine in general.)

Initial position of cluster centers.

Randomly selected data points.
(Alternative methods include
e.g. latin hypercube sampling)
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Delaunay Triangulations and Voronoi Diagrams

• Dots represent cluster centers.

• Left: Delaunay Triangulation
The circle through the corners of a triangle does not contain another point.

• Right: Voronoi Diagram / Tesselation
Midperpendiculars of the Delaunay triangulation: boundaries of the regions
of points that are closest to the enclosed cluster center (Voronoi cells).
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Delaunay Triangulations and Voronoi Diagrams

• Delaunay Triangulation: simple triangle (shown in gray on the left)

• Voronoi Diagram: midperpendiculars of the triangle’s edges
(shown in blue on the left, in gray on the right)
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c-Means Clustering: Example
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Radial Basis Function Networks: Training

Training radial basis function networks:
Derivation of update rules is analogous to that of multi-layer perceptrons.

Weights from the hidden to the output neurons.

Gradient:

∇⃗w⃗ue
(l)
u =

∂e
(l)
u

∂w⃗u
= −2

(
o
(l)
u − out

(l)
u

)
i⃗n

(l)
u ,

Weight update rule:

∆w⃗
(l)
u = −η3

2
∇⃗w⃗ue

(l)
u = η3

(
o
(l)
u − out

(l)
u

)
i⃗n

(l)
u

Typical learning rate: η3 ≈ 0.001.

(Two more learning rates are needed for the center coordinates and the radii.)

Christian Borgelt Artificial Neural Networks and Deep Learning 298



Radial Basis Function Networks: Training

Training radial basis function networks:
Center coordinates (weights from the input to the hidden neurons).

Gradient:

∇⃗w⃗ve(l) =
∂e(l)

∂w⃗v
= −2 ∑

s∈succ(v)

(
o
(l)
s − out

(l)
s

)
wsv

∂ out
(l)
v

∂ net
(l)
v

∂ net
(l)
v

∂w⃗v

Weight update rule:

∆w⃗
(l)
v = −η1

2
∇⃗w⃗ve(l) = η1 ∑

s∈succ(v)

(
o
(l)
s − out

(l)
s

)
wsv

∂ out
(l)
v

∂ net
(l)
v

∂ net
(l)
v

∂w⃗v

Typical learning rate: η1 ≈ 0.02.
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Radial Basis Function Networks: Training

Training radial basis function networks:
Center coordinates (weights from the input to the hidden neurons).

Special case: Euclidean distance

∂ net
(l)
v

∂w⃗v
=

(
n

∑
i=1

(
wvpi

− out
(l)
pi

)2

)−1
2 (

w⃗v − i⃗n
(l)
v

)
.

Special case: Gaussian activation function

∂ out
(l)
v

∂ net
(l)
v

=
∂ fact

(
net

(l)
v , σv

)

∂ net
(l)
v

=
∂

∂ net
(l)
v

e
−
(

net
(l)
v

)2

2σ2
v = −net

(l)
v

σ2
v

e
−
(

net
(l)
v

)2

2σ2
v .
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Radial Basis Function Networks: Training

Training radial basis function networks:
Radii of radial basis functions.

Gradient:
∂e(l)

∂σv
= −2 ∑

s∈succ(v)

(
o
(l)
s − out

(l)
s

)
wsu

∂ out
(l)
v

∂σv
.

Weight update rule:

∆σ
(l)
v = −η2

2

∂e(l)

∂σv
= η2 ∑

s∈succ(v)

(
o
(l)
s − out

(l)
s

)
wsv

∂ out
(l)
v

∂σv
.

Typical learning rate: η2 ≈ 0.01.
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Radial Basis Function Networks: Training

Training radial basis function networks:
Radii of radial basis functions.

Special case: Gaussian activation function

∂ out
(l)
v

∂σv
=

∂

∂σv
e
−
(

net
(l)
v

)2

2σ2
v =

(
net

(l)
v

)2

σ3
v

e
−
(

net
(l)
v

)2

2σ2
v .

(The distance function is irrelevant for the radius update,
since it only enters the network input function.)
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Radial Basis Function Networks: Generalization

Generalization of the distance function

Idea: Use anisotropic (direction dependent) distance function.

Example: Mahalanobis distance

d(x⃗, y⃗) =
√
(x⃗ − y⃗)⊤Σ−1(x⃗ − y⃗).

Example: biimplication

x1

x2

1

3
0 y

1

2

1

2

1

Σ =

(

9 8

8 9

)

x1

x2

0 1

0

1
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Application: Recognition of Handwritten Digits

picture not available in online version

• Images of 20,000 handwritten digits (2,000 per class),
split into training and test data set of 10,000 samples each (1,000 per class).

• Represented in a normalized fashion as 16 × 16 gray values in {0, . . . , 255}.

• Data was originally used in the StatLog project [Michie et al. 1994].
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Application: Recognition of Handwritten Digits

• Comparison of various classifiers:

◦ Nearest Neighbor (1NN) ◦ Learning Vector Quantization (LVQ)

◦ Decision Tree (C4.5) ◦ Radial Basis Function Network (RBF)

◦ Multi-Layer Perceptron (MLP) ◦ Support Vector Machine (SVM)

• Distinction of the number of RBF training phases:

◦ 1 phase: find output connection weights e.g. with pseudo-inverse.

◦ 2 phase: find RBF centers e.g. with clustering plus 1 phase.

◦ 3 phase: 2 phase plus error backpropagation training.

• Initialization of radial basis function centers:

◦ Random choice of data points

◦ c-means Clustering

◦ Learning Vector Quantization

◦ Decision Tree (one RBF center per leaf)
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Application: Recognition of Handwritten Digits

picture not available in online version

• The 60 cluster centers (6 per class) resulting from c-means clustering.
(Clustering was conducted with c = 6 for each class separately.)

• Initial cluster centers were selected randomly from the training data.

• The weights of the connections to the output neuron
were computed with the pseudo-inverse method.

Christian Borgelt Artificial Neural Networks and Deep Learning 306



Application: Recognition of Handwritten Digits

picture not available in online version

• The 60 cluster centers (6 per class) after training the radial basis function
network with error backpropagation.

• Differences between the initial and the trained centers of the radial basis
functions appear to be fairly small, but ...
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Application: Recognition of Handwritten Digits

picture not available in online version

• Distance matrices showing the Euclidean distances of the
60 radial basis function centers before and after training.

• Centers are sorted by class/digit: first 6 rows/columns refer to digit 0,
next 6 rows/columns to digit 1 etc.

• Distances are encoded as gray values: darker means smaller distance.
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Application: Recognition of Handwritten Digits

picture not available in online version

• Before training (left): many distances between centers of different classes/digits
are small (e.g. 2-3, 3-8, 3-9, 5-8, 5-9); increases the chance of misclassifications.

• After training (right): only very few small distances between centers of different
classes/digits; basically all small distances between centers of same class/digit.
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Application: Recognition of Handwritten Digits

Classification results:

Classifier Accuracy

Nearest Neighbor (1NN) 97.68%
Learning Vector Quanti. (LVQ) 96.99%
Decision Tree (C4.5) 91.12%
2-Phase-RBF (data points) 95.24%
2-Phase-RBF (c-means) 96.94%
2-Phase-RBF (LVQ) 95.86%
2-Phase-RBF (C4.5) 92.72%
3-Phase-RBF (data points) 97.23%
3-Phase-RBF (c-means) 98.06%
3-Phase-RBF (LVQ) 98.49%
3-Phase-RBF (C4.5) 94.83%
Support Vector Machine (SVM) 98.76%
Multi-Layer Perceptron (MLP) 97.59%

• LVQ: 200 vectors
(20 per class)

C4.5: 505 leaves
c-means: 60 centers(?)

(6 per class)
SVM: 10 classifiers,

≈ 4200 vectors
MLP: 1 hidden layer

with 200 neurons

• Results are medians
of three training/test runs.

• Error backpropagation
improves RBF results.
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Learning Vector Quantization
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Learning Vector Quantization

• Up to now: fixed learning tasks

◦ The data consists of input/output pairs.

◦ The objective is to produce desired output for given input.

◦ This allows to describe training as error minimization.

• Now: free learning tasks

◦ The data consists only of input values/vectors.

◦ The objective is to produce similar output for similar input (clustering).

• Learning Vector Quantization

◦ Find a suitable quantization (many-to-few mapping, often to a finite set)
of the input space, e.g. a tesselation of a Euclidean space.

◦ Training adapts the coordinates of so-called reference or codebook vectors,
each of which defines a region in the input space.
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Reminder: Delaunay Triangulations and Voronoi Diagrams

• Dots represent vectors that are used for quantizing the area.

• Left: Delaunay Triangulation
(The circle through the corners of a triangle does not contain another point.)

• Right: Voronoi Diagram / Tesselation
(Midperpendiculars of the Delaunay triangulation: boundaries of the regions
of points that are closest to the enclosed cluster center (Voronoi cells)).
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Learning Vector Quantization

Finding clusters in a given set of data points

• Data points are represented by empty circles (◦).

• Cluster centers are represented by full circles (•).
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Learning Vector Quantization Networks

A learning vector quantization network (LVQ) is a neural network
with a graph G = (U, C) that satisfies the following conditions

(i) Uin ∩ Uout = ∅, Uhidden = ∅

(ii) C = Uin × Uout

The network input function of each output neuron is a distance function
of the input vector and the weight vector, that is,

∀u ∈ Uout : f
(u)
net (w⃗u, i⃗nu) = d(w⃗u, i⃗nu),

where d : IRn × IRn → IR+
0 is a function satisfying ∀x⃗, y⃗, z⃗ ∈ IRn :

(i) d(x⃗, y⃗) = 0 ⇔ x⃗ = y⃗,

(ii) d(x⃗, y⃗) = d(⃗y, x⃗) (symmetry),

(iii) d(x⃗, z⃗) ≤ d(x⃗, y⃗) + d(⃗y, z⃗) (triangle inequality).
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Reminder: Distance Functions

Illustration of distance functions: Minkowski family

dk(x⃗, y⃗) =

(
n

∑
i=1

|xi − yi|k
)1

k

Well-known special cases from this family are:

k = 1 : Manhattan or city block distance,
k = 2 : Euclidean distance,
k → ∞ : maximum distance, that is, d∞(x⃗, y⃗) = max n

i=1|xi − yi|.

k = 1 k = 2 k → ∞
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Learning Vector Quantization

The activation function of each output neuron is a so-called radial function,
that is, a monotone non-increasing function

f : IR+
0 → [0, ∞] with f (0) = 1 and lim

x→∞
f (x) = 0.

Sometimes the range of values is restricted to the interval [0, 1].
However, due to the special output function this restriction is irrelevant.

The output function of each output neuron is not a simple function of the activation
of the neuron. Rather it takes into account the activations of all output neurons:

f
(u)
out (actu) =

{
1, if actu = max

v∈Uout

actv,

0, otherwise.

If more than one unit has the maximal activation, one is selected at random to have
an output of 1, all others are set to output 0: winner-takes-all principle.
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Radial Activation Functions

rectangle function:

fact(net, σ) =

{
0, if net > σ,
1, otherwise.

net
0

1

0 σ

triangle function:

fact(net, σ) =

{
0, if net > σ,
1 − net

σ , otherwise.

net
0

1

0 σ

cosine until zero:

fact(net, σ) =

{
0, if net > 2σ,
cos( π

2σ net)+1

2 , otherwise.

σ 2σ

1

2

net
0

1

0

Gaussian function:

fact(net, σ) = e
−net2

2σ2

e
−

1

2

e
−2

σ 2σ

net
0

1

0
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Learning Vector Quantization

Adaptation of reference vectors / codebook vectors

• For each training pattern find the closest reference vector.

• Adapt only this reference vector (winner neuron).

• For classified data the class may be taken into account:
Each reference vector is assigned to a class.

Attraction rule (data point and reference vector have same class)

r⃗ (new) = r⃗ (old) + η
(
x⃗ − r⃗ (old)

)
,

Repulsion rule (data point and reference vector have different class)

r⃗ (new) = r⃗ (old) − η
(
x⃗ − r⃗ (old)

)
.
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Learning Vector Quantization

Adaptation of reference vectors / codebook vectors

~r1

~r3

~r2

~x

d
ηd

~r1

~r3~x

~r2d
ηd

• x⃗: data point, r⃗i: reference vector

• η = 0.4 (learning rate)
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Learning Vector Quantization: Example

Adaptation of reference vectors / codebook vectors

• Left: Online training with learning rate η = 0.1,

• Right: Batch training with learning rate η = 0.05.
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Learning Vector Quantization: Learning Rate Decay

Problem: fixed learning rate can lead to oscillations

Solution: time dependent learning rate

η(t) = η0αt, 0 < α < 1, or η(t) = η0tκ, κ < 0.
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Learning Vector Quantization: Classified Data

Improved update rule for classified data

• Idea: Update not only the one reference vector that is closest to the data point
(the winner neuron), but update the two closest reference vectors.

• Let x⃗ be the currently processed data point and c its class.
Let r⃗j and r⃗k be the two closest reference vectors and zj and zk their classes.

• Reference vectors are updated only if zj ̸= zk and either c = zj or c = zk.
(Without loss of generality we assume c = zj.)
The update rules for the two closest reference vectors are:

r⃗
(new)
j = r⃗

(old)
j + η

(
x⃗ − r⃗

(old)
j

)
and

r⃗
(new)
k = r⃗

(old)
k − η

(
x⃗ − r⃗

(old)
k

)
,

while all other reference vectors remain unchanged.
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Learning Vector Quantization: Window Rule

• It was observed in practical tests that standard learning vector quantization
may drive the reference vectors further and further apart.

• To counteract this undesired behavior a window rule was introduced:
update only if the data point x⃗ is close to the classification boundary.

• “Close to the boundary” is made formally precise by requiring

min

(
d(x⃗, r⃗j)

d(x⃗, r⃗k)
,
d(x⃗, r⃗k)

d(x⃗, r⃗j)

)
> θ, where θ =

1 − ξ

1 + ξ
.

ξ is a parameter that has to be specified by a user.

• Intuitively, ξ describes the “width” of the window around the classification
boundary, in which the data point has to lie in order to lead to an update.

• Using it prevents divergence, because the update ceases for a data point once
the classification boundary has been moved far enough away.
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Soft Learning Vector Quantization

• Idea: Use soft assignments instead of winner-takes-all
(approach described here: [Seo and Obermayer 2003]).

• Assumption: Given data was sampled from a mixture of normal distributions.
Each reference vector describes one normal distribution.

• Closely related to clustering by estimating a mixture of Gaussians.

◦ (Crisp or hard) learning vector quantization can be seen
as an “online version” of c-means clustering.

◦ Soft learning vector quantization can be seed as an “online version”
of estimating a mixture of Gaussians (that is, of normal distributions).
(In the following: brief review of the Expectation Maximization (EM)
Algorithm for estimating a mixture of Gaussians.)

• Hardening soft learning vector quantization (by letting the “radii” of the Gaus-
sians go to zero, see below) yields a version of (crisp or hard) learning vector
quantization that works well without a window rule.
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Expectation Maximization: Mixture of Gaussians

• Assumption: Data was generated by sampling a set of normal distributions.
(The probability density is a mixture of Gaussian distributions.)

• Formally: We assume that the probability density can be described as

fX⃗(x⃗; C) =
c

∑
y=1

fX⃗,Y(x⃗, y; C) =
c

∑
y=1

pY(y; C) · fX⃗|Y(x⃗|y; C).

C is the set of cluster parameters

X⃗ is a random vector that has the data space as its domain

Y is a random variable that has the cluster indices as possi-

ble values (i.e., dom(X⃗) = IRm and dom(Y) = {1, . . . , c})

pY(y; C) is the probability that a data point belongs to (is gener-
ated by) the y-th component of the mixture

fX⃗|Y(x⃗|y; C) is the conditional probability density function of a data
point given the cluster (specified by the cluster index y)
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Expectation Maximization

• Basic idea: Do a maximum likelihood estimation of the cluster parameters.

• Problem: The likelihood function,

L(X; C) =
n

∏
j=1

fX⃗j
(x⃗j; C) =

n

∏
j=1

c

∑
yj=1

pY(yj; C) · fX⃗|Y(x⃗j|yj; C),

is difficult to optimize, even if one takes the natural logarithm (cf. the maximum
likelihood estimation of the parameters of a normal distribution), because

ln L(X; C) =
n

∑
j=1

ln
c

∑
yj=1

pY(yj; C) · fX⃗|Y(x⃗j|yj; C)

contains the natural logarithms of complex sums.

• Approach: Assume that there are “hidden” variables Yj stating the clusters that
generated the data points x⃗j, so that the sums reduce to one term.

• Problem: Since the Yj are hidden, we do not know their values.
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Expectation Maximization

• Formally: Maximize the likelihood of the “completed” data set (X, y⃗),
where y⃗ = (y1, . . . , yn) combines the values of the variables Yj. That is,

L(X, y⃗; C) =
n

∏
j=1

fX⃗j,Yj
(x⃗j, yj; C) =

n

∏
j=1

pYj
(yj; C) · fX⃗j|Yj

(x⃗j|yj; C).

• Problem: Since the Yj are hidden, the values yj are unknown
(and thus the factors pYj

(yj; C) cannot be computed).

• Approach to find a solution nevertheless:

◦ See the Yj as random variables (the values yj are not fixed) and
consider a probability distribution over the possible values.

◦ As a consequence L(X, y⃗; C) becomes a random variable,
even for a fixed data set X and fixed cluster parameters C.

◦ Try to maximize the expected value of L(X, y⃗; C) or ln L(X, y⃗; C)
(hence the name expectation maximization).
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Expectation Maximization

• Formally: Find the cluster parameters as

Ĉ = argmax
C

E([ln]L(X, y⃗; C) | X; C),

that is, maximize the expected likelihood

E(L(X, y⃗; C) | X; C) = ∑
y⃗∈{1,...,c}n

pY⃗|X (⃗y |X; C) ·
n

∏
j=1

fX⃗j,Yj
(x⃗j, yj; C)

or, alternatively, maximize the expected log-likelihood

E(ln L(X, y⃗; C) | X; C) = ∑
y⃗∈{1,...,c}n

pY⃗|X (⃗y |X; C) ·
n

∑
j=1

ln fX⃗j,Yj
(x⃗j, yj; C).

• Unfortunately, these functionals are still difficult to optimize directly.

• Solution: Use the equation as an iterative scheme, fixing C in some terms
(iteratively compute better approximations, similar to Heron’s algorithm).
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Excursion: Heron’s Algorithm

• Task: Find the square root of a given number x, i.e., find y =
√

x.

• Approach: Rewrite the defining equation y2 = x as follows:

y2 = x ⇔ 2y2 = y2 + x ⇔ y =
1

2y
(y2 + x) ⇔ y =

1

2

(
y +

x

y

)
.

• Use the resulting equation as an iteration formula, i.e., compute the sequence

yk+1 =
1

2

(
yk +

x

yk

)
with y0 = 1.

• It can be shown that 0 ≤ yk −
√

x ≤ yk−1 − yk for k ≥ 2.
Therefore this iteration formula provides increasingly better approximations of
the square root of x and thus is a safe and simple way to compute it.
Ex.: x = 2: y0 = 1, y1 = 1.5, y2 ≈ 1.41667, y3 ≈ 1.414216, y4 ≈ 1.414213.

• Heron’s algorithm converges very quickly and is often used in pocket calcula-
tors and microprocessors to implement the square root.
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Expectation Maximization

• Iterative scheme for expectation maximization:

Choose some initial set C0 of cluster parameters and then compute

Ck+1 = argmax
C

E(ln L(X, y⃗; C) | X; Ck)

= argmax
C

∑
y⃗∈{1,...,c}n

pY⃗|X (⃗y |X; Ck)
n

∑
j=1

ln fX⃗j,Yj
(x⃗j, yj; C)

= argmax
C

∑
y⃗∈{1,...,c}n

(
n

∏
l=1

pYl|X⃗l
(yl |⃗xl; Ck)

)
n

∑
j=1

ln fX⃗j,Yj
(x⃗j, yj; C)

= argmax
C

c

∑
i=1

n

∑
j=1

pYj|X⃗j
(i|⃗xj; Ck) · ln fX⃗j,Yj

(x⃗j, i; C).

• It can be shown that each EM iteration increases the likelihood of the data
and that the algorithm converges to a local maximum of the likelihood function
(i.e., EM is a safe way to maximize the likelihood function).
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Expectation Maximization

Justification of the last step on the previous slide:

∑
y⃗∈{1,...,c}n

(
n

∏
l=1

pYl|X⃗l
(yl |⃗xl; Ck)

)
n

∑
j=1

ln fX⃗j,Yj
(x⃗j, yj; C)

=
c

∑
y1=1

· · ·
c

∑
yn=1

(
n

∏
l=1

pYl|X⃗l
(yl |⃗xl; Ck)

)
n

∑
j=1

c

∑
i=1

δi,yj
ln fX⃗j,Yj

(x⃗j, i; C)

=
c

∑
i=1

n

∑
j=1

ln fX⃗j,Yj
(x⃗j, i; C)

c

∑
y1=1

· · ·
c

∑
yn=1

δi,yj

n

∏
l=1

pYl|X⃗l
(yl |⃗xl; Ck)

=
c

∑
i=1

n

∑
j=1

pYj|X⃗j
(i|⃗xj; Ck) · ln fX⃗j,Yj

(x⃗j, i; C)

c

∑
y1=1

· · ·
c

∑
yj−1=1

c

∑
yj+1=1

· · ·
c

∑
yn=1

n

∏
l=1,l ̸=j

pYl|X⃗l
(yl |⃗xl; Ck)

︸ ︷︷ ︸
= ∏

n
l=1,l ̸=j ∑

c
yl=1 p

Yl |X⃗l
(yl |⃗xl;Ck) = ∏

n
l=1,l ̸=j 1 = 1

.
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Expectation Maximization

• The probabilities pYj|X⃗j
(i|⃗xj; Ck) are computed as

pYj|X⃗j
(i|⃗xj; Ck) =

fX⃗j,Yj
(x⃗j, i; Ck)

fX⃗j
(x⃗j; Ck)

=
fX⃗j|Yj

(x⃗j|i; Ck) · pYj
(i; Ck)

∑
c
l=1 fX⃗j|Yj

(x⃗j|l; Ck) · pYj
(l; Ck)

,

that is, as the relative probability densities of the different clusters (as specified
by the cluster parameters) at the location of the data points x⃗j.

• The pYj|X⃗j
(i|⃗xj; Ck) are the posterior probabilities of the clusters

given the data point x⃗j and a set of cluster parameters Ck.

• They can be seen as case weights of a “completed” data set:

◦ Split each data point x⃗j into c data points (x⃗j, i), i = 1, . . . , c.

◦ Distribute the unit weight of the data point x⃗j according to the above proba-
bilities, i.e., assign to (x⃗j, i) the weight pYj|X⃗j

(i|⃗xj; Ck), i = 1, . . . , c.
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Expectation Maximization: Cookbook Recipe

Core Iteration Formula

Ck+1 = argmax
C

c

∑
i=1

n

∑
j=1

pYj|X⃗j
(i|⃗xj; Ck) · ln fX⃗j,Yj

(x⃗j, i; C)

Expectation Step

• For all data points x⃗j:
Compute for each normal distribution the probability pYj|X⃗j

(i|⃗xj; Ck)
that the data point was generated from it
(ratio of probability densities at the location of the data point).
→ “weight” of the data point for the estimation.

Maximization Step

• For all normal distributions:
Estimate the parameters by standard maximum likelihood estimation
using the probabilities (“weights”) assigned to the data points
w.r.t. the distribution in the expectation step.
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Expectation Maximization: Mixture of Gaussians

Expectation Step: Use Bayes’ rule to compute

pC|X⃗(i|⃗x; C) =
pC(i; ci) · fX⃗|C(x⃗|i; ci)

fX⃗(x⃗; C)
=

pC(i; ci) · fX⃗|C(x⃗|i; ci)

∑
c
k=1 pC(k; ck) · fX⃗|C(x⃗|k; ck)

.

→ “weight” of the data point x⃗ for the estimation.

Maximization Step: Use maximum likelihood estimation to compute

ϱ
(t+1)
i =

1

n

n

∑
j=1

pC|X⃗j
(i|⃗xj; C(t)), µ⃗

(t+1)
i =

∑
n
j=1 pC|X⃗j

(i|⃗xj; C(t)) · x⃗j

∑
n
j=1 pC|X⃗j

(i|⃗xj; C(t))
,

and Σ
(t+1)
i =

∑
n
j=1 pC|X⃗j

(i|⃗xj; C(t)) ·
(
x⃗j − µ⃗

(t+1)
i

)(
x⃗j − µ⃗

(t+1)
i

)⊤

∑
n
j=1 pC|X⃗j

(i|⃗xj; C(t))

Iterate until convergence (checked, e.g., by change of mean vector).
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Expectation Maximization: Technical Problems

• If a fully general mixture of Gaussian distributions is used,
the likelihood function is truly optimized if

◦ all normal distributions except one are contracted to single data points and

◦ the remaining normal distribution is the maximum likelihood estimate for
the remaining data points.

• This undesired result is rare,
because the algorithm gets stuck in a local optimum.

• Nevertheless it is recommended to take countermeasures,
which consist mainly in reducing the degrees of freedom, like

◦ Fix the determinants of the covariance matrices to equal values.

◦ Use a diagonal instead of a general covariance matrix.

◦ Use an isotropic variance instead of a covariance matrix.

◦ Fix the prior probabilities of the clusters to equal values.
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Soft Learning Vector Quantization

Idea: Use soft assignments instead of winner-takes-all
(approach described here: [Seo and Obermayer 2003]).

Assumption: Given data was sampled from a mixture of normal distributions.
Each reference vector describes one normal distribution.

Objective: Maximize the log-likelihood ratio of the data, that is, maximize

ln Lratio =
n

∑
j=1

ln ∑
r⃗∈R(cj)

exp

(
−(x⃗j − r⃗)⊤(x⃗j − r⃗)

2σ2

)

−
n

∑
j=1

ln ∑
r⃗∈Q(cj)

exp

(
−(x⃗j − r⃗)⊤(x⃗j − r⃗)

2σ2

)
.

Here σ is a parameter specifying the “size” of each normal distribution.
R(c) is the set of reference vectors assigned to class c and Q(c) its complement.

Intuitively: at each data point the probability density for its class should be as large
as possible while the density for all other classes should be as small as possible.
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Soft Learning Vector Quantization

Update rule derived from a maximum log-likelihood approach:

r⃗
(new)
i = r⃗

(old)
i + η ·





u⊕
ij ·
(

x⃗j − r⃗
(old)
i

)
, if cj = zi,

−u⊖
ij ·
(

x⃗j − r⃗
(old)
i

)
, if cj ̸= zi,

where zi is the class associated with the reference vector r⃗i and

u⊕
ij =

exp
(
− 1

2σ2

(
x⃗j − r⃗

(old)
i

)⊤(
x⃗j − r⃗

(old)
i

))

∑
r⃗∈R(cj)

exp
(
− 1

2σ2

(
x⃗j − r⃗ (old)

)⊤(
x⃗j − r⃗ (old)

)) and

u⊖
ij =

exp
(
− 1

2σ2

(
x⃗j − r⃗

(old)
i

)⊤(
x⃗j − r⃗

(old)
i

))

∑
r⃗∈Q(cj)

exp
(
− 1

2σ2

(
x⃗j − r⃗ (old)

)⊤(
x⃗j − r⃗ (old)

)).

R(c) is the set of reference vectors assigned to class c and Q(c) its complement.
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Hard Learning Vector Quantization

Idea: Derive a scheme with hard assignments from the soft version.

Approach: Let the size parameter σ of the Gaussian function go to zero.

The resulting update rule is in this case:

r⃗
(new)
i = r⃗

(old)
i + η ·





u⊕
ij ·
(

x⃗j − r⃗
(old)
i

)
, if cj = zi,

−u⊖
ij ·
(

x⃗j − r⃗
(old)
i

)
, if cj ̸= zi,

where

u⊕
ij =





1, if r⃗i = argmin
r⃗∈R(cj)

d(x⃗j, r⃗),

0, otherwise,
u⊖

ij =





1, if r⃗i = argmin
r⃗∈Q(cj)

d(x⃗j, r⃗),

0, otherwise.

r⃗i is closest vector of same class r⃗i is closest vector of different class

This update rule is stable without a window rule restricting the update.
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Learning Vector Quantization: Extensions

• Frequency Sensitive Competitive Learning

◦ The distance to a reference vector is modified according to
the number of data points that are assigned to this reference vector.

• Fuzzy Learning Vector Quantization

◦ Exploits the close relationship to fuzzy clustering.

◦ Can be seen as an online version of fuzzy clustering.

◦ Leads to faster clustering.

• Size and Shape Parameters

◦ Associate each reference vector with a cluster radius.
Update this radius depending on how close the data points are.

◦ Associate each reference vector with a covariance matrix.
Update this matrix depending on the distribution of the data points.
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Demonstration Software: xlvq/wlvq

Demonstration of learning vector quantization:

• Visualization of the training process

• Arbitrary data sets, but training only in two dimensions

• http://www.borgelt.net/lvqd.html

Christian Borgelt Artificial Neural Networks and Deep Learning 341



Self-Organizing Maps
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Self-Organizing Maps

A self-organizing map or Kohonen feature map is a neural network
with a graph G = (U, C) that satisfies the following conditions

(i) Uhidden = ∅, Uin ∩ Uout = ∅,

(ii) C = Uin × Uout.

The network input function of each output neuron is a distance function of input
and weight vector. The activation function of each output neuron is a radial func-
tion, that is, a monotone non-increasing function

f : IR+
0 → [0, 1] with f (0) = 1 and lim

x→∞
f (x) = 0.

The output function of each output neuron is the identity.
The output is often discretized according to the “winner takes all” principle.
On the output neurons a neighborhood relationship is defined:

dneurons : Uout × Uout → IR+
0 .
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Self-Organizing Maps: Neighborhood

Neighborhood of the output neurons: neurons form a grid

quadratic grid hexagonal grid

• Thin black lines: Indicate nearest neighbors of a neuron.

• Thick gray lines: Indicate regions assigned to a neuron for visualization.

• Usually two-dimensional grids are used to be able to draw the map easily.
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Topology Preserving Mapping

Images of points close to each other in the original space
should be close to each other in the image space.

Example: Robinson projection of the surface of a sphere
(maps from 3 dimensions to 2 dimensions)

• Robinson projection is/was frequently used for world maps.

• The topology is preserved, although distances, angles, areas may be distorted.
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Self-Organizing Maps: Topology Preserving Mapping

neuron space/grid
usually 2-dimensional
quadratic or
hexagonal grid

input/data space
usually high-dim.
(here: only 3-dim.)
blue: ref. vectors

Connections may
be drawn between
vectors corresponding
to adjacent neurons.
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Self-Organizing Maps: Neighborhood

Find topology preserving mapping by respecting the neighborhood

Reference vector update rule:

r⃗
(new)

u = r⃗
(old)

u + η(t) · fnb

(
dneurons(u, u∗), ϱ(t)

)
·
(

x⃗ − r⃗
(old)

u

)
,

• u∗ is the winner neuron (reference vector closest to data point).

• The neighborhood function fnb is a radial function.

Time dependent learning rate

η(t) = η0αt
η, 0 < αη < 1, or η(t) = η0tκη, κη < 0.

Time dependent neighborhood radius

ϱ(t) = ϱ0αt
ϱ, 0 < αϱ < 1, or ϱ(t) = ϱ0tκϱ, κϱ < 0.
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Self-Organizing Maps: Neighborhood

The neighborhood size is reduced over time: (here: step function)

Note that a neighborhood function that is not a step function has a “soft” border
and thus allows for a smooth reduction of the neighborhood size (larger changes of
the reference vectors are restricted more and more to the close neighborhood).
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Self-Organizing Maps: Training Procedure

• Initialize the weight vectors of the neurons of the self-organizing map,
that is, place initial reference vectors in the input/data space.

• This may be done by randomly selecting training examples
(provided there are fewer neurons than training examples; is usually the case)
or by sampling from some probability distribution on the data space.

• For the actual training, repeat the following steps:

◦ Choose a training sample / data point
(traverse the data points, possibly shuffling after each epoch).

◦ Find the winner neuron with the distance function in the data space,
that is, find the neuron with the closest reference vector.

◦ Compute the time dependent radius and learning rate and
adapt the corresponding neighbors of the winner neuron
(severity of weight changes depend by neighborhood and learning rate).
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Self-Organizing Maps: Examples

Example: Unfolding of a two-dimensional self-organizing map.

• Self-organizing map with 10 × 10 neurons (quadratic grid) that is trained
with random points chosen uniformly from the square [−1, 1]× [−1, 1].

• Initialization with random reference vectors
chosen uniformly from [−0.5, 0.5]× [−0.5, 0.5].

• Gaussian neighborhood function

fnb

(
dneurons(u, u∗), ϱ(t)

)
= exp

(
−d2

neurons(u,u∗)
2ϱ(t)2

)
.

• Time-dependent neighborhood radius ϱ(t) = 2.5 · t−0.1

• Time-dependent learning rate η(t) = 0.6 · t−0.1.

• The next slides show the SOM state after 10, 20, 40, 80 and 160 training steps.
In each training step one training sample is processed.
Shading of the neuron grid shows neuron activations for (−0.5,−0.5).
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Self-Organizing Maps: Examples

Unfolding of a two-dimensional self-organizing map. (data space)
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Self-Organizing Maps: Examples

Unfolding of a two-dimensional self-organizing map. (neuron grid)
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Self-Organizing Maps: Examples

Example: Unfolding of a two-dimensional self-organizing map.

Training a self-organizing map may fail if

• the (initial) learning rate is chosen too small or

• or the (initial) neighborhood radius is chosen too small.
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Self-Organizing Maps: Examples

Example: Unfolding of a two-dimensional self-organizing map.

(a) (b) (c)

Self-organizing maps that have been trained with random points from
(a) a rotation parabola, (b) a simple cubic function, (c) the surface of a sphere.
Since the data points come from a two-dimensional subspace, training works well.

• In this case original space and image space have different dimensionality.
(In the previous example they were both two-dimensional.)

• Self-organizing maps can be used for dimensionality reduction
(in a quantized fashion, but interpolation may be used for smoothing).
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Demonstration Software: xsom/wsom

Demonstration of self-organizing map training:

• Visualization of the training process

• Two-dimensional areas and three-dimensional surfaces

• http://www.borgelt.net/somd.html
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Application: The “Neural” Phonetic Typewriter

Create a Phonotopic Map of Finnish [Kohonen 1988]

• The recorded microphone signal is converted into a spectral representation
grouped into 15 channels.

• The 15-dimensional input space is mapped to a hexagonal SOM grid.

pictures not available in online version
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Application: World Poverty Map

Organize Countries based on Poverty Indicators [Kaski et al. 1997]

• Data consists of World Bank statistics of countries in 1992.

• 39 indicators describing various quality-of-life factors were used,
such as state of health, nutrition, educational services etc.

picture not available in online version
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Application: World Poverty Map

Organize Countries based on Poverty Indicators [Kaski et al. 1997]

• Map of the world with countries colored by their poverty type.

• Countries in gray were not considered (possibly insufficient data).

picture not available in online version
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Application: Classifying News Messages

Classify News Messages on Neural Networks [Kaski et al. 1998]

picture not available in online version
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Application: Organize Music Collections

Organize Music Collections (Sound and Tags) [Mörchen et al. 2005/2007]

• Uses an Emergent Self-organizing Map to organize songs
(no fixed shape, larger number of neurons than data points).

• Creates semantic features with regression and feature selection from
140 different short-term features (short time windows with stationary sound)
284 long term features (e.g. temporal statistics etc.) and user-assigned tags.

pictures not available in online version
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Self-Organizing Maps: Summary

• Dimensionality Reduction

◦ Topology preserving mapping in a quantized fashion,
but interpolation may be used for smoothing.

◦ Cell coloring according to activation for few data points
in order to “compare” these data points
(i.e., their relative location in the data space).

◦ Allows to visualize (with loss, of course) high-dimensional data.

• Similarity Search

◦ Train a self-organizing map on high-dimensional data.

◦ Find the cell / neuron to which a query data point is assigned.

◦ Similar data points are assigned to the same or neighboring cells.

◦ Useful for organizing text, image or music collections etc.
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Hopfield Networks and Boltzmann Machines
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Hopfield Networks

A Hopfield network is a neural network with a graph G = (U, C)
that satisfies the following conditions:

(i) Uhidden = ∅, Uin = Uout = U,

(ii) C = U × U − {(u, u) | u ∈ U}.

• In a Hopfield network all neurons are input as well as output neurons.

• There are no hidden neurons.

• Each neuron receives input from all other neurons.

• A neuron is not connected to itself.

The connection weights are symmetric, that is,

∀u, v ∈ U, u ̸= v : wuv = wvu.
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Hopfield Networks

The network input function of each neuron is the weighted sum of the outputs
of all other neurons, that is,

∀u ∈ U : f
(u)
net (w⃗u, i⃗nu) = w⃗⊤

u i⃗nu = ∑
v∈U−{u}

wuv outv .

The activation function of each neuron is a threshold function, that is,

∀u ∈ U : f
(u)
act (netu, θu) =

{
1, if netu ≥ θu,

−1, otherwise.

The output function of each neuron is the identity, that is,

∀u ∈ U : f
(u)
out (actu) = actu .
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Hopfield Networks

Alternative activation function

∀u ∈ U : f
(u)
act (netu, θu, actu) =





1, if netu > θu,
−1, if netu < θu,

actu, if netu = θu.

This activation function has advantages w.r.t. the physical interpretation
of a Hopfield network.

General weight matrix of a Hopfield network

W =




0 wu1u2
. . . wu1un

wu1u2
0 . . . wu2un

... ... ...
wu1un wu1un . . . 0



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Hopfield Networks: Examples

Very simple Hopfield network

0

0

u1

u2

1 1

x1

x2

y1

y2

W =

(
0 1
1 0

)

The behavior of a Hopfield network can depend on the update order.

• Computations can oscillate if neurons are updated in parallel.

• Computations always converge if neurons are updated sequentially.
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Hopfield Networks: Examples

Parallel update of neuron activations

u1 u2

input phase −1 1

work phase 1 −1
−1 1

1 −1
−1 1

1 −1
−1 1

• The computations oscillate, no stable state is reached.

• Output depends on when the computations are terminated.
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Hopfield Networks: Examples

Sequential update of neuron activations

u1 u2

input phase −1 1

work phase 1 1
1 1
1 1
1 1

u1 u2

input phase −1 1

work phase −1 −1
−1 −1
−1 −1
−1 −1

• Update order u1, u2, u1, u2, . . . (left) or u2, u1, u2, u1, . . . (right)

• Regardless of the update order a stable state is reached.

• However, which state is reached depends on the update order.
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Hopfield Networks: Examples

Simplified representation of a Hopfield network

0

0

0

x1 y1

x2 y2

x3 y3

1 1

1 12

2

0

0

0

u1

u3

u22

1

1

W =




0 1 2
1 0 1
2 1 0




• Symmetric connections between neurons are combined.

• Inputs and outputs are not explicitly represented.
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Hopfield Networks: State Graph

Graph of activation states and transitions:
(for the Hopfield network shown on the preceding slide)

+++

−−−

++− +−+ −++

+−− −+− −−+

u1

u2

u3

u2

u3

u1

u2

u1

u3

u2

u1

u3

u2

u1

u3

u2

u1

u3

u2

u3

u1

u1

u2

u3

“+”/”−” encode the neuron activations:
“+” means +1 and “−” means −1.

Labels on arrows indicate the neurons,
whose updates (activation changes) lead
to the corresponding state transitions.

States shown in gray:
stable states, cannot be left again

States shown in white:
unstable states, may be left again.

Such a state graph captures
all imaginable update orders.
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Hopfield Networks: Convergence

Convergence Theorem: If the activations of the neurons of a Hopfield network
are updated sequentially (asynchronously), then a stable state is reached in a finite
number of steps.

If the neurons are traversed cyclically in an arbitrary, but fixed order, at most n · 2n

steps (updates of individual neurons) are needed, where n is the number of neurons
of the Hopfield network.

The proof is carried out with the help of an energy function.
The energy function of a Hopfield network with n neurons u1, . . . , un is defined as

E = −1

2
a⃗ct

⊤
Wa⃗ct + θ⃗⊤a⃗ct

= −1

2 ∑
u,v∈U,u ̸=v

wuv actu actv + ∑
u∈U

θu actu .
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Hopfield Networks: Convergence

Consider the energy change resulting from an update that changes an activation:

∆E = E(new) − E(old) =
(
− ∑

v∈U−{u}
wuv act

(new)
u actv +θu act

(new)
u

)

−
(
− ∑

v∈U−{u}
wuv act

(old)
u actv +θu act

(old)
u

)

=
(

act
(old)
u − act

(new)
u

) (
∑

v∈U−{u}
wuv actv

︸ ︷︷ ︸
= netu

−θu

)
.

• If netu < θu, then the second factor is less than 0.

Also, act
(new)
u = −1 and act

(old)
u = 1, therefore the first factor is greater than 0.

Result: ∆E < 0.

• If netu ≥ θu, then the second factor greater than or equal to 0.

Also, act
(new)
u = 1 and act

(old)
u = −1, therefore the first factor is less than 0.

Result: ∆E ≤ 0.

Christian Borgelt Artificial Neural Networks and Deep Learning 372



Hopfield Networks: Convergence

It takes at most n · 2n update steps to reach convergence.

• Provided that the neurons are updated in an arbitrary, but fixed order,
since this guarantees that the neurons are traversed cyclically,
and therefore each neuron is updated every n steps.

• If in a traversal of all n neurons no activation changes:
a stable state has been reached.

• If in a traversal of all n neurons at least one activation changes:
the previous state cannot be reached again, because

◦ either the new state has a smaller energy than the old
(no way back: updates cannot increase the network energy)

◦ or the number of +1 activations has increased
(no way back: equal energy is possible only for netu ≥ θu).

• The number of possible states of the Hopfield network is 2n, at least one of
which must be rendered unreachable in each traversal of the n neurons.
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Hopfield Networks: Examples

Arrange states in state graph according to their energy

−4

−2

0

2

E

+−− −−+ −++ ++−

+−+ −+−

−−− +++

Energy function for example Hopfield network:

E = − actu1
actu2

−2 actu1
actu3

− actu2
actu3

.
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Hopfield Networks: Examples

The state graph need not be symmetric

−1

−1

−1

u1

u3

u2

−2

−2

2

≈

−7

−1

1

3

5

E

−−−

+−− −−+

++− −++

−+− +++

+−+
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Hopfield Networks: Physical Interpretation

Physical interpretation: Magnetism

A Hopfield network can be seen as a (microscopic) model of magnetism
(so-called Ising model, [Ising 1925]).

physical neural

atom neuron
magnetic moment (spin) activation state
strength of outer magnetic field threshold value
magnetic coupling of the atoms connection weights
Hamilton operator of the magnetic field energy function
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Hopfield Networks: Associative Memory

Idea: Use stable states to store patterns

First: Store only one pattern x⃗ = (actu1
, . . . , actun)

⊤ ∈ {−1, 1}n, n ≥ 2,
that is, find weights, so that pattern is a stable state.

Necessary and sufficient condition:

S(Wx⃗ − θ⃗ ) = x⃗,

where

S : IRn → {−1, 1}n,
x⃗ 7→ y⃗

with

∀i ∈ {1, . . . , n} : yi =

{
1, if xi ≥ 0,

−1, otherwise.
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Hopfield Networks: Associative Memory

If θ⃗ = 0⃗ an appropriate matrix W can easily be found, because it suffices to ensure

Wx⃗ = cx⃗ with c ∈ IR+.

Algebraically: Find a matrix W that has a positive eigenvalue w.r.t. x⃗.

Choose
W = x⃗x⃗⊤ − E

where x⃗x⃗⊤ is the so-called outer product of x⃗ with itself.

With this matrix we have

Wx⃗ = (x⃗x⃗⊤)x⃗ − Ex⃗︸︷︷︸
=x⃗

(∗)
= x⃗ (x⃗⊤x⃗ )︸ ︷︷ ︸

=|⃗x |2=n

−x⃗

= nx⃗ − x⃗ = (n − 1)x⃗.

(∗) holds, because vector/matrix multiplication is associative.
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Hopfield Networks: Associative Memory

Hebbian learning rule [Hebb 1949]

Written in individual weights the computation of the weight matrix reads:

wuv =





0, if u = v,
1, if u ̸= v, actu = actv,

−1, otherwise.

• Originally derived from a biological analogy.

• Strengthen connection between neurons that are active at the same time.

Note that this learning rule also stores the complement of the pattern:

With Wx⃗ = (n − 1)x⃗ it is also W(−x⃗ ) = (n − 1)(−x⃗ ).
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Hopfield Networks: Associative Memory

Storing several patterns

Choose

Wx⃗j =
m

∑
i=1

Wix⃗j =

(
m

∑
i=1

(x⃗ix⃗
⊤
i )x⃗j

)
− m Ex⃗j︸︷︷︸

=x⃗j

=

(
m

∑
i=1

x⃗i(x⃗⊤
i x⃗j)

)
− mx⃗j

If the patterns are orthogonal, we have

x⃗⊤
i x⃗j =

{
0, if i ̸= j,
n, if i = j,

and therefore

Wx⃗j = (n − m)x⃗j.
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Hopfield Networks: Associative Memory

Storing several patterns

Wx⃗j = (n − m)x⃗j.

Result: As long as m < n, x⃗ is a stable state of the Hopfield network.

Note that the complements of the patterns are also stored.

With Wx⃗j = (n − m)x⃗j it is also W(−x⃗j) = (n − m)(−x⃗j).

But: Capacity is very small compared to the number of possible states (2n),
since at most m = n − 1 orthogonal patterns can be stored (so that n − m > 0).

Furthermore, the requirement that the patterns must be orthogonal
is a strong limitation of the usefulness of this result.
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Hopfield Networks: Associative Memory

Non-orthogonal patterns:

Wx⃗j = (n − m)x⃗j +
m

∑
i=1
i ̸=j

x⃗i(x⃗⊤
i x⃗j)

︸ ︷︷ ︸
“disturbance term”

.

• The “disturbance term” need not make it impossible to store the patterns.

• The states corresponding to the patterns x⃗j may still be stable,
if the “disturbance term” is sufficiently small.

• For this term to be sufficiently small, the patterns must be “almost” orthogonal.

• The larger the number of patterns to be stored (that is, the smaller n − m),
the smaller the “disturbance term” must be.

• The theoretically possible maximal capacity of a Hopfield network
(that is, m = n − 1) is hardly ever reached in practice.
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Associative Memory: Example

Example: Store patterns x⃗1 = (+1,+1,−1,−1)⊤ and x⃗2 = (−1,+1,−1,+1)⊤.

W = W1 + W2 = x⃗1x⃗⊤
1 + x⃗2x⃗⊤

2 − 2E
where

W1 =




0 1 −1 −1
1 0 −1 −1

−1 −1 0 1
−1 −1 1 0


 , W2 =




0 −1 1 −1
−1 0 −1 1

1 −1 0 −1
−1 1 −1 0


 .

The full weight matrix is:

W =




0 0 0 −2
0 0 −2 0
0 −2 0 0

−2 0 0 0


 .

Therefore it is

Wx⃗1 = (+2,+2,−2,−2)⊤ and Wx⃗2 = (−2,+2,−2,+2)⊤.
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Associative Memory: Examples

Example: Storing bit maps of numbers

• Left: Bit maps stored in a Hopfield network.

• Right: Reconstruction of a pattern from a random input.
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Hopfield Networks: Associative Memory

Training a Hopfield network with the Delta rule

Necessary condition for pattern x⃗ being a stable state:

s(0 + wu1u2
act

(p)
u2

+ . . . + wu1un act
(p)
un − θu1

) = act
(p)
u1

,

s(wu2u1
act

(p)
u1

+ 0 + . . . + wu2un act
(p)
un − θu2

) = act
(p)
u2

,
... ... ... ... ...

s(wunu1
act

(p)
u1

+ wunu2
act

(p)
u2

+ . . . + 0 − θun) = act
(p)
un .

with the standard threshold function

s(x) =

{
1, if x ≥ 0,

−1, otherwise.
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Hopfield Networks: Associative Memory

Training a Hopfield network with the Delta rule

Turn weight matrix into a weight vector:

w⃗ = ( wu1u2
, wu1u3

, . . . , wu1un,
wu2u3

, . . . , wu2un,
. . . ...

wun−1un,
−θu1

, −θu2
, . . . , −θun ).

Construct input vectors for a threshold logic unit

z⃗2 = (act
(p)
u1

, 0, . . . , 0,︸ ︷︷ ︸
n − 2 zeros

act
(p)
u3

, . . . , act
(p)
un , . . . 0, 1, 0, . . . , 0︸ ︷︷ ︸

n − 2 zeros

).

Apply Delta rule training / Widrow–Hoff procedure until convergence.
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Demonstration Software: xhfn/whfn

Demonstration of Hopfield networks as associative memory:

• Visualization of the association/recognition process

• Two-dimensional networks of arbitrary size

• http://www.borgelt.net/hfnd.html
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Hopfield Networks: Solving Optimization Problems

Use energy minimization to solve optimization problems

General procedure:

• Transform function to optimize into a function to minimize.

• Transform function into the form of an energy function of a Hopfield network.

• Read the weights and threshold values from the energy function.

• Construct the corresponding Hopfield network.

• Initialize Hopfield network randomly and update until convergence.

• Read solution from the stable state reached.

• Repeat several times and use best solution found.
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Hopfield Networks: Activation Transformation

A Hopfield network may be defined either with activations −1 and 1 or with acti-
vations 0 and 1. The networks can be transformed into each other.

From actu ∈ {−1, 1} to actu ∈ {0, 1}:

w0
uv = 2w−

uv and

θ0
u = θ−u + ∑

v∈U−{u}
w−

uv

From actu ∈ {0, 1} to actu ∈ {−1, 1}:

w−
uv =

1

2
w0

uv and

θ−u = θ0
u −

1

2 ∑
v∈U−{u}

w0
uv.
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Hopfield Networks: Solving Optimization Problems

Combination lemma: Let two Hopfield networks on the same set U of neurons

with weights w
(i)
uv , threshold values θ

(i)
u and energy functions

Ei = −1

2 ∑
u∈U

∑
v∈U−{u}

w
(i)
uv actu actv + ∑

u∈U

θ
(i)
u actu,

i = 1, 2, be given. Furthermore let a, b ∈ IR+. Then E = aE1 + bE2 is the energy
function of the Hopfield network on the neurons in U that has the weights wuv =

aw
(1)
uv + bw

(2)
uv and the threshold values θu = aθ

(1)
u + bθ

(2)
u .

Proof: Just do the computations.

Idea: Additional conditions can be formalized separately and incorporated later.
(One energy function per condition, then apply combination lemma.)
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Hopfield Networks: Solving Optimization Problems

Example: Traveling salesman problem

Idea: Represent tour by a matrix.

1

3 4

2

city
1 2 3 4



1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0




1.
2.
3.
4.

step

An element mij of the matrix is 1
if the j-th city is visited in the i-th step and 0 otherwise.

Each matrix element will be represented by a neuron.
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Hopfield Networks: Solving Optimization Problems

Minimization of the tour length

E1 =
n

∑
j1=1

n

∑
j2=1

n

∑
i=1

dj1j2 · mij1 · m(i mod n)+1,j2
.

Double summation over steps (index i) needed:

E1 = ∑
(i1,j1)∈{1,...,n}2

∑
(i2,j2)∈{1,...,n}2

dj1j2 · δ(i1 mod n)+1,i2
· mi1j1 · mi2j2,

where

δab =

{
1, if a = b,
0, otherwise.

Symmetric version of the energy function:

E1 = −1

2 ∑
(i1,j1)∈{1,...,n}2

(i2,j2)∈{1,...,n}2

−dj1j2 · (δ(i1 mod n)+1,i2
+ δi1,(i2 mod n)+1) · mi1j1 · mi2j2
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Hopfield Networks: Solving Optimization Problems

Additional conditions that have to be satisfied:

• Each city is visited on exactly one step of the tour:

∀j ∈ {1, . . . , n} :
n

∑
i=1

mij = 1,

that is, each column of the matrix contains exactly one 1.

• On each step of the tour exactly one city is visited:

∀i ∈ {1, . . . , n} :
n

∑
j=1

mij = 1,

that is, each row of the matrix contains exactly one 1.

These conditions are incorporated by finding additional functions to optimize.

Christian Borgelt Artificial Neural Networks and Deep Learning 393



Hopfield Networks: Solving Optimization Problems

Formalization of first condition as a minimization problem:

E∗
2 =

n

∑
j=1

((
n

∑
i=1

mij

)
− 1

)2

=
n

∑
j=1



(

n

∑
i=1

mij

)2

− 2
n

∑
i=1

mij + 1




=
n

∑
j=1

((
n

∑
i1=1

mi1j

)(
n

∑
i2=1

mi2j

)
− 2

n

∑
i=1

mij + 1

)

=
n

∑
j=1

n

∑
i1=1

n

∑
i2=1

mi1jmi2j − 2
n

∑
j=1

n

∑
i=1

mij + n

Double summation over cities (index i) needed:

E2 = ∑
(i1,j1)∈{1,...,n}2

∑
(i2,j2)∈{1,...,n}2

δj1j2 · mi1j1 · mi2j2 − 2 ∑
(i,j)∈{1,...,n}2

mij
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Hopfield Networks: Solving Optimization Problems

Resulting energy function:

E2 = −1

2 ∑
(i1,j1)∈{1,...,n}2

(i2,j2)∈{1,...,n}2

−2δj1j2 · mi1j1 · mi2j2 + ∑
(i,j)∈{1,...,n}2

−2mij

Second additional condition is handled in a completely analogous way:

E3 = −1

2 ∑
(i1,j1)∈{1,...,n}2

(i2,j2)∈{1,...,n}2

−2δi1i2 · mi1j1 · mi2j2 + ∑
(i,j)∈{1,...,n}2

−2mij

Combining the energy functions:

E = aE1 + bE2 + cE3 where
b

a
=

c

a
> 2 max

(j1,j2)∈{1,...,n}2
dj1j2
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Hopfield Networks: Solving Optimization Problems

From the resulting energy function we can read the weights

w(i1,j1)(i2,j2) = −adj1j2 · (δ(i1 mod n)+1,i2
+ δi1,(i2 mod n)+1)︸ ︷︷ ︸

from E1

−2bδj1j2︸ ︷︷ ︸
from E2

−2cδi1i2︸ ︷︷ ︸
from E3

and the threshold values:

θ(i,j) = 0a︸︷︷︸
from E1

−2b︸︷︷︸
from E2

−2c︸︷︷︸
from E3

= −2(b + c)

Problem: Random initialization and update until convergence
not always leads to a matrix that represents a tour, let alone an optimal one.
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Hopfield Networks: Reasons for Failure

Hopfield network only rarely finds a tour, let alone an optimal one.

• One of the main problems is that the Hopfield network is unable to switch
from a found tour to another with a lower total length.

• The reason is that transforming a matrix that represents a tour
into another matrix that represents a different tour requires
that at least four neurons (matrix elements) change their activations.

• However, each of these changes, if carried out individually,
violates at least one of the constraints and thus increases the energy.

• Only all four changes together can result in a smaller energy,
but cannot be executed together due to the asynchronous update.

• Therefore the normal activation updates can never change an already found
tour into another, even if this requires only a marginal change of the tour.
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Hopfield Networks: Local Optima

• Results can be somewhat improved if instead of
discrete Hopfield networks (activations in {−1, 1} (or {0, 1})) one uses
continuous Hopfield networks (activations in [−1, 1] (or [0, 1])).
However, the fundamental problem is not solved in this way.

• More generally, the reason for the difficulties that are encountered
if an optimization problem is to be solved with a Hopfield network is:

The update procedure may get stuck in a local optimum.

• The problem of local optima occurs also with other optimization methods,
for example, gradient descent, hill climbing, alternating optimization etc.

• Ideas to overcome this difficulty for other optimization methods
may be transferred to Hopfield networks.

• One such method, which is very popular, is simulated annealing.
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Simulated Annealing

May be seen as an extension of random or gra-
dient descent that tries to avoid getting stuck.

Idea: transitions from higher to lower (local)
minima should be more probable than vice versa.

[Metropolis et al. 1953; Kirkpatrik et al. 1983]

f

Ω

Principle of Simulated Annealing:

• Random variants of the current solution (candidate) are created.

• Better solution (candidates) are always accepted.

• Worse solution (candidates) are accepted with a probability that depends on

◦ the quality difference between the new and the old solution (candidate) and

◦ a temperature parameter that is decreased with time.
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Simulated Annealing

• Motivation:

◦ Physical minimization of the energy (more precisely: atom lattice energy)
if a heated piece of metal is cooled slowly.

◦ This process is called annealing.

◦ It serves the purpose to make the metal easier to work or to machine
by relieving tensions and correcting lattice malformations.

• Alternative Motivation:

◦ A ball rolls around on an (irregularly) curved surface;
minimization of the potential energy of the ball.

◦ In the beginning the ball is endowed with a certain kinetic energy,
which enables it to roll up some slopes of the surface.

◦ In the course of time, friction reduces the kinetic energy of the ball,
so that it finally comes to a rest in a valley of the surface.

• Attention: There is no guarantee that the global optimum is found!
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Simulated Annealing: Procedure

1. Choose a (random) starting point s0 ∈ Ω (Ω is the search space).

2. Choose a point s′ ∈ Ω “in the vicinity” of si

(for example, by a small random variation of si).

3. Set

si+1 =





s′ if f (s′) ≥ f (si),

s′ with probability p = e−
∆ f
kT and

si with probability 1 − p otherwise.

∆ f = f (si)− f (s′) quality difference of the solution (candidates)

k = ∆ fmax (estimation of the) range of quality values

T temperature parameter (is (slowly) decreased over time)

4. Repeat steps 2 and 3 until some termination criterion is fulfilled.

• For (very) small T the method approaches a pure random descent.
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Hopfield Networks: Simulated Annealing

Applying simulated annealing to Hopfield networks is very simple:

• All neuron activations are initialized randomly.

• The neurons of the Hopfield network are traversed repeatedly
(for example, in some random order).

• For each neuron, it is determined whether an activation change leads to
a reduction of the network energy or not.

• An activation change that reduces the network energy is always accepted
(in the normal update process, only such changes occur).

• However, if an activation change increases the network energy,
it is accepted with a certain probability (see preceding slide).

• Note that in this case we have simply

∆ f = ∆E = | netu −θu|
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Hopfield Networks: Summary

• Hopfield networks are restricted recurrent neural networks
(full pairwise connections, symmetric connection weights).

• Synchronous update of the neurons may lead to oscillations,
but asynchronous update is guaranteed to reach a stable state
(asynchronous updates either reduce the energy of the network
or increase the number of +1 activations).

• Hopfield networks can be used as associative memory,
that is, as memory that is addressed by its contents, by using
the stable states to store desired patterns.

• Hopfield networks can be used to solve optimization problems,
if the function to optimize can be reformulated as an energy function
(stable states are (local) minima of the energy function).

• Approaches like simulated annealing may be needed to prevent
that the update gets stuck in a local optimum.
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Boltzmann Machines

• Boltzmann machines are closely related to Hopfield networks.

• They differ from Hopfield networks mainly in how the neurons are updated.

• They also rely on the fact that one can define an energy function
that assigns a numeric value (an energy) to each state of the network.

• With the help of this energy function a probability distribution over the states
of the network is defined based on the Boltzmann distribution (also known as
Gibbs distribution) of statistical mechanics, namely

P(⃗s) =
1

c
e−

E(⃗s)
kT .

s⃗ describes the (discrete) state of the system,
c is a normalization constant,
E is the function that yields the energy of a state s⃗,
T is the thermodynamic temperature of the system,
k is Boltzmann’s constant (k ≈ 1.38 · 10−23 J/K).
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Boltzmann Machines

• For Boltzmann machines the product kT is often replaced by merely T,
combining the temperature and Boltzmann’s constant into a single parameter.

• The state s⃗ consists of the vector a⃗ct of the neuron activations.

• The energy function of a Boltzmann machine is

E(a⃗ct) = −1

2
a⃗ct

⊤
Wa⃗ct + θ⃗ ⊤a⃗ct,

where W: matrix of connection weights; θ⃗: vector of threshold values.

• Consider the energy change resulting from the change of a single neuron u:

∆Eu = Eactu=1 − Eactu=0 = − ∑
v∈U−{u}

wuv actv +θu

• Writing the energies in terms of the Boltzmann distribution yields

∆Eu = −kT ln(P(actu = 1)− (−kT ln(P(actu = 0)).
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Boltzmann Machines

• Rewrite as ∆Eu

kT
= ln(P(actu = 1))− ln(P(actu = 0))

= ln(P(actu = 1))− ln(1 − P(actu = 1))

(since obviously P(actu = 0) + P(actu = 1) = 1).

• Solving this equation for P(actu = 1) finally yields

P(actu = 1) =
1

1 + e−
∆Eu
kT

.

• That is: the probability of a neuron being active is a logistic function of the
(scaled) energy difference between its active and inactive state.

• Since the energy difference is closely related to the network input, namely as

∆Eu = ∑
v∈U−{u}

wuv actv −θu = netu −θu,

this formula suggests a stochastic update procedure for the network.
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Boltzmann Machines: Update Procedure

• A neuron u is chosen (randomly), its network input, from it the energy differ-
ence ∆Eu and the probability of the neuron having activation 1 is computed.
The neuron is set to activation 1 with this probability and to 0 otherwise.

• This update is repeated many times for randomly chosen neurons.

• Simulated annealing is carried out by slowly lowering the temperature T.

• This update process is a Markov Chain Monte Carlo (MCMC) procedure.

• After sufficiently many steps, the probability that the network is in a specific
activation state depends only on the energy of that state.
It is independent of the initial activation state the process was started with.

• This final situation is also referred to as thermal equilibrium.

• Therefore: Boltzmann machines are representations of and sampling mecha-
nisms for the Boltzmann distributions defined by their weights and thresholds.
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Boltzmann Machines: Training

• Idea of Training:
Develop a training procedure with which the probability distribution repre-
sented by a Boltzmann machine (energy function) can be adapted to a given
sample of data points, in order to obtain a probabilistic model of the data.

• This objective can only be achieved sufficiently well
if the data points are actually a sample from a Boltzmann distribution.
(Otherwise the model cannot, in principle, be made to fit the sample data well.)

• In order to mitigate this restriction to Boltzmann distributions,
a deviation from the structure of Hopfield networks is introduced.

• The neurons are divided into

◦ visible neurons, which receive the data points as input, and

◦ hidden neurons, which are not fixed by the data points.

(Reminder: Hopfield networks have only visible neurons.)
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Boltzmann Machines: Training

• Objective of Training:
Adapt the connection weights and threshold values in such a way that the true
distribution underlying a given data sample is approximated well by the proba-
bility distribution represented by the Boltzmann machine on its visible neurons.

• Natural Approach to Training:

◦ Choose a measure for the difference between two probability distributions.

◦ Carry out a gradient descent in order to minimize this difference measure.

• Well-known measure: Kullback–Leibler information divergence.
For two probability distributions p1, p2 defined over the same sample space Ω:

KL(p1, p2) = ∑
ω∈Ω

p1(ω) ln
p1(ω)

p2(ω)
.

Applied to Boltzmann machines: p1 refers to the data sample,
p2 to the visible neurons of the Boltzmann machine.
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Boltzmann Machines: Training

• In each training step the Boltzmann machine is ran twice (two “phases”).

• “Positive Phase”: Visible neurons are fixed to a randomly chosen data point;
only the hidden neurons are updated until thermal equilibrium is reached.

• “Negative Phase”: All units are updated until thermal equilibrium is reached.

• In the two phases statistics about individual neurons and pairs of neurons
(both visible and hidden) being activated (simultaneously) are collected.

• Then update is performed according to the following two equations:

∆wuv =
1

η
(p+

uv − p−
uv) and ∆θu = −1

η
(p+

u − p−
u ).

pu probability that neuron u is active,
puv probability that neurons u and v are both active simultaneously,
+ − as upper indices indicate the phase referred to.

(All probabilities are estimated from observed relative frequencies.)
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Boltzmann Machines: Training

• Intuitive explanation of the update rule:

◦ If a neuron is more often active when a data sample is presented
than when the network is allowed to run freely,
the probability of the neuron being active is too low,
so the threshold should be reduced.

◦ If neurons are more often active together when a data sample is presented
than when the network is allowed to run freely,
the connection weight between them should be increased,
so that they become more likely to be active together.

• This training method is very similar to the Hebbian learning rule.

Derived from a biological analogy it says:

connections between two neurons
that are synchronously active are strengthened

(“cells that fire together, wire together”).
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Boltzmann Machines: Training

• Unfortunately, this procedure is impractical unless the networks are very small.

• The main reason is the fact that the larger the network, the more update steps
need to be carried out in order to obtain sufficiently reliable statistics for the
neuron activation (pairs) needed in the update formulas.

• Efficient training is possible for the restricted Boltzmann machine.

• Restriction consists in using a bipartite graph instead of a fully connected graph:

◦ Vertices are split into two groups, the visible and the hidden neurons;

◦ Connections only exist between neurons from different groups.

visible

hidden
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Restricted Boltzmann Machines

A restricted Boltzmann Machine (RBM) or Harmonium is a neural network
with a graph G = (U, C) that satisfies the following conditions:

(i) U = Uin ∪ Uhidden, Uin ∩ Uhidden = ∅, Uout = Uin,

(ii) C = Uin × Uhidden.

• In a restricted Boltzmann machine, all input neurons are also output neurons
and vice versa (all output neurons are also input neurons).

• There are hidden neurons, which are different from input and output neurons.

• Each input/output neuron receives input from all hidden neurons;
each hidden neuron receives input from all input/output neurons.

The connection weights between input and hidden neurons are symmetric, that is,

∀u ∈ Uin, v ∈ Uhidden : wuv = wvu.
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Restricted Boltzmann Machines: Training

Due to the lack of connections within the visible units and within the hidden units,
training can proceed by repeating the following three steps:

• Visible units are fixed to a randomly chosen data sample x⃗;
hidden units are updated once and in parallel (result: y⃗).

x⃗y⃗⊤ is called the positive gradient for the weight matrix.

• Hidden neurons are fixed to the computed vector y⃗;
visible units are updated once and in parallel (result: x⃗ ∗).

Visible neurons are fixed to “reconstruction” x⃗∗;
hidden neurons are update once more (result: y⃗ ∗).

x⃗ ∗y⃗ ∗⊤ is called the negative gradient for the weight matrix.

• Weights are updated with difference of positive and negative gradient:

∆wuv = η(x⃗uy⃗⊤
v − x⃗ ∗

u y⃗ ∗
v
⊤) where η is a learning rate.
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Restricted Boltzmann Machines: Training and Deep Learning

• Many improvements of this basic procedure exist [Hinton 2010]:

◦ use a momentum term for the training,

◦ use actual probabilities instead of binary reconstructions,

◦ use online-like training based on small batches etc.

• Restricted Boltzmann machines have also been used to build deep networks
in a fashion similar to stacked auto-encoders for multi-layer perceptrons.

• Idea: train a restricted Boltzmann machine, then create a data set of hidden
neuron activations by sampling from the trained Boltzmann machine, and build
another restricted Boltzmann machine from the obtained data set.

• This procedure can be repeated several times and
the resulting Boltzmann machines can then easily be stacked.

• The obtained stack is fine-tuned with a procedure similar to back-propagation
[Hinton et al. 2006].
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Recurrent Neural Networks
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Recurrent Networks: Cooling Law

A body of temperature ϑ0 that is placed into an environment with temperature ϑA.

The cooling/heating of the body can be described by Newton’s cooling law:

dϑ

dt
= ϑ̇ = −k(ϑ − ϑA).

Exact analytical solution:

ϑ(t) = ϑA + (ϑ0 − ϑA)e
−k(t−t0)

Approximate solution with Euler-Cauchy polygonal courses:

ϑ1 = ϑ(t1) = ϑ(t0) + ϑ̇(t0)∆t = ϑ0 − k(ϑ0 − ϑA)∆t.

ϑ2 = ϑ(t2) = ϑ(t1) + ϑ̇(t1)∆t = ϑ1 − k(ϑ1 − ϑA)∆t.

General recursive formula:

ϑi = ϑ(ti) = ϑ(ti−1) + ϑ̇(ti−1)∆t = ϑi−1 − k(ϑi−1 − ϑA)∆t
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Recurrent Networks: Cooling Law

Euler–Cauchy polygonal courses for different step widths:

t

ϑ
ϑ0

ϑA

0 5 10 15 20

∆t = 4

t

ϑ
ϑ0

ϑA

0 5 10 15 20

∆t = 2

t

ϑ
ϑ0

ϑA

0 5 10 15 20

∆t = 1

The thin curve is the exact analytical solution.

Recurrent neural network:

ϑ(t0) ϑ(t)−kϑA∆t

−k∆t
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Recurrent Networks: Cooling Law

More formal derivation of the recursive formula:

Replace differential quotient by forward difference

dϑ(t)

dt
≈ ∆ϑ(t)

∆t
=

ϑ(t + ∆t)− ϑ(t)

∆t

with sufficiently small ∆t. Then it is

ϑ(t + ∆t)− ϑ(t) = ∆ϑ(t) ≈ −k(ϑ(t)− ϑA)∆t,

ϑ(t + ∆t)− ϑ(t) = ∆ϑ(t) ≈ −k∆tϑ(t) + kϑA∆t

and therefore

ϑi ≈ ϑi−1 − k∆tϑi−1 + kϑA∆t.
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Recurrent Networks: Mass on a Spring

m

x

0

Governing physical laws:

• Hooke’s law: F = c∆l = −cx (c is a spring dependent constant)

• Newton’s second law: F = ma = mẍ (force causes an acceleration)

Resulting differential equation:

mẍ = −cx or ẍ = − c

m
x.
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Recurrent Networks: Mass on a Spring

General analytical solution of the differential equation:

x(t) = a sin(ωt) + b cos(ωt)

with the parameters

ω =

√
c

m
,

a = x(t0) sin(ωt0) + v(t0) cos(ωt0),

b = x(t0) cos(ωt0) − v(t0) sin(ωt0).

With given initial values x(t0) = x0 and v(t0) = 0 and
the additional assumption t0 = 0 we get the simple expression

x(t) = x0 cos

(√
c

m
t

)
.
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Recurrent Networks: Mass on a Spring

Turn differential equation into two coupled equations:

ẋ = v and v̇ = − c

m
x.

Approximate differential quotient by forward difference:

∆x

∆t
=

x(t + ∆t)− x(t)

∆t
= v and

∆v

∆t
=

v(t + ∆t)− v(t)

∆t
= − c

m
x

Resulting recursive equations:

x(ti) = x(ti−1) + ∆x(ti−1) = x(ti−1) + ∆t · v(ti−1) and

v(ti) = v(ti−1) + ∆v(ti−1) = v(ti−1)−
c

m
∆t · x(ti−1).

Christian Borgelt Artificial Neural Networks and Deep Learning 422



Recurrent Networks: Mass on a Spring

0

0x(t0)

v(t0)

x(t)

v(t)

u1

u2

−

c

m
∆t ∆t

Neuron u1: f
(u1)
net (v, wu1u2

) = wu1u2
v = − c

m
∆t v and

f
(u1)
act (actu1

, netu1
, θu1

) = actu1
+ netu1

−θu1
,

Neuron u2: f
(u2)
net (x, wu2u1

) = wu2u1
x = ∆t x and

f
(u2)
act (actu2

, netu2
, θu2

) = actu2
+ netu2

−θu2
.
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Recurrent Networks: Mass on a Spring

Some computation steps of the neural network:

t v x

0.0 0.0000 1.0000
0.1 −0.5000 0.9500
0.2 −0.9750 0.8525
0.3 −1.4012 0.7124
0.4 −1.7574 0.5366
0.5 −2.0258 0.3341
0.6 −2.1928 0.1148

t

x

1 2 3 4

• The resulting curve is close to the analytical solution.

• The approximation gets better with smaller step width.
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Recurrent Networks: Differential Equations

General representation of explicit n-th order differential equation:

x(n) = f (t, x, ẋ, ẍ, . . . , x(n−1))

Introduce n − 1 intermediary quantities

y1 = ẋ, y2 = ẍ, . . . yn−1 = x(n−1)

to obtain the system
ẋ = y1,

ẏ1 = y2,
...

ẏn−2 = yn−1,

ẏn−1 = f (t, x, y1, y2, . . . , yn−1)

of n coupled first order differential equations.
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Recurrent Networks: Differential Equations

Replace differential quotient by forward distance to obtain the recursive equations

x(ti) = x(ti−1) + ∆t · y1(ti−1),

y1(ti) = y1(ti−1) + ∆t · y2(ti−1),

...

yn−2(ti) = yn−2(ti−1) + ∆t · yn−3(ti−1),

yn−1(ti) = yn−1(ti−1) + f (ti−1, x(ti−1), y1(ti−1), . . . , yn−1(ti−1))

• Each of these equations describes the update of one neuron.

• The last neuron needs a special activation function.
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Recurrent Networks: Differential Equations

θ

0

0

0

−∆tt0

x
(n−1)
0

ẍ0

ẋ0

x0

∆t

∆t

∆t

∆t

x(t)
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Recurrent Networks: Diagonal Throw

x

y

y0

x0

ϕ

v0 cosϕ

v0 sinϕ Diagonal throw of a body.

Two differential equations (one for each coordinate):

ẍ = 0 and ÿ = −g,

where g = 9.81 ms−2.

Initial conditions x(t0) = x0, y(t0) = y0, ẋ(t0) = v0 cos φ and ẏ(t0) = v0 sin φ.
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Recurrent Networks: Diagonal Throw

Introduce intermediary quantities

vx = ẋ and vy = ẏ

to reach the system of differential equations:

ẋ = vx, v̇x = 0,

ẏ = vy, v̇y = −g,

from which we get the system of recursive update formulae

x(ti) = x(ti−1) + ∆t vx(ti−1), vx(ti) = vx(ti−1),

y(ti) = y(ti−1) + ∆t vy(ti−1), vy(ti) = vy(ti−1)− ∆t g.
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Recurrent Networks: Diagonal Throw

Better description: Use vectors as inputs and outputs

¨⃗r = −g⃗ey,

where e⃗y = (0, 1).

Initial conditions are r⃗(t0) = r⃗0 = (x0, y0) and ˙⃗r(t0) = v⃗0 = (v0 cos φ, v0 sin φ).

Introduce one vector-valued intermediary quantity v⃗ = ˙⃗r to obtain

˙⃗r = v⃗, ˙⃗v = −g⃗ey

This leads to the recursive update rules

r⃗(ti) = r⃗(ti−1) + ∆t v⃗(ti−1),

v⃗(ti) = v⃗(ti−1)− ∆t g⃗ey
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Recurrent Networks: Diagonal Throw

Advantage of vector networks becomes obvious if friction is taken into account:

a⃗ = −βv⃗ = −β ˙⃗r

β is a constant that depends on the size and the shape of the body.
This leads to the differential equation

¨⃗r = −β ˙⃗r − g⃗ey.

Introduce the intermediary quantity v⃗ = ˙⃗r to obtain

˙⃗r = v⃗, ˙⃗v = −βv⃗ − g⃗ey,

from which we obtain the recursive update formulae

r⃗(ti) = r⃗(ti−1) + ∆t v⃗(ti−1),

v⃗(ti) = v⃗(ti−1)− ∆t β v⃗(ti−1)− ∆t g⃗ey.
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Recurrent Networks: Diagonal Throw

Resulting recurrent neural network:

~0

~v0

~r0

∆tg~ey

∆t

~r(t)

−∆tβ

y

x

1 2 3

• There are no strange couplings as there would be in a non-vector network.

• Note the deviation from a parabola that is due to the friction.
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Recurrent Networks: Planet Orbit

¨⃗r = −γm
r⃗

|⃗r |3 , ⇒ ˙⃗r = v⃗, ˙⃗v = −γm
r⃗

|⃗r |3 .

Recursive update rules:

r⃗(ti) = r⃗(ti−1) + ∆t v⃗(ti−1),

v⃗(ti) = v⃗(ti−1)− ∆t γm
r⃗(ti−1)

|⃗r(ti−1)|3
,

~0

~0~r0

~v0

~x(t)

~v(t)

−γm∆t ∆t

y

x

0.5

−1 −0.5 0 0.5
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Recurrent Networks: Training

• All recurrent network computations shown up to now are possible only
if the differential equation and its parameters are known.

• In practice one often knows only the form of the differential equation.

• If measurement data of the described system are available, one may try
to find the system parameters by training a recurrent neural network.

• In principle, recurrent neural networks are trained like multi-layer perceptrons,
that is, an output error is computed and propagated back through the network.

• However, a direct application of error backpropagation is problematic
due to the backward connections / recurrence.

• Solution: The backward connections are eliminated by unfolding the network
in time between two training patterns (error backpropagation through time).

• Technically: create one (pseudo-)neuron for each intermediate point in time.
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Recurrent Networks: Backpropagation through Time

Example: Newton’s cooling law

dϑ

dt
= ϑ̇ = −k(ϑ − ϑA) ϑ(t0) ϑ(t)−kϑA∆t

−k∆t

• Assumption: we have measurements of the temperature of a body at different
points in time. We also know the temperature ϑA of the environment.

• Objective: find the value of the cooling constant k.

• Initialization: like for an MLP, choose random thresholds and weights.

• The time between two consecutive measurement values is split into intervals.
Thus the recurrence of the network is unfolded in time.

• For example, if there are 4 intervals between two consecutive measurement
values (tj+1 = tj + 4∆t), we obtain

ϑ(tj) ϑ(tj+1)θ θ θ θ
1−k∆t 1−k∆t 1−k∆t 1−k∆t
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Recurrent Networks: Backpropagation through Time

ϑ(tj) ϑ(tj+1)θ θ θ θ
1−k∆t 1−k∆t 1−k∆t 1−k∆t

• For a given measurement ϑ(tj), an approximation of ϑ(tj+1) is computed.

• By comparing this (approximate) output with the actual value ϑ(tj+1),
an error signal is obtained that is backpropagated through the network
and leads to changes of the thresholds and the connection weights.

• Therefore: training is standard backpropagation on the unfolded network.

• However: the above example network possesses only one free parameter,
namely the cooling constant k, which is part of the weight and the threshold.

• Therefore: updates can be carried out only after the first neuron is reached.

• Generally, training recurrent networks is beneficial
if the system of differential equations cannot be solved analytically.
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Recurrent Networks: Virtual Laparoscopy

Example: Finding tissue parameters for virtual surgery/laparoscopy
[Radetzky, Nürnberger, and Pretschner 1998–2002]

pictures not available in online version

Due to the large number of differential equations, such systems are much too com-
plex to be treated analytically. However, by training recurrent neural networks,
remarkable successes could be achieved.
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Recurrent Networks: Optimization of Wind Farms

picture not available
in online version

Single Wind Turbine

• Input from sensors:

◦ wind speed
◦ vibration

• Variables:

◦ blade angle
◦ generator settings

• Objectives:

◦ maximize
electricity generation

◦ minimize
wear and tear
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Recurrent Networks: Optimization of Wind Farms

picture not available
in online version

Many Wind Turbines

• Problem: wind turbines create tur-
bulences, which affect other wind
turbines placed behind them

• Input: sensor data of all wind tur-
bines

• Variables: settings of all wind tur-
bines

• Objectives:

◦ maximize electricity generation
◦ minimize wear and tear

• Solution: use a recurrent neural net-
work
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Supplementary Topic:

Neuro-Fuzzy Systems
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Brief Introduction to Fuzzy Theory

• Classical Logic: only two truth values true and false

Classical Set Theory: either is element of or is not element of

• The bivalence of the classical theories is often inappropriate.

Illustrative example: Sorites Paradox (greek. sorites: pile)

◦ One billion grains of sand are a pile of sand. (true)

◦ If a grain of sand is taken away from a pile of sand,
the remainder is a pile of sand. (true)

It follows:

◦ 999 999 999 grains of sand are a pile of sand. (true)

Repeated application of this inference finally yields

◦ A single grain of sand is a pile of sand. (false!)

At which number of grains of sand is the inference not truth-preserving?
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Brief Introduction to Fuzzy Theory

• Obviously: There is no precise number of grains of sand,
at which the inference to the next smaller number is false.

• Problem: Terms of natural language are vague.
(e.g.. “pile of sand”, “bald”, “warm”, “fast”, “light”, “high”)

• Note: Vague terms are inexact, but nevertheless not useless.

◦ Even for vague terms there are situations or objects,
to which they are certainly applicable, and others,
to which they are certainly not applicable.

◦ In between lies a so-called penumbra (lat. for half shadow) of situations,
in which it is unclear whether the terms are applicable, or in which
they are applicable only with certain restrictions (“small pile of sand”).

◦ Fuzzy theory tries to model this penumbra in a mathematical fashion
(“soft transition” between applicable and not applicable).
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Fuzzy Logic

• Fuzzy Logic is an extension of classical logic
by values between true and false.

• Truth values are any values from the real interval [0, 1],
where 0 =̂ false and 1 =̂ true.

• Therefore necessary: extension of the logical operators

◦ Negation classical: ¬a, fuzzy: ∼ a Fuzzy-Negation

◦ Conjunction classical: a ∧ b, fuzzy: ⊤(a, b) t-Norm

◦ Disjunction classical: a ∨ b, fuzzy: ⊥(a, b) t-Conorm

• Basic principles of this extension:

◦ For the extreme values 0 and 1 the operations should behave exactly
like their classical counterparts (border or corner conditions).

◦ For the intermediate values the behavior should be monotone.

◦ As far as possible, the laws of classical logic should be preserved.
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Fuzzy Negations

A fuzzy negation is a function ∼: [0, 1] → [0, 1],
that satisfies the following conditions:

• ∼0 = 1 and ∼1 = 0 (boundary conditions)

• ∀a, b ∈ [0, 1] : a ≤ b ⇒ ∼a ≥ ∼b (monotonicity)

If in the second condition the relations < and > hold instead of merely ≤ and ≥,
the fuzzy negation is called a strict negation.

Additional conditions that are sometimes required are:

• ∼ is a continuous function.

• ∼ is involutive, that is, ∀a ∈ [0, 1] : ∼∼a = a.

Involutivity corresponds to the classical law of identity ¬¬a = a.

The above conditions do not uniquely determine a fuzzy negation.
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Fuzzy Negations

standard negation: ∼a = 1 − a

threshold negation: ∼(a; θ) =

{
1 if x ≤ θ,
0 otherwise.

cosine negation: ∼a = 1
2(1 + cos πa)

Sugeno negation: ∼(a; λ) =
1 − a

1 + λa

Yager negation: ∼(a; λ) = (1 − aλ)
1
λ

0 1

0

1

standard
0 1

0

1

cosine
0 1

0

1

12

2

0

−0.7

−0.95

Sugeno
0 1

0

1

0.4

0.7

1

1.5

3

Yager
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t-Norms / Fuzzy Conjunctions

A t-norm or fuzzy conjunction is a function ⊤ : [0, 1]2 → [0, 1],
that satisfies the following conditions:

• ∀a ∈ [0, 1] : ⊤(a, 1) = a (boundary condition)

• ∀a, b, c ∈ [0, 1] : b ≤ c ⇒ ⊤(a, b) ≤ ⊤(a, c) (monotonicity)

• ∀a, b ∈ [0, 1] : ⊤(a, b) = ⊤(b, a) (commutativity)

• ∀a, b, c ∈ [0, 1] : ⊤(a,⊤(b, c)) = ⊤(⊤(a, b), c) (associativity)

Additional conditions that are sometimes required are:

• ⊤ is a continuous function (continuity)

• ∀a ∈ [0, 1] : ⊤(a, a) < a (sub-idempotency)

• ∀a, b, c, d ∈ [0, 1] : a < c ∧ b < d ⇒ ⊤(a, b) < ⊤(c, d) (strict monotonicity)

The first two of these conditions (in addition to the top four)
define the sub-class of so-called Archimedic t-norms.
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t-Norms / Fuzzy Conjunctions

standard conjunction: ⊤min(a, b) = min{a, b}
algebraic product: ⊤prod(a, b) = a · b

Łukasiewicz: ⊤luka(a, b) = max{0, a + b − 1}

drastic product: ⊤−1(a, b) =





a if b = 1,
b if a = 1,
0 otherwise.
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t-Conorms / Fuzzy Disjunctions

A t-conorm or fuzzy disjunction is a function ⊥ : [0, 1]2 → [0, 1],
that satisfies the following conditions:

• ∀a ∈ [0, 1] : ⊥(a, 0) = a (boundary condition)

• ∀a, b, c ∈ [0, 1] : b ≤ c ⇒ ⊥(a, b) ≤ ⊥(a, c) (monotonicity)

• ∀a, b ∈ [0, 1] : ⊥(a, b) = ⊥(b, a) (commutativity)

• ∀a, b, c ∈ [0, 1] : ⊥(a,⊥(b, c)) = ⊥(⊥(a, b), c) (associativity)

Additional conditions that are sometimes required are:

• ⊥ is a continuous function (continuity)

• ∀a ∈ [0, 1] : ⊥(a, a) > a (super-idempotency)

• ∀a, b, c, d ∈ [0, 1] : a < c ∧ b < d ⇒ ⊥(a, b) < ⊥(c, d) (strict monotonicity)

The first two of these conditions (in addition to the top four)
define the sub-class of so-called Archimedic t-conorms.
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t-Conorms / Fuzzy Disjunctions

standard disjunction: ⊥max(a, b) = max{a, b}
algebraic sum: ⊥sum(a, b) = a + b − a · b

Łukasiewicz: ⊥luka(a, b) = min{1, a + b}

drastic sum: ⊥−1(a, b) =





a if b = 0,
b if a = 0,
1 otherwise.

0

0.5

1

0

0.5

1

0.5

1

0.5

1

b

a

⊥max

0

0.5

1

0

0.5

1

0.5

1

0.5

1

b

a

⊥sum

0

0.5

1

0

0.5

1

0.5

1

0.5

1

b

a

⊥luka

0

0.5

1

0

0.5

1

0.5

1

0.5

1

b

a

⊥
−1

Christian Borgelt Artificial Neural Networks and Deep Learning 449



Interplay of the Fuzzy Operators

• It is ∀a, b ∈ [0, 1] : ⊤−1(a, b) ≤ ⊤luka(a, b) ≤ ⊤prod(a, b) ≤ ⊤min(a, b).

All other possible t-norms lie between ⊤−1 and ⊤min as well.

• It is ∀a, b ∈ [0, 1] : ⊥max(a, b) ≤ ⊥sum(a, b) ≤ ⊥luka(a, b) ≤ ⊥−1(a, b).

All other possible t-conorms lie between ⊥max and ⊥−1 as well.

• Note: Generally neither ⊤(a,∼a) = 0 nor ⊥(a,∼a) = 1 holds.

• A set of operators (∼,⊤,⊥) consisting of a fuzzy negation ∼,
a t-norm ⊤, and a t-conorm ⊥ is called a dual triplet
if with these operators DeMorgan’s laws hold, that is, if

∀a, b ∈ [0, 1] : ∼⊤(a, b) = ⊥(∼a,∼b)

∀a, b ∈ [0, 1] : ∼⊥(a, b) = ⊤(∼a,∼b)

• The most frequently used set of operators is the dual triplet (∼,⊤min,⊥max)
with the standard negation ∼a ≡ 1 − a.
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Fuzzy Set Theory

• Classical set theory is based on the notion “is element of ” (∈).
Alternatively the membership in a set can be described
with the help of an indicator function:

Let X be a set (base set). Then

IM : X → {0, 1}, IM(x) =

{
1 if x ∈ X,
0 otherwise,

is called indicator function of the set M w.r.t. the base set X.

• In fuzzy set theory the indicator function of classical set theory
is replaced by a membership function:

Let X be a (classical/crisp) set. Then

µM : X → [0, 1], µM(x) =̂ degree of membership of x to M,

is called membership function of the fuzzy set M w.r.t. the base set X.

Usually the fuzzy set is identified with its membership function.
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Fuzzy Set Theory: Operations

• In analogy to the transition from classical logic to fuzzy logic
the transition from classical set theory to fuzzy set theory
requires an extension of the operators.

• Basic principle of the extension:
Draw on the logical definition of the operators.
⇒ element-wise application of the logical operators.

• Let A and B be (fuzzy) sets w.r.t. the base set X.

complement classical A = {x ∈ X | x /∈ A}
fuzzy ∀x ∈ X : µA(x) = ∼µA(x)

intersection classical A ∩ B = {x ∈ X | x ∈ A ∧ x ∈ B}
fuzzy ∀x ∈ X : µA∩B(x) = ⊤(µA(x), µB(x))

union classical A ∪ B = {x ∈ X | x ∈ A ∨ x ∈ B}
fuzzy ∀x ∈ X : µA∪B(x) = ⊥(µA(x), µB(x))

Christian Borgelt Artificial Neural Networks and Deep Learning 452



Fuzzy Set Operations: Examples

1

0
X

fuzzy complement

1

0
X

two fuzzy sets

1

0
X

fuzzy intersection

1

0
X

fuzzy union

• The fuzzy intersection on the left and the fuzzy union on the right
are independent of the chosen t-norm or t-conorm.
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Fuzzy Intersection: Examples

1

0
X

t-norm ⊤min

1

0
X

t-norm ⊤prod

1

0
X

t-norm ⊤luka

1

0
X

t-norm ⊤−1

• Note that all fuzzy intersections lie between the one shown at the top right
and the one shown at the right bottom.
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Fuzzy Union: Examples

1

0
X

t-norm ⊤min

1

0
X

t-norm ⊤prod

1

0
X

t-norm ⊤luka

1

0
X

t-norm ⊤−1

• Note that all fuzzy unions lie between the one shown at the top right
and the one shown at the right bottom.
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Fuzzy Partitions and Linguistic Variables

• In order to describe a domain by linguistic terms,
it is fuzzy-partitioned with the help of fuzzy sets.

To each fuzzy set of the partition a linguistic term is assigned.

• Common condition: At each point the membership values of the fuzzy sets
must sum to 1 (partition of unity).

Example: fuzzy partition for temperatures

We define a linguistic variable with the values cold, tepid, warm and hot.

1

0
T/C◦

cold tepid warm hot

0 5 10 15 20 25 30 35 40
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Architecture of a Fuzzy Controller

fuzzy fuzzy

not
fuzzy

not
fuzzy

knowledge
base

decision
logic

fuzzification
interface

defuzzification
interface

controlled
system

measurement

values

controller

output

• The knowledge base contains the fuzzy rules of the controller
as well as the fuzzy partitions of the domains of the variables.

• A fuzzy rule reads: if X1 is A
(1)
i1

and . . . and Xn is A
(n)
in

then Y is B.

X1, . . . , Xn are the measurement values and Y is the controller output.

A
(k)
ik

and B are linguistic terms to which fuzzy sets are assigned.
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Example Fuzzy Controller: Inverted Pendulum

g

FM

m

l
θ

1

nb nm ns az ps pm pb

θ :
θ̇ :

−60
−32

−45
−24

−30
−16

−15
−8

0
0

15
8

30
16

45
24

60
32

abbreviations

pb – positive big

pm – positive medium

ps – positive small

az – approximately zero

ns – negative small

nm – negative medium

nb – negative big

θ̇\θ nb nm ns az ps pm pb

pb ps pb

pm pm

ps nm az ps

az nb nm ns az ps pm pb

ns ns az pm

nm nm

nb nb ns

Christian Borgelt Artificial Neural Networks and Deep Learning 458



Mamdani–Assilian Controller

1

θ

0 15 25 30 45

1

θ
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θm

1

0.5

θ̇

−8 −4 0 8
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θ̇

−8 −4 0 8

about
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min

θ̇m

min

positive small

positive medium

1

F

0 3 6 9

1

F

0 3 6 9

1

F

0 1 4 7.5 9

COG MOM

max

Rule evaluation in a Mamdani–Assilian controller.
The input tuple (25,−4) yields the fuzzy output
shown on the right. From this fuzzy set the actual
output value is computed by defuzzification, e.g. by
the mean of maxima method (MOM) or the center of
gravity method (COG).
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Mamdani–Assilian Controller

x

y

x
∗

A fuzzy control system with one measurement and one control variable
and three fuzzy rules. Each pyramid is specified by one fuzzy rule.
The input value x∗ leads to the fuzzy output shown in gray.
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Defuzzification

The evaluation of the fuzzy rules yields
an output fuzzy set.

The output fuzzy set has to be turned
into a crisp controller output.

This process is called defuzzification.
F

0

1

0 1 4 7.5 9

COG MOM

The most important defuzzification methods are:

• Center of Gravity (COG)
The center of gravity of the area under the output fuzzy set.

• Center of Area (COA)
Point that divides the area under the output fuzzy set into equally large parts.

• Mean of Maxima (MOM)
The arithmetic mean of the points with maximal degree of membership.
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Takagi–Sugeno–Kang Controller (TSK Controller)

• The rules of a Takagi–Sugeno–Kang controller have the same kind of antecedent
as those of a Mamdani–Assilian controller, but a different kind of consequent:

Ri: if x1 is µ
(1)
i and . . . and xn is µ

(n)
i , then y = fi(x1, . . . , xn).

The consequent of a Takagi–Sugeno–Kang rule specifies a function of the inputs
that is to be computed if the antecedent is satisfied.

• Let ãi be the activation of the antecedent of the rule Ri, that is,

ãi(x1, . . . , xn) = ⊤
(
⊤
(

. . .⊤
(

µ
(1)
i (x1), µ

(2)
i (x2)

)
, . . .

)
, µ

(n)
i (xn)

)
.

• Then the output of a Takagi–Sugeno–Kang controller is computed as

y(x1, . . . , xn) =
∑

r
i=1 ãi · fi(x1, . . . , xn)

∑
r
i=1 ãi

,

that is, the controller output is a weighted average of the outputs of the indi-
vidual rules, where the activations of the antecedents provide the weights.
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Neuro-Fuzzy Systems

• Disadvantages of Neural Networks:

◦ Training results are difficult to interpret (black box).

The result of training an artificial neural network are matrices or vectors of
real-valued numbers. Even though the computations are clearly defined,
humans usually have trouble understanding what is going on.

◦ It is difficult to specify and incorporate prior knowledge.

Prior knowledge would have to be specified as matrices or vectors of real-
valued numbers, which are difficult to understand for humans.

• Possible Remedy:

◦ Use a hybrid system, in which an artificial neural network
is coupled with a rule-based system.

The rule-based system can be interpreted and set up by a human.

◦ One such approach are neuro-fuzzy systems.
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Neuro-Fuzzy Systems

Neuro-fuzzy systems are commonly divided into cooperative and hybrid systems.

• Cooperative Models:

◦ A neural network and a fuzzy controller work independently.

◦ Neural network generates (offline) or optimizes (online) certain parameters.

• Hybrid Models:

◦ Combine the structure of a neural network and a fuzzy controller.

◦ A hybrid neuro-fuzzy controller can be interpreted as a neural network
and can be implemented with the help of a neural network.

◦ Advantages: integrated structure;
no communication between two different models is needed;
in principle, both offline and online training are possible,

Hybrid models are more accepted and more popular than cooperative models.
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Neuro-Fuzzy Systems: Hybrid Methods

• Hybrid methods map fuzzy sets and fuzzy rules to a neural network structure.

• The activation ãi of the antecedent of a Mamdani–Assilian rule

Ri: if x1 is µ
(1)
i and . . . and xn is µ

(n)
i , then y is νi.

or of a Takagi–Sugeno–Kang rule

Ri: if x1 is µ
(1)
i and . . . and xn is µ

(n)
i , then y = fi(x1, . . . , xn).

is computed with a t-norm ⊤ (most commonly ⊤min).

• For given input values x1, . . . , xn the network structure has to compute:

ãi(x1, . . . , xn) = ⊤
(
⊤
(

. . .⊤
(

µ
(1)
i (x1), µ

(2)
i (x2)

)
, . . .

)
, µ

(n)
i (xn)

)
.

(Since t-norms are associative, it does not matter in which order the member-
ship degrees are combined by successive pairwise applications of the t-norm.)
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Neuro-Fuzzy Systems

Computing the activation ãi of the antecedent of a fuzzy rule:

The fuzzy sets appearing in the antecedents of fuzzy rules can be modeled

as connection weights:

x1

x2

⊤ ãi

µ
(1)
i

µ
(2)
i

The neurons in the first hidden
layer represent the rule antecedents
and the connections from the
input units represent the fuzzy sets
of these antecedents.

as activation functions:

x1

x2

⊤ ãi

µ
(1)
i

µ
(2)
i

The neurons in the first hidden
layer represent the fuzzy sets and
the neurons in the second hidden
layer represent the rule antecedents
(⊤ is a t-norm).
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From Fuzzy Rule Base to Network Structure

If the fuzzy sets are represented as activation functions (right on previous slide),
a fuzzy rule base is turned into a network structure as follows:

1. For every input variable xi: create a neuron in the input layer.

2. For every output variable yi: create a neuron in the output layer.

3. For every fuzzy set µ
(j)
i : create a neuron in the first hidden layer

and connect it to the input neuron corresponding to xi.

4. For every fuzzy rule Ri: create a (rule) neuron in the second hidden layer
and specify a t-norm for computing the rule (antecedent) activation.

5. Connect each rule neuron to the neurons that represent
the fuzzy sets of the antecedent of its corresponding fuzzy rule Ri.

6. (This step depends on whether the controller is of the Mamdani–Assilian
or of the Takagi–Sugeno–Kang type; see next slide.)
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From Fuzzy Rule Base to Network Structure

Mamdani–Assilian controller:

6. Connect each rule neuron to the output neuron corresponding to the conse-
quent domain of its fuzzy rule. As connection weight choose the consequent
fuzzy set of the fuzzy rule. Further, a t-conorm for combining the outputs of the
individual rules and a defuzzification method have to be integrated adequately
into the output neurons (e.g. as network input and activation functions).

Takagi–Sugeno–Kang controller:

6. For each rule neuron, create a sibling neuron that computes the output function
of the corresponding fuzzy rule and connect all input neurons to it (arguments
of the consequent function). All rule neurons that refer to the same output do-
main as well as their sibling neurons are connected to the corresponding output
neuron (in order to compute the weighted average of the rule outputs).

The resulting network structure can now be trained with procedures that are anal-
ogous to those of standard neural networks (e.g. error backpropagation).
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Adaptive Network-based Fuzzy Inference Systems (ANFIS)
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ã1

N

N

N

ā3

ā2

ā1
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ȳ3

∑
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(Connections from inputs to output function neurons for f1, f2, f3 not shown.)

This ANFIS network represents the fuzzy rule base (Takagi–Sugeno–Kang rules):

R1: if x1 is µ
(1)
1 and x2 is µ

(2)
1 , then y = f1(x1, x2)

R2: if x1 is µ
(1)
1 and x2 is µ

(2)
2 , then y = f2(x1, x2)

R3: if x1 is µ
(1)
2 and x2 is µ

(2)
2 , then y = f3(x1, x2)
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Neuro-Fuzzy Control (NEFCON)
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This NEFCON network represents the fuzzy rule base (Mamdani–Assilian rules):

R1: if x1 is µ
(1)
1 and x2 is µ

(2)
1 , then y is ν1

R2: if x1 is µ
(1)
1 and x2 is µ

(2)
2 , then y is ν1

R3: if x1 is µ
(1)
2 and x2 is µ

(2)
2 , then y is ν2

R4: if x1 is µ
(1)
3 and x2 is µ

(2)
2 , then y is ν3

R5: if x1 is µ
(1)
3 and x2 is µ

(2)
3 , then y is ν3
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Neuro-Fuzzy Classification (NEFCLASS)
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This NEFCLASS network represents fuzzy rules that predict classes:

R1: if x1 is µ
(1)
1 and x2 is µ

(2)
1 , then class c1

R2: if x1 is µ
(1)
1 and x2 is µ

(2)
2 , then class c1

R3: if x1 is µ
(1)
2 and x2 is µ

(2)
2 , then class c2

R4: if x1 is µ
(1)
3 and x2 is µ

(2)
2 , then class c3

R5: if x1 is µ
(1)
3 and x2 is µ

(2)
3 , then class c3
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NEFCLASS: Initializing the Fuzzy Partitions

• NEFCLASS is based on modified Wang–Mendel procedure. [Nauck 1997]

• NEFCLASS first fuzzy partitions the domain of each variable,
usually with a given number of equally sized triangular fuzzy sets;
the boundary fuzzy sets are “shouldered” (membership 1 to the boundary).

• Based on the initial fuzzy partitions, the initial rule base is selected.
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NEFCLASS: Initializing the Rule Base

A := ∅; (∗ initialize the antecedent set ∗)
for each training pattern p do begin (∗ traverse the training patterns ∗)

find rule antecedent A such that A(p) is maximal;
if A /∈ A then (∗ if this is a new antecedent, ∗)
A := A∪ {A}; (∗ add it to the antecedent set, ∗)

end (∗ that is, collect needed antecedents ∗)
R := ∅; (∗ initialize the rule base ∗)
for each antecedent A ∈ A do begin (∗ traverse the antecedents ∗)

find best consequent C for antecedent A;(∗ e.g. most frequent class in ∗)
create rule base candidate R = (A, C); (∗ training patterns assigned to A ∗)
determine performance of R;
R := R∪ {R}; (∗ collect the created rules ∗)

end

return rule base R; (∗ return the created rule base ∗)

Fuzzy rule bases may also be created from prior knowledge or using
fuzzy cluster analysis, fuzzy decision trees, evolutionary algorithms etc.
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NEFCLASS: Selecting the Rule Base

• To reduce/limit the number of initial rules, their performance is evaluated.

• The performance of a rule Ri is computed as

Perf(Ri) =
1

m

m

∑
j=1

eij ãi(x⃗j)

where m is the number of training patterns and eij is an error indicator,

eij =

{
+1 if class(x⃗j) = cons(Ri),
−1 otherwise.

• Sort the rules in the initial rule base by their performance.

• Choose either the best r rules or the best r/c rules per class,
where c is the number of classes.

• The number r of rules in the rule base is either provided by a user
or is automatically determined in such a way that all patterns are covered.
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NEFCLASS: Computing the Error Signal

• Let o
(l)
k be the desired output

and out
(l)
k the actual output of

the k-th output neuron (class ck).

• Fuzzy error (k-th output/class):

e
(l)
k = 1 − γ

(
ε
(l)
k

)
,

where ε
(l)
k = o

(l)
k − out

(l)
k and

γ(z) = e−βz2
,

where β > 0 is a sensitivity parameter:
larger β means larger error tolerance.

• Error signal (k-th output/class):

δ
(l)
k = sgn

(
ε
(l)
k

)
e
(l)
k .

error signal

x1 x2

c1 c2

R1 R2 R3
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NEFCLASS: Computing the Error Signal

• Rule error signal (rule Ri for ck):

δ
(l)
Ri

= out
(l)
Ri

(
1 − out

(l)
Ri

)
δ
(l)
k ,

(the factor “out(1 − out)” is chosen
in analogy to multi-layer perceptrons).

• Find input variable xj such that

µ
(j)
i

(
ı
(l)
j

)
= ãi

(
ı⃗ (l)
)
= min d

ν=1 µ
(ν)
i

(
ı
(l)
ν

)
,

where d is the number of inputs
(find antecedent term of Ri giving
the smallest membership degree,
which yields the rule activation).

• Adapt parameters of the fuzzy set µ
(j)
i

(see next slide for details).

error signal

x1 x2

c1 c2

R1 R2 R3
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NEFCLASS: Training the Fuzzy Sets

• Triangular fuzzy set as an example:

µa,b,c(x) =





x−a
b−a if x ∈ [a, b),
c−x
c−b if x ∈ [b, c],

0 otherwise.

• Parameter changes (learning rate η):

∆b = +η · δ
(l)
Ri

· (c − a) · sgn
(
ı
(l)
j − b

)

∆a = −η · δ
(l)
Ri

· (c − a) + ∆b

∆c = +η · δ
(l)
Ri

· (c − a) + ∆b

• Heuristics: The fuzzy set to train is
moved away from x∗ (towards x∗) and
its support is reduced (increased) in or-
der to reduce (increase) the degree of
membership of x∗.
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NEFCLASS: Restricted Training of Fuzzy Sets

When fuzzy sets of a fuzzy partition are
trained, restrictions apply, so correction
procedures are needed to

• ensure valid parameter values

• ensure non-empty intersections
of neighboring fuzzy sets

• preserve relative positions

• preserve symmetry

• ensure partition of unity
(membership degrees
sum to 1 everywhere)

On the right: example of a correction
of a fuzzy partition with three fuzzy sets.
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NEFCLASS: Pruning the Rules

Objective: Remove variables, rules and fuzzy sets,
in order to improve interpretability and generalization ability.

repeat
select pruning method;
repeat

execute pruning step;
train fuzzy sets;
if no improvement
then undo step;

until there is no improvement;
until no further method;

1. Remove variables
(correlation, information gain etc.)

2. Remove rules
(performance of a rule)

3. Remove antecedent terms
(satisfaction of a rule)

4. Remove fuzzy sets

• After each pruning step the fuzzy sets need to be retrained,
in order to obtain the optimal parameter values for the new structure.

• A pruning step that does not improve performance,
the system is reverted to its state before the pruning step.
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NEFCLASS: Full Procedure
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NEFCLASS-J: Implementation in Java

picture not available in online version
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Neuro-Fuzzy Systems in Finance

Stock Index Prediction (DAX) [Siekmann 1999]

• Prediction of the daily relative changes of the German stock index
(Deutscher Aktienindex, DAX).

• Based on time series of stock indices and other quantities from 1986 to 1997.

Input Variables:

◦ DAX (Germany) ◦ German 3 month interest rate

◦ Composite DAX (Germany) ◦ return Germany

◦ Dow Jones industrial index (USA) ◦ US treasure bonds

◦ Nikkei index (Japan) ◦ price to income ratio

◦ Morgan–Stanley index Germany ◦ exchange rate DM / US-$

◦ Morgan–Stanley index Europe ◦ gold price
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DAX Prediction: Example Rules

• trend rule: if DAX is decreasing and US-$ is decreasing
then DAX prediction is decreasing
with high certainty

• turning point rule: if DAX is decreasing and US-$ is increasing
then DAX prediction is increasing
with low certainty

• delay rule: if DAX is stable and US-$ is decreasing
then DAX prediction is decreasing
with very high certainty

• general form: if x1 is µ1 and x2 is µ2 and . . . and xn is µn

then y is ν
with certainty c

Initial rules may be provided by financial experts.
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DAX Prediction: Architecture

x1

x2

yinput

increasing
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increasing
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DAX Prediction: From Rules to Neural Network

• Finding the membership values (evaluate membership functions):

1

1
2

0
negative zero positive

1

1
2

0
decreasing stable increasing

• Evaluating the rules (computing the rule activation for r rules):

∀j ∈ {1, . . . , r} : ãj(x1, . . . , xd) =
d

∏
i=1

µ
(i)
j (xi).

• Accumulation of r rule activations, normalization:

y =
r

∑
j=1

wj

cj ãj(x1, . . . , xd)

∑
r
k=1 ck ãk(x1, . . . , xd)

, where
r

∑
j=1

wj = 1.
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DAX Prediction: Training the Network

• Membership degrees of different inputs share their parameters, e.g.

µ
(DAX)
stable = µ

(Composite DAX)
stable

Advantage: number of
free parameters is reduced.

• Membership functions of the same input variable must not “pass each other”,
but must preserve their original order:

1

1
2

0
negative zero positive

µnegative < µzero < µpositive

1

1
2

0
decreasing stable increasing

µdecreasing < µstable < µincreasing

Advantage:
optimized rule base
remains interpretable.

• The parameters of the fuzzy sets, the rule certainties, and the rule weights
are optimized with a backpropagation approach.

• Pruning methods are employed to simplify the rules and the rule base.
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DAX Prediction: Trading Performance

• Different prediction/trading models for the DAX:
naive, Buy&Hold, linear model, multi-layer perceptron, neuro-fuzzy system

• Profit and loss obtained from trading according to prediction.

• Validation period: March 1994 to April 1997

pictures not available in online version
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Neuro-Fuzzy Systems in Quality Control

Surface Control of Car Body Parts (BMW)

• Previous Approach:

picture not available
in online version

◦ surface control is done manually

◦ experienced employee treats surface
with a grinding block

◦ human experts classify defects
by linguistic terms

◦ cumbersome, subjective,
error-prone, time-consuming

• Suggested Approach:

◦ digitization of the surface with optical measurement systems

◦ characterization of the shape defects by mathematical properties
(close to the subjective features)
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Surface Control: Topometric Measurement System

picture not available in online version
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Surface Control: Data Processing

picture not available in online version
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Surface Control: Color Coded Representation

picture not available in online version
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Surface Control: 3D Representation

picture not available
in online version

sink mark
slight flat-based sink inwards

picture not available
in online version

uneven surface
several neighboring sink marks

picture not available
in online version

press mark
local smoothing of the surface

picture not available
in online version

wavy surface
several severe foldings in serie
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Surface Control: Defect Classification

Data Characteristics

• 9 master pieces with a total of 99 defects were analyzed.

• 42 features were computed for each defect.

• Defect types are fairly unbalanced, rare types were dropped.

• Some extremely correlated features were dropped ⇒ 31 features remain.

• Remaining 31 features were ranked by their importance.

• Experiment was conducted with 4-fold stratified cross validation.

Accuracy of different classifiers:

accuracy DC NBC DT NN NEFCLASS

training 46.8% 89.0% 94.7% 90.0% 81.6%
test 46.8% 75.6% 75.6% 85.5% 79.9%
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Surface Control: Fuzzy Rule Base

R1: if max dist to cog is fun 2
and min extrema is fun 1
and max extrema is fun 1
then type is press mark

R2: if max dist to cog is fun 2
and all extrema is fun 1
and max extrema is fun 2
then type is sink mark

R3: if max dist to cog is fun 3
and min extrema is fun 1
and max extrema is fun 1
then type is uneven surface

R4: if max dist to cog is fun 2
and min extrema is fun 1
and max extrema is fun 1
then type is uneven surface

R5: if max dist to cog is fun 2
and all extrema is fun 1
and min extrema is fun 1
then type is press mark

R6: if max dist to cog is fun 3
and all extrema is fun 1
and max extrema is fun 1
then type is uneven surface

R7: if max dist to cog is fun 3
and min extrema is fun 1
then type is uneven surface

NEFCLASS rules for
surface defect classification
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Neuro-Fuzzy Systems: Summary

• Neuro-fuzzy systems can be useful for discovering knowledge
in the form of rules and rule bases.

• The fact that they are interpretable,
allows for plausibility checks and improves acceptance.

• Neuro-fuzzy systems exploit tolerances in the underlying system
in order to find near-optimal solutions.

• Training procedures for neuro-fuzzy systems have to be able to cope
with restrictions in order to preserve the semantics of the original model.

• No (fully) automatic model generation.
⇒ A user has to work and interact with the system.

• Simple training methods support exploratory data analysis.
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